
Urban Sensing for Multi-Destination Workers
via Deep Reinforcement Learning
Shuliang Wang1, Song Tang1, Sijie Ruan1∗, Cheng Long2, Yuxuan Liang3,

Qi Li1, Ziqiang Yuan1, Jie Bao4,5, Yu Zheng4,5
1Beijing Institute of Technology, Beijing, China 2Nanyang Technological University, Singapore

3HKUST(GZ), Guangzhou, China 4JD iCity, JD Technology, Beijing, China 5JD Intelligent Cities Research, China
{slwang2011,songtang,sjruan,liqi,ziqiangy}@bit.edu.cn; c.long@ntu.edu.sg;
yuxuanliang@hkust-gz.edu.cn; baojie@jd.com; msyuzheng@outlook.com

Abstract—Urban sensing aims to sense the status of the city,
e.g., air quality, noise level, concentration of viruses, which can
be completed by spatial crowdsourcing. Multi-destination people,
who have many intermediate locations to visit before the final
destination, e.g., couriers and tourists, are ideal recruitment
candidates to conduct sensing tasks since they spend more time
outside and have a wide spatio-temporal distribution. However,
existing spatial crowdsourcing methods are only designed for
workers who have single destinations, e.g., commuters, which
are not applicable to recruit the multiple-destination people.
Therefore, in this paper, we generalize the urban crowdsens-
ing problem to the multi-destination scenario, namely, Urban
Sensing for Multi-Destination Workers (USMDW). We prove
its NP-hardness, and propose a framework Urban Sensing for
Multi-destination Workers via Deep REinforcement learning,
i.e., SMORE, to solve it effectively and efficiently. SMORE is
composed of two steps: 1) candidate assignment initialization,
which initializes all feasible sensing task-worker assignment pairs
by a pre-trained reinforcement learning-based working route
planning solver; and 2) reinforcement learning-based iterative
selection, which iteratively selects a sensing task-worker pair to
the current assignment via a novel policy network, i.e., Two-stage
Assignment Selection Network (TASNet). Extensive experiments
on three real-world datasets show SMORE outperforms the best
baseline in data coverage by 5.2% on average with high efficiency.

Index Terms—Urban Sensing, Spatial Crowdsourcing, Rein-
forcement Learning

I. INTRODUCTION

Urban sensing is an essential prerequisite of urban comput-
ing [1], which aims to sense the status of the city, e.g., air
quality, noise level, traffic condition, concentration of viruses
and illegal parking events. The sensed data can be used as the
input for prediction [2] and decision making [3]. Traditionally,
static geospatial sensors or surveillance cameras are deployed
to sense the urban state. With the development of positioning
technology, humans equipped with mobile phones become a
kind of mobile sensor. Sensing based on humans is known
as mobile crowdsensing [4], which can be categorized into
opportunistic sensing [5] and participatory sensing [6]. The
sensed data collected by opportunistic sensing is random and
of low quality since the movement cannot be controlled, while

∗Sijie Ruan is the corresponding author who contributed the main idea and
algorithms of this paper.

Platform

Worker Travel Task Sensing TaskOrigin Destination

Participants

Time Span: 9:00-13:00

9:15

9:28

10:04

11:35

10:12 12:20

Sensing Region

Total
Budget

Information Collection Sensing Task Assignment &
Working Route Planning 

Recruited 
Workers

9:15

10:04

11:35

12:20
9:30-10:00

11:30-12:00

Sensing Region

Time Span: 9:00-13:00

11:00-11:30

Fig. 1. Urban Sensing for Multi-Destination Workers

in participatory sensing, the platform can give incentives to
workers, and thus obtain sensed data of high quality via
controlling their mobility.

Existing participatory sensing schemes for urban sensing
are usually designed for workers with a single travel destina-
tion [7], [8], e.g., commuters with commuting plans (an origin
and a destination) [8]. However, there exists another group of
people who also have great potential to complete urban sensing
tasks, e.g., couriers and tourists, since they spend more time
outside and have a wide spatio-temporal distribution. Since
these people usually visit multiple locations in a trip, existing
urban crowdsensing schemes do not support recruiting them.

Therefore, in this paper, we study the problem of Urban
Sensing for Multi-Destination Workers (USMDW), so that
the urban crowdsensing project can engage a wider group of
people. More specifically, as shown in Figure 1, given a set
of sensing tasks and a budget, based on the multi-destination
information submitted by participants, we recruit some of them
as workers and compute working routes for them to complete
sensing tasks to maximize a pre-defined sensing objective.
However, USMDW is challenging due to the following reasons
- in fact, the problem is NP-hard, as we prove in this paper:

• Large Action Space. The process involves selecting mul-
tiple workers and assigning various sensing tasks to each
worker. The number of tasks is considerable due to the need



for collecting detailed data over the spatio-temporal range.
Consequently, the action space becomes very large, leading
to a huge computational burden in finding a good solution.
Despite this hurdle, it is crucial to efficiently address US-
MDW since both the multi-destination information provided
by participants and sensing tasks could be outdated.

• Worker Heterogeneity. USMDW shares similarities with
the Team Orienteering Problem with Time Windows and
Mandatory Visits (TOPTW-MV) [9] which aims to max-
imize the total collected scores at different locations by
a group of travelers. In TOPTW-MV, the score at each
location is associated with a time window and there are
certain mandatory visit locations that must be included in
the solution. However, the mandatory visits in TOPTW-
MV are not specific to individual travelers, in our USMDW
settings, each worker has unique mandatory visit locations
tailored to their targets, making the workers heterogeneous.
Considering the above distinction, the solutions devised for
TOPTW-MV cannot be directly applied to tackle USMDW.

• Dynamic Task Value. In urban sensing, our concern extends
beyond the mere quantity of collected sensed data; we also
prioritize achieving a balanced distribution of data across the
spatio-temporal landscape. This balance can be effectively
characterized using a metric called Hierarchical Entropy-
based Data Coverage [8]. Notably, this metric introduces
interdependence among the values of individual sensing
tasks, in contrast to the independent values considered
in TOPTW-MV. As a result, this interdependence further
complicates the optimization problem.

Inspired by the recent progress of deep reinforcement learn-
ing for effectively and efficiently solving complex combinato-
rial optimization problems [10], we propose a novel framework
entitled SMORE, which stands for Urban Sensing for Multi-
Destination Workers via Deep REinforcement learning.

To tackle the first challenge posed by the extensive action
space, SMORE is proposed as an iterative selection frame-
work, which first initializes all feasible sensing task-worker
assignment pairs by a pre-trained reinforcement learning-based
working route planning solver, and then iteratively selects a
sensing task-worker assignment pair to the current assignment
via a novel policy network until the budget is used up or there
is no feasible working route satisfying the time constraints.
The policy network is named as Two-stage Assignment
Selection Network (TASNet), which sequentially selects a
worker and a sensing task to further reduce the difficulties
of the decision making. To tackle the challenge of worker
heterogeneity, TASNet incorporates a separate encoding for
the information pertaining to each worker. This personalized
encoding serves as contextual information during the selection
process of both the worker and the associated sensing task. To
handle the dynamic task value, TASNet computes the value
of each sensing task using a selection heuristic. This value
calculation is then integrated into TASNet through data fusion
and a soft mask function to boost the model performance.

Our contributions can be summarized as follows:

• We generalize the existing urban crowdsensing problem to
the multi-destination scenario and prove its NP-hardness.

• We propose an iterative selection framework SMORE to
tackle USMDW, which is an RL-based assignment strategy
and is equipped with an existing route planning solver.

• We design TASNet to select sensing task-worker assignment
pairs, which handles the large action space and integrates the
selection heuristic by data fusion and a soft mask function.

• Extensive experiments on three real-world datasets demon-
strate the effectiveness and efficiency of SMORE. SMORE
outperforms the best baseline by 5.2% on average with high
efficiency. We have released the code and data for public
use1.

II. PRELIMINARIES

In this section, we introduce some definitions and formalize
the problem of USMDW.

A. Definitions

Definition 1 (Travel Task). A travel task, e.g., delivering a
parcel, or visiting a tourist attraction, is denoted as d =<
l, τ >. d.l is the geographical location of d, and d.τ is the
period of time required to complete d.

Definition 2 (Multi-destination Worker). A multi-destination
worker w is denoted as w =< ls, le, t

min
s , tmax

e ,D >, where
w.ls and w.le are the origin and final destination of w,
w.tmin

s and w.tmax
e are the feasible earliest departure and

the latest arrival time, and w.D is the set of travel tasks w
must completed during the trip.

In the following, we refer to multi-destination workers as
workers for abbreviation if there is no ambiguity.

Definition 3 (Sensing Task). An urban sensing task, e.g.,
sensing the air quality of an area over a certain temporal
range, is denoted as s =< l, tws, twe, τ >. s.l is the location
of s, and s.tws and s.twe form the available time window
that the task can be completed, respectively. s.τ is the period
of time required to complete s. s can be completed by only
one worker, and his/her sensing period must fully fall into the
time window of s, i.e., the arrival time t of the worker at s.l
satisfies: s.tws ≤ t ≤ s.twe − s.τ .

The sensing task set S can be manually designated or auto-
matically created: Given a region of interest and a sensing time
span, S can be constructed by partitioning the spatio-temporal
range with pre-defined spatial and temporal resolutions.

We employ the Hierarchical Entropy-based Data Coverage
proposed in [8] to quantify the overall sensing quality, which
cares about not only the number of completed sensing tasks,
but also the degree of sensed data balance across the spatio-
temporal landscape.

Definition 4 (Hierarchical Entropy-based Data Cover-
age [8]). The hierarchical entropy-based data coverage is
calculated by ϕ(S ′) = αE(S ′) + (1 − α) log2 |S ′|, where S ′

1https://github.com/SongTunes/SMORE



is the set of completed sensing tasks and E(S ′) measures
the degree of spatio-temporal balance of completed sensing
tasks through the hierarchical entropy, α ∈ [0, 1] is a trade-
off hyperparameter to tune the importance of the balance of
collected data to the number of collected data.

Definition 5 (Working Route & Route Travel Time). The
working route of a worker w describes his/her traveling
sequence, which is denoted as Rw = w.ls → ta1 → ta2 →
... → ta|w.D|+|Sw| → w.le, where Sw is the set of assigned
sensing tasks of worker w, and tai either is a travel task in
w.D or an assigned sensing task in Sw. The route travel time
rttRw

is the summation of travel time between consecutive
locations as well as the time spent waiting and completing
different tasks, which is formally defined as follows:

rttRw = tt(w.ls, ta1.l) + tt(ta|w.D|+|Sw|.l, w.le)

+

|w.D|+|Sw|−1∑
i=1

tt(tai.l, tai+1.l)

+

|w.D|+|Sw|∑
i=1

[wt(tai) + tai.τ ]

(1)

where tt(li, lj) is the travel time between li and lj , wt(ta) is
the waiting time for completing task ta. For a sensing task
s, the waiting time is the difference between s.tws and the
arrival time of the worker at s.l if he/she arrives earlier than
s.tws, else 0. For travel tasks, the waiting time is always 0.

A working route Rw is feasible for the worker w only if the
route travel time meets the time constraint of w, i.e., w.tmin

s +
rttRw

≤ w.tmax
e .

In this study, we assume workers are moving at a constant
speed in free space, i.e., the travel time is proportional to the
Euclidean distance between locations. Alternatively, the travel
time can also be estimated based on historical data [11], [12].

Definition 6 (Incentive). The incentive is the allowance given
to the worker, which is proportional to the additional time
cost of the worker brought by completing sensing tasks. The
incentive of worker w is calculated as:

inRw = µ× [rttRw − rttTSP(w.ls,w.le,w.D)] (2)

where µ is the incentive per time unit, and the latter part is
the time cost difference between the actual working route with
sensing tasks assigned Rw and his/her original route with the
minimum time cost. The original route is the solution of a
Travelling Salesman Problem (TSP) starting from ls, ending
at le, traversing through all locations in D to finish travel
tasks, i.e., TSP(ls, le,D).

Note that, different from [8], whose incentive is proportional
to the slack time of workers, in this study, the incentive is
dynamic to the actual sensing tasks assigned to the worker,
which makes our assignment more flexible.

B. Problem Statement

USMDW is defined as follows: Given the urban sensing
task set S, the total budget B, the incentive per time unit µ,
and the multi-destination worker setW = {w1, w2, ..., w|W|},
design feasible working routes for W to complete a set of
sensing tasks S ′ ⊆ S, such that the hierarchical entropy-based
data coverage ϕ(S ′) is maximized. Formally,

max
{Rw}Ww

ϕ(S ′) (3a)

s.t.
∑

w∈W inRw
≤ B (3b)

Lemma 1. The USMDW problem is NP-hard.

Proof. We can prove the NP-hardness of USMDW by re-
ducing Orienteering Problem (OP) [13], which is an already
known NP-hard problem.

We first give the statement of OP: Let G = (V, E) be a graph
where V is a set of vertices and E is the set of edges. Each
vertex is associated with a non-negative score and each edge
is associated with a non-negative travel time cost. OP is to
determine a Hamiltonian path over a subset of V to maximize
the total score collected from the visited vertices, while the
travel time of the path cannot exceed a given threshold Tmax.

Consider OP instances where the score of each vertex in
graph G is 1, we can transform it to an instance of USMDW
in the following way. Let the traveler in OP represent a worker
whose set of travel tasks is empty and each vertex in V
represents a sensing task. For the available time window of
sensing task s, the start time s.tws is set to 0 and the end
time s.twe is set to the time cost constraint Tmax, the period
of time required to complete a travel task or a sensing task
are both set to 0 and the budget B for the sensing project
can be set to infinity. In the objective, the weight α in ϕ(S ′)
is set to 0, in which case the objective is only related to the
number of completed sensing tasks |S ′ |, which is equivalent
to maximizing the total collected score in such OP instance.

If we have a polynomial solver for USMDW, then the
maximum total collected scores can be obtained in polynomial
time. However, since OP is NP-hard, the NP-hardness of
USMDW is proven.

III. FRAMEWORK

In this section, we describe the framework SMORE. Given
that USMDW is an NP-hard problem, rather than struggling
on computing the optimal working routes, we seek methods
that can give ideal results efficiently.

A. Overview

Given the observation that the optimal working routes rely
on the optimal sensing task assignment, a natural idea to solve
USMDW is to decompose the working route design into two
sub-problems: 1) assigning sensing tasks to workers; and 2)
calculating the working route for each worker based on the



assigned sensing tasks, his/her travel tasks as well as the origin
and the final destination.
Issues. Since the second sub-problem essentially is a Traveling
Salesman Problem with Time Window (TSPTW) [14], many
meta-heuristic methods [15] can be employed, we mainly
focused on addressing the first sub-problem. A straightforward
idea to solve the first sub-problem is to use the greedy algo-
rithm. More specifically, we first initialize an empty assign-
ment set, and then we iteratively pick a sensing task-worker
assignment pair that brings the maximum data coverage gain
until the budget is used up. However, such a strategy has the
following two issues:

• Obtaining feasible sensing task-worker assignment pairs is
time-consuming. A sensing task-worker assignment pair is
feasible if and only if when the sensing task s is assigned
to the worker w, the worker can still complete all his/her
travel tasks and arrive at his/her final destination w.ld before
the latest arrival time w.tmax

e and would not use up the
remaining budget based on his/her updated incentive after
the candidate sensing task s is added. Therefore, as long
as there exists one working route that satisfies the above
constraints, the assignment pair is feasible. Since the work-
ing route produced by TSPTW solver takes the minimum
traveling time, and its additional budget cost is also the
minimum given a certain assigned sensing task set according
to Equation 2, it is the lower bound working route. With
such a working route at hand, we can easily know whether
the time or the budget constraint is violated. However, as we
know TSPTW itself is NP-hard, and checking the feasibility
of each assignment pair is time-consuming.

• Only considering the data coverage gain is myopic. On one
hand, the data coverage gain is only related to the selected
sensing task, which is irrelevant to the worker conducting
it. Therefore, if a sensing task can be completed by several
workers, the greedy algorithm can not guarantee the sensing
task is assigned to the most appropriate worker. On the other
hand, even if there is only a worker feasible to conduct
the sensing task with maximum data coverage gain, the
algorithm is easy to be trapped into the local maxima, since
the greedy algorithm only makes the decision based on the
data coverage gain in the current iteration, which may fail to
achieve a higher data coverage if a sensing task with smaller
data coverage gain need to be selected first.

Intuitions. Since deep reinforcement learning has the ability to
make decisions efficiently and maximize the long-term reward
via the neural network, it has the potential to solve the above
issues. More specifically, 1) to tackle the time-consuming
issue, we introduce a pre-trained RL-based TSPTW solver
to efficiently perform the feasibility check. Additionally, it
can also be reused to solve the second sub-problem, which
further boosts the performance of the proposed method. 2)
to tackle the myopic issue, a novel RL-based assignment
selection module is devised to select the sensing task-worker
assignment pair among all feasible candidates, which takes
various information into consideration, e.g., the information

Candidate Assignment
Initialization

Not 
Empty?

Candidate Assignment Update

Total Budget Worker Set Sensing Task Set

Pre-trained RL-based TSPTW Solver

R
ei

nf
or

ce
m

en
t L

ea
rn

in
g-

ba
se

d 
It

er
at

iv
e 

Se
le

ct
io

n Two-stage Assignment Selection Network
(TASNet)

Feasible Sensing 
Task-Worker Pairs

Y

N

Sensing
Region

Selected Sensing Task-Worker Pair

Predicted 
O

ptim
al

R
outes

Policy
N

etw
ork

Selected
Worker

Selected
Sensing Task

Policy N
etw

ork

Policy N
etw

ork

Sensed
Data𝑡𝑡𝑇𝑇

𝑖𝑖1 𝑡𝑡1
𝑗𝑗1

𝑗𝑗𝐽𝐽

𝑗𝑗2
…

𝑖𝑖2 𝑖𝑖𝐼𝐼…
…

Fig. 2. Framework of SMORE.

of workers, the assignment status of all workers, remaining
budget, rather than only the data coverage gain.
Main Idea. With the above intuitions, we propose SMORE, a
reinforcement learning-based framework, to design working
routes for multi-destination workers, which is depicted in
Figure 2. SMORE follows the iterative assignment framework
and is equipped with a pre-trained RL-based TSPTW solver.
SMORE is composed of two steps: 1) candidate assignment
initialization, which takes workers and all sensing tasks as
input, and efficiently generates all feasible sensing task-worker
assignment pairs based on the pre-trained TSPTW solver;
and 2) reinforcement learning-based iterative selection, which
iteratively selects sensing task-worker assignment pairs until
no feasible sensing task-worker assignment pair exists. In each
iteration, the most promising sensing task-worker assignment
pair is selected based on RL, and feasible sensing tasks for
the selected worker would be updated based on the pre-
trained TSPTW solver. Next, we elaborate on the detailed
implementation of two steps as well as the pre-trained solver.

B. Implementation

The pseudocode of SMORE in the inference stage is shown
in Algorithm 1, which takes worker set W , sensing task set
S, total budget B, incentive per time unit µ, the RL-based
TSPTW solver fTSPTW as well as the proposed RL-based task
assignment network fTASNet, and returns the working routes
for workers {R}Ww . The remaining budget Brest is first set
to the total budget B, and we create a set S ′ to store all



Algorithm 1: SMORE
Input : Worker set W , sensing task set S, total

budget B, incentive per time unit µ,
RL-based TSPTW solver fTSPTW, RL-based
task assignment selection network fTASNet.

Output: Working routes of workers {R}Ww .

1 Brest ← B; S ′ ← ∅; C ← ∅; M← ∅;
2 for w ∈ W do
3 M[w]← (∅, null, 0);
/* Step 1. Candidate Assignment Init. */

4 for w ∈ W do
5 for s ∈ S do
6 Rw, rttRw ←

fTSPTW(w.ls, w.ld, w.D∪{s}, w.tmin
s , w.tmax

e );
7 ∆in ← Incentive(rttRw

, w, µ)− 0;
8 if ∆in < Brest then
9 C[w][s]← (Rw,∆in);

/* Step 2. RL-based Iterative Selection */

10 while C ̸= ∅ do
11 (w∗, s∗)← fTASNet(C,M,W, Brest);
12 Brest ← Brest − C[w∗][s∗].∆in;
13 M[w∗]← (M[w∗].Sw ∪

{s∗}, C[w∗][s∗].Rw,M[w∗].in+ C[w∗][s∗].∆in);
14 S ′ ← S ′ ∪ {s∗};
15 for w ∈ W do
16 remove s∗ from C[w];
17 for s ∈ S \ S ′ do
18 Rw, rttRw

← fTSPTW(w∗.ls, w
∗.ld, w

∗.D ∪
M[w∗].Sw ∪ {s}, w∗.tmin

s , w∗.tmax
e );

19 ∆in ←
Incentive(rttRw

, w∗, µ)−M[w∗].inRw
;

20 if ∆in < Brest then
21 C[w∗][s]← (Rw,∆in);

22 else
23 remove s from C[w∗];

24 return {M[w].Rw|∀w ∈M}

selected sensing tasks, and a hashmap C to store all feasible
sensing task-worker assignment pairs, whose key is the sensing
task-worker assignment pair, and value contains the working
route after the sensing task is assigned to the worker and its
corresponding additional incentive (i.e., the incentive differ-
ence before and after assigning the sensing task). A hashmap
M is also created to store the assignment of sensing tasks,
whose key is the worker, and value contains his/her current
assigned sensing task set, corresponding working route as well
as the incentive currently given to the worker (Lines 2-3). After
that, candidate assignment initialization and reinforcement
learning-based iterative selection are executed.
Candidate Assignment Initialization. In this step, we check
the feasibility of assigning arbitrary sensing task to each

worker by calling the pre-trained solver fTSPTW. For a worker
w, based on his/her intermediate locations to visit w.D as well
as the current sensing task s to assign to, if there exists a route
that meets the time constraint, and the additional incentive to
give is also smaller than the remaining budget, the assignment
pair, the calculated route, and the corresponding additional
incentive would be inserted to the hashmap C (Lines 5-9).
Reinforcement Learning-based Iterative Selection. This
step would loop until C is empty. In each iteration, a sens-
ing task-worker assignment pair is selected from C based
on candidate assignments C, current assignments M, set of
workers W , and remaining budget Brest by a novel policy
network, i.e., TASNet, which would be discussed later in detail
in Section IV (Line 11). Once such a pair of assignment
(w∗, s∗) is selected, the remaining budget, current assignment
status, and assigned sensing tasks would be updated (Lines 12-
14), and the affected candidate assignments in C would be
recomputed. More specifically, s∗ would first be removed
from candidates of other workers, and then since the feasible
assignment of w∗ is affected by the adding of s∗, the feasible
sensing tasks for w∗ would be recomputed (Lines 15-23).

After the candidate assignment hashmap C is empty, the
current working routes stored in M are returned (Line 24).

C. Pre-trained Working Route Planning Solver

When we need to plan the working route of a worker w,
he/she usually has both travel tasks and sensing tasks. Though
travel tasks do not contain time windows, we can set their time
windows as [w.tmin

s , w.tmax
e ]. In this way, each intermediate

location has a time window. Therefore, the working route
planning problem essentially is a TSPTW. An efficient and
accurate TSPTW solver is essential in our problem, since
once a sensing task is assigned to a worker, his/her feasibility
sensing tasks would change. Here we employ a hierarchi-
cal reinforcement learning (HRL)-based TSPTW solver [16].
Specifically, the solver is divided into two DRL models, which
enables the model to learn a better policy by enhancing time-
window-constraint handling using the lower model. Since there
is only one depot in [16], we adapt their method by including
both the origin and the final destination information into the
query vector to make the selection. TSPTW solver is pre-
trained for calling by SMORE. It involves two steps: 1) lower
model training, which is optimized by the lower rewards, i.e.,
the number of nodes that meet the time window constraint;
and 2) upper model training, which is optimized by the upper
rewards, i.e., adding a penalty for the length of the route to
the lower rewards. Refer to [16] for more training details.
D. Complexity Analysis

We give a complexity analysis of SMORE. Since the RL-
based TSPTW solver decodes the route location by location,
its time complexity is O(|S|), where the number of travel tasks
of a worker usually is not large and can be ignored.

In the first step, SMORE needs to check the feasibility of
any sensing task-worker assignment pair, and each feasibility
check needs to call the TSPTW solver. Therefore, the time
complexity of the first step is O(|W||S|2).



In the second step, the iterations would be conducted for
|W||S| times in the worst case. In each iteration, TASNet is
first called to select a sensing task-worker assignment pair
among candidates, which takes O(1). After an assignment is
selected, the candidate assignments for the selected worker
need to be updated, which takes O(|W| + |S|2). Hence, the
complexity of the second step is O(|W|2|S|+ |W||S|3).

Therefore, the overall time complexity of SMORE is
O(|W|2|S|+ |W||S|3). In practice, the “for” loop for workers
and sensing tasks can be implemented in parallel by batching
the data and then passing through the pre-trained TSPTW
solver, which can further boost the inference speed.

IV. REINFORCEMENT LEARNING-BASED ITERATIVE
SELECTION

In this section, we provide a detailed description of rein-
forcement learning-based iterative selection.

A. Iterative Selection Modeled as an Markov Decision Process

Since making the selection based on the data coverage gain
is myopic, we model the iterative sensing task-worker assign-
ment pair selection process as a Markov Decision Process
(MDP), which can consider various information to make the
decision to maximize the long-term reward. It consists of four
components: states, actions, transitions, and rewards, which
are defined as follows.
States. The state includes all information related to the deci-
sion making, which can be denoted as st = (Ct,Mt,W, Bt),
where t is the current decision time step, Ct and Mt are
candidate sensing tasks and assigned sensing tasks for each
worker at time step t, respectively, Bt is the remaining budget
at time step t. We also incorporate the static information of
workers W which would not change across different decision
time steps, i.e., the origin, final destination, as well as the set
of travel tasks, to enrich the state representation.
Actions. An action is a sensing task assignment decision,
which can be denoted as at =< wt

i , s
t
j >, meaning assigning

sensing task sj to worker wi at time step t.
Transitions. After at is conducted, i.e., a candidate sensing
task assignment is selected at time step t, st is updated to st+1.
Based on the selected sensing task and the selected worker, we
update the state, i.e., candidate sensing tasks, assigned sensing
tasks as well as the remaining budget in the same way as we
already explained in Lines 12-23 of Algorithm 1.
Reward. Since our optimization goal is to maximize the data
coverage, the reward at time step t is defined as the data
coverage gain after completing the sensing task selected in
at, i.e., the task value of the sensing task, which is denoted
as rt = ϕ(S ′t+1)− ϕ(S ′t), where S ′t and S ′t+1 are the selected
sensing tasks at time step t and time step t+1, respectively.

After modeling the iterative selection process as an MDP, it
can be solved by reinforcement learning. Since the state con-
tains various information and is rather complex, we propose a
policy network, i.e., TASNet, to make the decision. We next
introduce TASNet and the learning algorithm.

B. Overview of TASNet

Given the states and actions defined in MDP, we can now
design a policy network to achieve the mapping from a state
to an action.
Issues. Given all candidate sensing task-worker pairs, a
straightforward idea is that we produce the probability for
each pair through the network all at once. However, given
|W| workers and |S| candidate sensing tasks, there are at most
|W||S| possible choices. Leveraging the above strategy is not
only time-consuming, but also difficult to learn a good policy
given massive choices.
Intuitions. Since the assignment selection requires both pick-
ing a worker and picking a candidate sensing task, if we can
make those two decisions by turns, the complexity of the
selection can be reduced, i.e., we first pick a worker w from
W and then pick a sensing task from his/her feasible sensing
tasks. In this case, the number of choices can be roughly
reduced to |W|+ |S|.
Main Idea. Therefore, to tackle the above issue, we propose
TASNet as shown in Figure 3, which is composed of three
modules, 1) Worker & Sensing Task Representation, which
separately encodes the information about workers and sensing
tasks into latent embeddings; 2) Worker Selection, which takes
the embeddings of workers, their assigned sensing tasks, and
remaining budget to select a worker to be assigned; and 3)
Sensing Task Selection, which takes the embedding of the
selected worker, the embeddings of his/her assigned sensing
tasks and feasible sensing tasks, and selects a sensing task
assigned to him/her. We next give a comprehensive description
of each module.

C. Worker & Sensing Task Representation

Worker & Sensing Task Representation aims to transform
workers and sensing tasks into dense vector representations,
which can be later used to encode the current state.
Worker Embedding. Since different workers are heteroge-
neous and are characterized by their origins, final destinations
as well as travel tasks, the assignment selection should also
consider the convenience of others. Therefore, when calculat-
ing the worker embedding, both the spatial distributions of
locations as well as the correlation among workers should be
considered. For each worker, we first partition the region of
interest into uniform grids and create a corresponding matrix
initialized with all 0 to store the travel information of the
worker. The value of the entry is set to 1, 2, 3 if its corre-
sponding grid cell contains the origin, destination, travel tasks
of the worker, respectively. Then we apply a convolutional
layer and a fully connected (FC) layer on the matrix to
encode the spatial distributions of the travel information of
the worker. Finally, a Transformer [17] like encoder, which
is composed of a multi-head attention (MHA) layer and a
node-wise fully connected feed-forward (FF) layer, is applied
to fuse the information of different workers. The output of
which serves as the embeddings of workers {wi}Wi=1.
Sensing Task Embedding. Sensing task embedding aims
to capture the spatio-temporal closeness of different sensing



Worker & Sensing Task 
Representation

Worker Selection

Sensing Task Selection

Attention

FC

FFN

Sensing Task Embeddings

Worker Embeddings

𝒔𝒔𝑖𝑖

𝒘𝒘𝑗𝑗

…

Conv

FC

Attention

FFN
Group State Encoder Worker Decoder

Individual State Encoder
Heuristic-enhanced

Task Decoder

…

𝐡𝐡𝑐𝑐′

�𝒔𝒔

�𝒂𝒂𝑗𝑗

𝒘𝒘1

M. P.

Individual State 
Em

bedding
G

roup State 
Em

bedding

Attention

M
ean Pooling

FC

Attention

M
ean Pooling

FC
Attention

Pointer

Attention

Pointer

selected 
sensing task

selected
worker

C

M. P. C

M. P. C

�𝒘𝒘1

�𝒘𝒘2

�𝒘𝒘3

𝒘𝒘2

𝒘𝒘3 ……

C𝐡𝐡𝑔𝑔 𝐡𝐡𝑐𝑐

𝐡𝐡𝑤𝑤C C

M. P.

�𝒘𝒘1 ·

argmax / sample

Soft Mask

𝒘𝒘1
C∆𝑖𝑖𝑖𝑖

p

j

p

i

f

i

C

· Hadamard Product
Concatenation
Corresponding
Data Flow

Embedding

FC

FC

∆𝜙𝜙

argmax / sample

Fig. 3. Architecture of Two-stage Assignment Selection Network.

tasks. Those embeddings would serve as the initial represen-
tations for both assigned sensing tasks as well as candidate
sensing tasks to be assigned. The input of a sensing task
contains its location as well as its time window, we apply
another Transformer like encoder to capture their spatio-
temporal closeness and obtain the embeddings {si}Si=1.

D. Worker Selection

Worker Selection takes the embeddings of workers, their
assigned sensing tasks, and the remaining budget, and aims to
decide which worker to select. This module is composed of a
group state encoder and a worker decoder.
Group State Encoder. Group state encoder fuses the current
state into a vectorized group state embedding, i.e., hc.

Firstly, for each worker j, given his/her current as-
signed sensing tasks, we first gather their embeddings
{sj1, s

j
2, · · · , s

j
|Sj |} based on the previous module, and apply a

mean pooling layer to obtain a uniform assigned task represen-
tation s̄j given that the assigned task set is varying in length
among workers. Then, s̄j is concatenated with the embedding
of the worker wj to create the worker state embedding, i.e.,
w̃j = [̄sj ;wj ], where ; denotes the concatenation operation.
After that, a MHA layer followed by a mean pooling layer
is applied among all workers to obtain the group worker
embedding hg as Equation 4 shown:

hg = MeanPool(MHA({w̃1, w̃2, · · · , w̃|W|})) (4)

At last, the group worker embedding hg is concatenated
with the remaining budget Brest to obtain the group state
embedding, i.e., hc = [hg;FC(Brest)].
Worker Decoder. The worker decoder aims to select a worker
based on the given group state embedding hc. Inspired by the
pointer mechanism in Attention Model [10], we first calculate
a context embedding based on hc that represents the current
decoding state. Then we obtain the probability distribution
of the selection to the input sequence (i.e., the worker set)
using an attention-based pointer decoding method to derive
the selected worker.

Firstly, according to the worker state embeddings
{w̃1, w̃2, · · · , w̃|W|} and the group state embedding hc, we
apply a dot-product attention mechanism to calculate a new
decoding context embedding hc′ . This step aims to further
extract the relationship information between group state em-
bedding and worker state embeddings. Note that the attention
weight of a worker j would be set to −∞ if his/her candidate
sensing task set is empty to make sure we would not select a
worker without any feasible assignment.

Based on the calculated new decoding context embedding
hc′ , we calculate the probability distribution using a single-
head attention mechanism, and the worker who has the max-
imum probability is selected. Formally,

qc = WQhc′ ,kj = WKw̃j ,vj = WV w̃j ∀j ∈ 1 · · · |W|
(5)



u
′

cj =

{
C · tanh(q

T
c kj√
dk

) if j is not masked

−∞ otherwise
(6)

pj =
exp(u

′

cj)∑
j′ exp(u

′

cj′
)

(7)

where WQ, WK , WV are learnable matrices. Note that we
also clip the result within [−C,C] using tanh, similar to
previous works [10], [18].

E. Sensing Task Selection

Sensing Task Selection takes the selected worker from the
previous module, and selects one of his/her candidate tasks
based on his/her embeddings and assigned sensing tasks,
which is composed of an individual state encoder and a
heuristic-enhanced task decoder.
Individual State Encoder. Individual state encoder fuses the
current state of the selected worker into a vectorized individual
state embedding, i.e., hw. More specifically, both the individ-
ual information about the worker and the global information
are considered. 1) For the individual information, similar to
the worker selection, for a selected worker j, we consider its
worker embedding wj as well as the assigned sensing tasks.
For assigned sensing tasks, their embedings {sj1, s

j
2, · · · , s

j
|Sj |}

are first fed into an attention layer followed by a mean
pooling layer to obtain a semantic richer representation of the
assignment status of the worker āj . Then, those two parts are
concatenated to generate an enhanced worker state embedding,
i.e., w̌j = [āj ;wj ]. 2) For the global information, in addition
to considering the remaining budget Brest, we further consider
the group worker embedding hg obtained from the worker
selection to have a global view of the overall assignment status,
as well as the global view of all sensing tasks s̄, which is
calculated based on the mean pooling over all sensing task
embeddings. Formally, the individual state embedding hw is
obtained as follows:

hw = [w̌j ;FC(Brest);hg; s̄] (8)

Heuristic-enhanced Task Decoder. Heuristic-enhanced task
decoder aims to select a sensing task based on the individual
state embedding, i.e., hw.

A straightforward idea is to use the same decoder struc-
ture of the worker decoder to complete the sensing task
selection (by replacing the worker embeddings with feasible
sensing task embeddings and replacing group state embedding
with individual state embedding). However, 1) some effective
heuristics which are widely used by greedy algorithms, e.g.,
making the decision which brings the maximum objective
gain, are not explicitly used by the RL algorithm; and 2) the
action space of the sensing task selection is often much larger
than worker selection, which makes it more difficult if the
same strategy is applied.

To tackle the first issue, for each candidate sensing task i,
we introduce two auxiliary signals, i.e., coverage gain ∆ϕi

and incentive cost ∆ini, which serve as the heuristics to

enhance the selection performance. ∆ini is already explained
in Section III, and ∆ϕi is the data coverage difference if the
sensing task is selected, which is computed on the fly to avoid
unnecessary computations. More specifically, we concatenate
∆ini and ∆ϕi with the original sensing task representations,
which would be used for the attention query.

To tackle the second issue, we propose a soft mask mecha-
nism based on those signals to modify the selection probability
before the output to assist decisions. More specifically, we
design a heuristic score, namely, coverage-incentive ratio βi

for each sensing task si: βi = ∆ϕi/∆ini, where ∆ϕi and
∆ini are the difference of data coverage and incentive after
and before the sensing task is selected, respectively. Intuitively,
a sensing task with a higher coverage-incentive ratio means
it takes less budget and can achieve a higher coverage gain.
Based on the coverage-incentive ratio, the soft mask function
is devised as follows:

f(∆ϕi,∆ini) = exp(− λ2

ϵ+ (β̂i)2
) (9)

β̂i =
βi −min(β)

max(β)−min(β)
(10)

where β are all coverage-incentive ratios of sensing tasks at
each decision time step, λ is a hyperparameter and ϵ is a tiny
positive value to avoid zero division.

By integrating the soft mask function, the modified proba-
bilities become:

pi =
exp(u′

ci ⊙ f(∆ϕi,∆ini))∑
i′ exp(u

′
ci′ ⊙ f(∆ϕi′ ,∆ini′))

(11)

F. Training Process

The training process of TASNet is explained as follows.
We use the REINFORCE algorithm with a critic baseline [19]
because we find that using a critic baseline has higher training
efficiency compared to some self-critic methods (e.g., rollout
baseline [10]). We first randomly initialize the parameters of
TASNet. Then for each training iteration, a batch of instances
of USMDW would be sampled. For each instance, after can-
didate assignments are calculated by the pre-trained RL-based
TSPTW solver, we feed them into TASNet together with state
update module to produce the “assignment trajectory” step
by step, i.e., π = {(w1, s1), (w2, s2), ...} until the candidate
assignment set is empty. After that, we collect the assignment
results and corresponding decoding probabilities of a batch,
and update the model parameters using policy gradient [20]:

∇θJ(θ|s) = Epθ(π|s) [(ϕ(π)− b(s))∇θlogpθ(π|s)] (12)

where θ are parameters of TASNet, ϕ(π) is the data coverage
given π, b(s) is the baseline value estimated by the critic
network for state s.



V. EXPERIMENT

A. Dataset

The experiments are carried out on three real-world datasets,
i.e., two moderate datasets from JD Logistics and Flickr, and
a large-scale dataset from Cainiao Network.
• Delivery [21]. Delivery is from JD Logistics, which includes

3 months of delivery data from Jun. 1st, 2019 to Aug. 31st,
2019 and covers a delivery region of 2km×2.4km in Beijing,
China. The dataset consists of the parcel delivery order of
each courier, which includes 5,167 delivery trips.

• Tourism. Tourism is collected via Flickr API2, which in-
cludes geo-tagged photos uploaded by users from 2001 to
2021 of an 8km × 8km region in Melbourne, Australia. The
dataset contains 1,734 users’ check-in sequences.

• LaDe [22]. LaDe is from Cainiao Network, which includes
6 months of last-mile delivery data from May. 1st, 2022
to Oct. 31st, 2022. The dataset also consists of the parcel
delivery order of each courier, which includes 66,375 trips
after preprocessing.
Figure 4 shows the distribution of the number of travel tasks

and the number of workers on three datasets.

(a) # of Travel Tasks. (b) # of Workers.

Fig. 4. Data Distributions.

B. Experimental Settings

Problem Setup. Experiments are set up as follows.
• Worker Setup: The time for a courier to complete a delivery

task is set to 10 minutes, and we assume tourists stay for
20 minutes at each POI. The movement speed of workers
is set to 60 meters per minute.

• Sensing Task Setup: The sensing tasks are uniformly
created in the spatio-temporal space. In Delivery and LaDe,
the time span of the sensing project is set to 4 hours to
synchronize with the working hours of delivery trips. In
Tourism, the time span is set to 6 hours based on our analysis
of the tourists’ activities. The region in Delivery, Tourism,
and LaDe is partitioned into a 10 × 12, 10 × 10 and 10 ×
10 grid, respectively.

• Other Setup: The budget is set to 300 by default, and the
incentive per unit time µ is 1. The time window of a sensing
task is set to 30 minutes by default. In the objective function,
the trade-off parameter α is 0.5 by default, which means that
both data amount and data balance are equally important.

2https://www.flickr.com/services/api/

Baselines. Though USMDW is the general case of [8], the
method of the latter cannot be used due to multiple mandatory
visits. Therefore, we designed three heuristic algorithms and
two modified meta-heuristic algorithms for comparison.

• Random algorithm (RN): Since a completely random
selection algorithm may generate infeasible working routes.
Therefore, for each worker, we first design a working route
based on its origin, final destination as well as travel tasks
via the Nearest Neighbor algorithm [10], i.e., we always
select the nearest location as the next location. Based on
the initial working route of each worker, we can iteratively
randomly select a worker, randomly select a sensing task,
and randomly select a position of the original working route
to insert the sensing task, until the budget is used up.

• Task value priority greedy algorithm (TVPG): TVPG
also leverages the Nearest Neighbor algorithm to generate
the initial working route, and then the worker who con-
tributes the most data coverage is selected [8]. After that,
we calculate the maximum coverage gain for each sensing
task if it is assigned to the worker by trying to insert it into
any consecutive locations in the route. The sensing task with
the highest maximum coverage gain is selected. If there are
multiple sensing tasks with the same maximum coverage
gain, we select the lowest incentive cost one.

• Task cost priority greedy algorithm (TCPG): The only
difference between TCPG and TVPG is that we give priority
to the sensing task with the lowest incentive cost when
selecting the sensing task, and if there are multiple sensing
tasks with the same incentive cost, the sensing task with the
highest coverage gain is selected.

• Multi-start simulated annealing (MSA): MSA is a meta-
heuristic algorithm which is proposed to solve TOPTW-
MV [9]. MSA searches for a better solution by swap-
ping, inserting and reversing from the current solution. To
adapt MSA, we modify the rules to generate neighborhood
solutions by checking whether the operation violates the
constraints of USMDW, e.g., moving the travel task of a
worker to another. If it happens, we redo a new operation
(until a legal neighborhood solution is generated).

• Multi-start simulated annealing with Greedy Initial-
ization (MSAGI): In MSAGI, we use the results of
TVPG to construct initial solutions, rather than the random
initialization in MSA.

• JDRL [23]: JDRL is a Multi-Agent Reinforcement Learn-
ing (MARL) framework used in ride-hailing platforms for
order dispatching and driver repositioning. We adapt it by
beginning to assign sensing tasks under the prerequisite that
all travel tasks can be completed.

Evaluation Metrics. Both effectiveness and efficiency are
evaluated. Since USMDW is an optimization problem, the
objective, i.e., hierarchical entropy-based data coverage, is
used to evaluate the effectiveness.
Training Details & Hyperparameters. In USMDW, multiple
multi-destination workers should participate in the project.
Therefore, to construct problem instances, we group users by



TABLE I
EFFECT OF SENSING TASK TIME WINDOW

Method
Delivery Tourism LaDe

Interval=30 Interval=60 Interval=120 Interval=30 Interval=60 Interval=120 Interval=30 Interval=60 Interval=120
Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time

RN 4.882 5 (s) 4.819 3 (s) 4.569 2 (s) 4.083 3 (s) 3.647 2 (s) 3.610 1 (s) 5.133 5 (s) 5.123 5 (s) 5.203 5 (s)
TVPG 6.129 5 (m) 6.047 3 (m) 5.926 2 (m) 5.175 2 (m) 4.978 1 (m) 4.948 1 (m) 5.857 2 (m) 5.907 2 (m) 5.887 1 (m)
TCPG 5.993 8 (m) 6.012 5 (m) 5.908 3 (m) 5.014 2 (m) 4.989 2 (m) 4.852 1 (m) 5.752 2 (m) 5.702 2 (m) 5.742 1 (m)
MSA 5.305 1 (h) 5.106 50 (m) 4.911 25 (m) 4.219 45 (m) 4.003 45 (m) 4.146 35 (m) 5.211 45 (m) 5.373 40 (m) 5.438 30 (m)

MSAGI 6.153 20 (m) 6.050 18 (m) 5.939 14 (m) 5.182 13 (m) 5.096 15 (m) 5.001 12 (m) 5.860 12 (m) 5.908 11 (m) 5.891 8 (m)
JDRL 5.461 3 (s) 5.295 3 (s) 5.018 2 (s) 5.126 1 (s) 5.101 1 (s) 4.709 1 (s) 5.346 2 (s) 5.26 2 (s) 5.007 1 (s)

SMORE 6.296 8 (s) 6.195 6 (s) 6.136 5 (s) 5.385 5 (s) 5.463 5 (s) 5.283 3 (s) 6.005 6 (s) 6.036 6 (s) 6.189 5 (s)

trip time intervals. In Delivery, the number of instances for
training, validation, and testing is 120, 20, and 20 respectively.
In Tourism, the number of instances for training, validation,
and testing is 100, 10, and 10, respectively. In LaDe, the num-
ber of instances for training, validation, and testing is 13,327,
1,665, and 1,664 respectively. In worker and sensing task
representation, the encoder contains 3 attention layers, each
of which contains 8 heads. We use the Adam [24] optimizer,
and the initial learning rate is set to 1e-4. We sample actions
from the predicted probability distribution during training and
select the action with the highest probability during validation
and testing. The hyperparameter λ in the soft mask function is
set to 0.5. In MSA & MSAGI, we set the number of starting
points to 3. The initial temperature is set to 3.0 and the decay
rate is set to 0.9. The algorithm iterates 3000 times per round
and the algorithm ends when no better solution is found in 10
consecutive rounds. We limit the running time of the algorithm
to a maximum of 1 hour for each problem instance.
Implementations. Our algorithms are implemented in Python
with PyTorch. Experiments were conducted on a server with
8 Cores@3.0GHz, 56GB memory, and models were trained
using a GeForce RTX 3090(24GB) GPU.

C. Experimental Results

Our experiments aim to find out:
1) Can we achieve higher data coverage with SMORE

compared to baselines under settings of different sensing
task time window, budget and data coverage weights
(Section V-C1, Section V-C2 and Section V-C3)?

2) How is the running efficiency of SMORE (Section V-C4)?
3) What is the importance of main designs of SMORE,

i.e., reinforcement-learning-based sensing task assign-
ment, TASNet and the soft mask (Section V-C5)?

1) Effect of Sensing Task Time Window: Although we
would like to collect spatio-temporal data as fine-grained
as possible, finer-grained spatio-temporal segmentation also
brings a larger problem scale. We fixed the budget to 300 and
the α in data coverage to 0.5, and varied the time windows
of sensing tasks to 30, 60 and 120 minutes, respectively, and
the results of our experiments are shown in Table I. Although
RN is efficient, it performs the worst as expected. The results
of TVPG are similar to those of TCPG, but due to TVPG

prioritizing the coverage gain of tasks, it outperforms TCPG
in data coverage. MSA performs poorly, we guess the reason
is that MSA is not carefully designed for mandatory visits of
heterogeneous workers and our problem scale is much larger
given massive sensing tasks. JDRL also performs worse than
SMORE, since it is not specifically designed to consider the
budget constraints and multi-destination mobility needs, which
do not exist in ride-hailing. The experimental results prove that
SMORE can adapt well to sensing tasks of different scales.
SMORE outperforms the best baseline by 3.3%, 7.1%, 5.1% in
data coverage, and the running time compared to the best non-
RL-based baseline is saved by 168 times, 180 times, 96 times
on Delivery, Tourism and LaDe, respectively. On average,
SMORE outperforms the best baseline by 5.2%, while the
running time compared to the best non-RL baseline is saved
by about 150 times.

2) Effect of Budget: We fixed the sensing task time window
to 30 minutes and the weight in data coverage to 0.5 and
varied the budget from 200 to 400. The experimental results
are shown in Table II. A higher budget allows for higher
data coverage, meaning higher quality of sensed urban data.
However, in the real world, the budget is often tight, which
makes effective sensing task assignment and working route
planning more important. In addition, a higher budget also
allows us to recruit more workers to participate in the urban
sensing project, which makes it more difficult to handle
competition and cooperation among workers. From the exper-
imental results, we can observe that as the budget increases,
the data coverage of the collected data also increases. SMORE
outperforms the best baseline by 3.1%, 5.4%, 3.4% in data
coverage, and the running time compared to the best non-RL-
based baseline is saved by 180 times, 240 times, 150 times
on Delivery, Tourism and LaDe, respectively. Note that the
gap of data coverage between each algorithm narrows as the
budget increases, this is because the hierarchical entropy-based
data coverage is non-linear, i.e., as the data continues to be
collected, the increase of the data coverage becomes slow.

3) Effect of Weights in Data Coverage: By varying the
weight α in data coverage ϕ, we can achieve different urban
data collection purposes. The experimental results are shown
in Table III. For α =0.2, which means that we care about the
amount of data more than the degree of the balance of data,



TABLE II
EFFECT OF BUDGET

Method
Delivery Tourism LaDe

Budget=200 Budget=300 Budget=400 Budget=200 Budget=300 Budget=400 Budget=200 Budget=300 Budget=400
Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time

RN 4.261 4 (s) 4.882 5 (s) 5.374 7 (s) 3.372 1 (s) 4.083 3 (s) 4.478 5 (s) 4.289 2 (s) 5.133 5 (s) 5.462 7 (s)
TVPG 5.609 3 (m) 6.129 5 (m) 6.412 6 (m) 4.669 2 (m) 5.175 2 (m) 5.647 3 (m) 5.509 2 (m) 5.857 2 (m) 6.334 4 (m)
TCPG 5.341 6 (m) 5.993 8 (m) 6.307 11 (m) 4.585 2 (m) 5.014 2 (m) 5.615 4 (m) 5.116 2 (m) 5.752 2 (m) 6.112 5 (m)
MSA 4.482 52 (m) 5.305 1 (h) 5.583 1 (h) 3.818 40 (m) 4.219 45 (m) 4.817 54 (m) 4.991 35 (m) 5.211 45 (m) 5.634 50 (m)

MSAGI 5.615 18 (m) 6.153 20 (m) 6.464 23 (m) 4.708 12 (m) 5.182 13 (m) 5.697 15 (m) 5.521 10 (m) 5.86 12 (m) 6.358 15 (m)
JDRL 4.665 2 (s) 5.461 3 (s) 6.029 4 (s) 4.816 1 (s) 5.126 1 (s) 5.509 2 (s) 4.948 2 (s) 5.346 2 (s) 5.731 3 (s)

SMORE 5.788 6 (s) 6.296 8 (s) 6.576 11 (s) 5.075 3 (s) 5.385 5 (s) 5.802 8 (s) 5.706 4 (s) 6.005 6 (s) 6.411 12 (s)

TABLE III
EFFECT OF WEIGHT IN DATA COVERAGE

Method
Delivery Tourism LaDe

α=0.2 α=0.5 α=0.8 α=0.2 α=0.5 α=0.8 α=0.2 α=0.5 α=0.8
Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time

RN 4.500 5 (s) 4.882 5 (s) 5.352 6 (s) 3.864 4 (s) 4.083 3 (s) 4.446 3 (s) 4.588 2 (s) 5.113 5 (s) 5.449 8 (s)
TVPG 5.491 4 (m) 6.129 5 (m) 6.704 4 (m) 4.580 2 (m) 5.175 2 (m) 5.677 2 (m) 5.368 2 (m) 5.857 2 (m) 6.508 2 (m)
TCPG 5.607 7 (m) 5.993 8 (m) 6.386 8 (m) 4.716 3 (m) 5.014 2 (m) 5.356 3 (m) 5.512 4 (m) 5.752 2 (m) 6.465 3 (m)
MSA 4.807 54 (m) 5.305 1 (h) 5.502 40 (m) 4.142 1 (h) 4.219 45 (m) 4.678 55 (m) 4.896 30 (m) 5.211 45 (m) 5.676 55 (m)

MSAGI 5.511 16 (m) 6.153 20 (m) 6.709 14 (m) 4.615 16 (m) 5.182 13 (m) 5.737 12 (m) 5.369 15 (m) 5.860 12 (m) 6.513 10 (m)
JDRL 4.926 3 (s) 5.461 3 (s) 5.909 3 (s) 4.644 1 (s) 5.126 1 (s) 5.650 1 (s) 4.795 2 (s) 5.346 2 (s) 5.67 2 (s)

SMORE 5.712 9 (s) 6.296 8 (s) 6.803 8 (s) 4.905 4 (s) 5.385 5 (s) 5.815 8 (s) 5.531 4 (s) 6.005 6 (s) 6.625 11 (s)

TCPG outperforms TVPG. This may be attributed to the cost
priority in TCPG, which indicates it is able to finish more tasks
even if the value is small. In the scenario when α is small, such
a strategy shows more advantage. SMORE outperforms the
best baseline by 2.3%, 4.0%, 3.0% in data coverage, and the
running time compared to the best non-RL-based baseline is
saved by 150 times, 156 times, 120 times on Delivery, Tourism
and LaDe, respectively. The experimental results prove that
our method is a universal strategy for different data collection
purposes.

4) Running Time: The running time of each algorithm
under different experimental settings is also shown in Table
I, Table II, and Table III. As a meta-heuristic algorithm,
MSA takes dozens of minutes to complete its calculation.
In contrast, MSAGI utilizes greedy results to initialize the
solution, reducing the running time to slightly more than ten
minutes to obtain the final result. TVPG and TCPG are both
greedy heuristic algorithms that require coverage gain and
incentive cost calculations for all candidate assignments during
each selection, which brings additional computational costs.
RN can be completed in just a few seconds since it does not
consider any heuristic about task selection at all, resulting
in little computational cost. Benefiting from the RL-based
decision, JDRL and SMORE can complete the calculation in
a few seconds, but SMORE has better data coverage gain.

5) Ablation Study: We evaluate the effect of each compo-
nent of SMORE by removing each of our main designs: Rein-
forcement Learning-based sensing task assignment (w/o RL-

Fig. 5. Ablation Study

AS), two-stage assignment selection network (w/o TASNet),
and soft mask function (w/o Soft Mask). The experimental
results are shown in Figure 5. We can observe that our RL-
based sensing task assignment shows an advantage over the
greedy-based one (w/o RL-AS) since the latter is myopic and
not able to achieve the best overall performance in the long
term. In w/o TASNet, the sensing task-worker assignment
pairs are obtained directly through a single selection, the
performance of which is even worse than the greedy-based
one. It indicates that simply applying RL to our problem does
not work well due to the large action space and the under-
utilization of information, while TASNet tackles those issues.
By using the soft mask function empowered by the heuristics,
we enhance the exploration efficiency of the agent and thus
are able to obtain a higher data coverage.

D. Case Study

To further show the advantage of SMORE, we give a case
study of the studied region. Figure 6(a) and Figure 6(b) show



(a) Route without Planning. (b) Sensed Data without Planning.

(c) Route of SMORE. (d) Sensed Data of SMORE.

Fig. 6. Case Study.

the actual movement routes and the completion of the sensing
tasks for the case if we do not re-plan the movement routes
for workers, i.e., the workers only perform sensing tasks along
the routes. It can be observed that the distribution of workers
does not actually cover the entire sensing region, and thus the
sensed data are also distributed highly skewed over the spatio-
temporal landscape, which is not ideal for urban sensing.
The results produced by SMORE are shown in Figures 6(c)
and Figure 6(d), which indicate we can collect much more
balanced urban data by guiding workers to complete sparsely
distributed sensing tasks while guaranteeing their own travel
tasks can still be completed.

VI. RELATED WORK

A. Spatial Crowdsourcing (SC)

Spatial crowdsourcing has attracted substantial attention
in recent years [25]–[30], and one of the most important
problems in spatial crowdsourcing is the task assignment.

Task assignment problems can be categorized into matching
models or planning models [31]. In matching models, task as-
signment can be formulated as a bipartite graph-based problem
and the goal is to obtain an optimal matching in the bipartite
graph [32], [33]. In planning models, the platform requires
planning an actual working route for each worker, which is the
case for task assignment in some real-world applications such
as logistics delivery [34], food delivery, and ride-hailing [23],
[35], [36]. Some works [37], [38] studied task assignment for
a single worker who can be assigned many tasks. A more
complex scenario is assigning many tasks to many workers like
ours, including maximizing the total number of assignments
[7], [35], [39]–[41], the total satisfaction of workers [42], [43],
the data coverage of collected data [8], etc.

The ridersharing [35] and urban crowdsensing for com-
muters [8] are two problems close to USMDW: 1) As for

the ridersharing [35], it also considers multiple destinations.
The major differences between ridesharing and USMDW are
the former is for the online scenario, which requests efficient
algorithms for timely response, while the latter is for the
offline scenario, which prefers optimal/near-optimal solutions
to utilize the budget well. Specifically, in ridesharing, when
a request is assigned to a taxi, most ridesharing algorithms
are heuristic-based, which keep the existing traveling order
unchanged and try to insert the new request, while in USMDW,
when a sensing task is assigned to a worker, we recalculate the
estimated optimal route based on all assigned tasks expecting
to achieve a higher objective. Besides, there is no budget
constraint in the ridersharing. 2) As for the urban crowdsensing
for commuters [8], we have the same objective. However, there
is no mandatory visits in [8], which makes the feasibility check
much easier than ours. And the proposed method also cannot
guarantee any mandatory visits. We generalize [8] to the multi-
destination scenario and propose corresponding solutions.

B. Reinforcement Learning for Combinatorial Optimization
Many spatial crowdsourcing problems can be regarded as

the orienteering problem [13]. Recent research in combinato-
rial optimization has made tremendous progress using deep
reinforcement learning to learn effective policies on large-
scale problems, which originated from the Pointer Network
(PN) [44]. Bello et al. [18] combined PN with Reinforce-
ment Learning, which allows models to be trained without
supervised solutions. Kool et al. [10] proposed the Attention
Model (AM), a variant of PN, to address TSP, VRP, and OP.
In addition to AM, there are also some methods can tackle OP
and its vairants [45]–[48]. Although our problem shares some
similarities with TOPTW-MV [9], existing methods cannot
directly solve our problem due to worker heterogeneity.

VII. CONCLUSION

In this paper, we generalize the urban crowdsensing problem
to the scenario of multi-destination workers, and prove its
NP-hardness. A RL-based framework SMORE is proposed
to select sensing tasks and design working routes for them.
SMORE first initializes all feasible sensing task-worker pairs
efficiently by calling a pre-trained RL-based TSPTW solver,
then employs a novel policy network, i.e., TASNet, to select
sensing task-worker pairs iteratively. Experiments on two
delivery and a tourism datasets demonstrate that SMORE
outperforms the best baseline in data coverage by 5.2% on
average with high efficiency.

In this work, we use the pre-trained TSPTW solver to per-
form the feasibility check, which may produce “false alarm”.
It is worthwhile to further incorporate the approximation errors
to achieve better results in the future.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China (No. 2023YFC2308703), the National Natural
Science Foundation of China (No. 62306033) and Beijing
Institute of Technology Research Fund Program for Young
Scholars (No. 6120220113).



REFERENCES

[1] Y. Zheng, Urban computing. MIT Press, 2019.
[2] Y. Cui, S. Li, W. Deng, Z. Zhang, J. Zhao, K. Zheng, and X. Zhou, “Roi-

demand traffic prediction: A pre-train, query and fine-tune framework,”
in ICDE, pp. 1340–1352, 2023.

[3] T. He, J. Bao, Y. Li, H. He, and Y. Zheng, “Crowd-sensing enhanced
parking patrol using sharing bikes trajectories,” TKDE, 2021.

[4] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and
P. Bouvry, “A survey on mobile crowdsensing systems: Challenges,
solutions, and opportunities,” IEEE communications surveys & tutorials,
vol. 21, no. 3, pp. 2419–2465, 2019.

[5] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. A.
Peterson, “People-centric urban sensing,” in Proceedings of the 2nd
annual international workshop on Wireless internet, pp. 18–es, 2006.

[6] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” 2006.

[7] Y. Zhao, Y. Li, Y. Wang, H. Su, and K. Zheng, “Destination-aware task
assignment in spatial crowdsourcing,” in Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, pp. 297–
306, 2017.

[8] S. Ji, Y. Zheng, and T. Li, “Urban sensing based on human mobility,”
in Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pp. 1040–1051, 2016.

[9] S.-W. Lin and F. Y. Vincent, “Solving the team orienteering problem with
time windows and mandatory visits by multi-start simulated annealing,”
Computers & Industrial Engineering, vol. 114, pp. 195–205, 2017.

[10] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!,” arXiv preprint arXiv:1803.08475, 2018.

[11] H. Wen, Y. Lin, F. Wu, H. Wan, Z. Sun, T. Cai, H. Liu, S. Guo, J. Zheng,
C. Song, et al., “Enough waiting for the couriers: Learning to estimate
package pick-up arrival time from couriers’ spatial-temporal behaviors,”
ACM Transactions on Intelligent Systems and Technology, vol. 14, no. 3,
pp. 1–22, 2023.

[12] S. Ruan, C. Long, J. Bao, C. Li, Z. Yu, R. Li, Y. Liang, T. He,
and Y. Zheng, “Learning to generate maps from trajectories,” in AAAI,
vol. 34, pp. 890–897, 2020.

[13] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics (NRL), vol. 34, no. 3, pp. 307–318, 1987.

[14] M. Gendreau, A. Hertz, and G. Laporte, “New insertion and postop-
timization procedures for the traveling salesman problem,” Operations
Research, vol. 40, no. 6, pp. 1086–1094, 1992.

[15] İ. Küçükoğlu, R. Dewil, and D. Cattrysse, “Hybrid simulated annealing
and tabu search method for the electric travelling salesman problem
with time windows and mixed charging rates,” Expert systems with
applications, vol. 134, pp. 279–303, 2019.

[16] Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori, “Combinatorial optimiza-
tion by graph pointer networks and hierarchical reinforcement learning,”
arXiv preprint arXiv:1911.04936, 2019.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS,
vol. 30, 2017.

[18] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” arXiv preprint
arXiv:1611.09940, 2016.

[19] R. J. Williams, “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,” Machine learning, vol. 8, pp. 229–
256, 1992.

[20] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
NeurIPS, vol. 12, 1999.

[21] S. Ruan, C. Long, X. Yang, T. He, R. Li, J. Bao, Y. Chen, S. Wu, J. Cui,
and Y. Zheng, “Discovering actual delivery locations from mis-annotated
couriers’ trajectories,” in ICDE, pp. 3241–3253, IEEE, 2022.

[22] L. Wu, H. Wen, H. Hu, X. Mao, Y. Xia, E. Shan, J. Zhen, J. Lou,
Y. Liang, L. Yang, R. Zimmermann, Y. Lin, and H. Wan, “Lade: The
first comprehensive last-mile delivery dataset from industry,” 2023.

[23] J. Sun, H. Jin, Z. Yang, L. Su, and X. Wang, “Optimizing long-term
efficiency and fairness in ride-hailing via joint order dispatching and
driver repositioning,” in KDD, pp. 3950–3960, 2022.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[25] Y. Yang, Y. Cheng, Y. Yang, Y. Yuan, and G. Wang, “Batch-based coop-
erative task assignment in spatial crowdsourcing,” in ICDE, pp. 1180–
1192, 2023.

[26] X. Chen, Y. Zhao, K. Zheng, B. Yang, and C. S. Jensen, “Influence-
aware task assignment in spatial crowdsourcing,” in ICDE, pp. 2141–
2153, IEEE, 2022.

[27] C. Shan, N. Mamoulis, R. Cheng, G. Li, X. Li, and Y. Qian, “An
end-to-end deep rl framework for task arrangement in crowdsourcing
platforms,” in ICDE, pp. 49–60, IEEE, 2020.

[28] X. Zhou, S. Liang, K. Li, Y. Gao, and K. Li, “Bilateral preference-aware
task assignment in spatial crowdsourcing,” in ICDE, pp. 1687–1699,
IEEE, 2022.

[29] Y. Zhao, K. Zheng, Z. Wang, L. Deng, B. Yang, T. B. Pedersen, C. S.
Jensen, and X. Zhou, “Coalition-based task assignment with priority-
aware fairness in spatial crowdsourcing,” The VLDB Journal, pp. 1–22,
2023.

[30] D. Zhai, Y. Sun, A. Liu, Z. Li, G. Liu, L. Zhao, and K. Zheng, “Towards
secure and truthful task assignment in spatial crowdsourcing,” World
Wide Web, vol. 22, pp. 2017–2040, 2019.

[31] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowd-
sourcing: a survey,” The VLDB Journal, vol. 29, pp. 217–250, 2020.

[32] Y. Zhao, K. Zheng, J. Guo, B. Yang, T. B. Pedersen, and C. S.
Jensen, “Fairness-aware task assignment in spatial crowdsourcing:
Game-theoretic approaches,” in ICDE, pp. 265–276, IEEE, 2021.

[33] T. Ren, X. Zhou, K. Li, Y. Gao, J. Zhang, and K. Li, “Efficient cross
dynamic task assignment in spatial crowdsourcing,” in ICDE, pp. 1420–
1432, 2023.

[34] S. Ruan, C. Long, Z. Ma, J. Bao, T. He, R. Li, Y. Chen, S. Wu, and
Y. Zheng, “Service time prediction for delivery tasks via spatial meta-
learning,” in KDD, pp. 3829–3837, 2022.

[35] Z. Liu, Z. Gong, J. Li, and K. Wu, “Mobility-aware dynamic taxi
ridesharing,” in ICDE, pp. 961–972, 2020.

[36] X. Tang, Z. Qin, F. Zhang, Z. Wang, Z. Xu, Y. Ma, H. Zhu, and J. Ye, “A
deep value-network based approach for multi-driver order dispatching,”
in KDD, pp. 1780–1790, 2019.

[37] C. F. Costa and M. A. Nascimento, “In-route task selection in crowd-
sourcing,” in Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 524–
527, 2018.

[38] D. Deng, C. Shahabi, U. Demiryurek, and L. Zhu, “Task selection
in spatial crowdsourcing from worker’s perspective,” GeoInformatica,
vol. 20, pp. 529–568, 2016.

[39] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou, “Destination-aware
task assignment in spatial crowdsourcing: A worker decomposition
approach,” TKDE, vol. 32, no. 12, pp. 2336–2350, 2019.

[40] C. H. Liu, Y. Zhao, Z. Dai, Y. Yuan, G. Wang, D. Wu, and K. K.
Leung, “Curiosity-driven energy-efficient worker scheduling in vehicular
crowdsourcing: A deep reinforcement learning approach,” in ICDE,
pp. 25–36, IEEE, 2020.

[41] S. Ruan, J. Bao, Y. Liang, R. Li, T. He, C. Meng, Y. Li, Y. Wu, and
Y. Zheng, “Dynamic public resource allocation based on human mobility
prediction,” Proceedings of the ACM on interactive, mobile, wearable
and ubiquitous technologies, vol. 4, no. 1, pp. 1–22, 2020.

[42] J. She, Y. Tong, and L. Chen, “Utility-aware social event-participant
planning,” in Proceedings of the 2015 ACM SIGMOD international
conference on management of data, pp. 1629–1643, 2015.

[43] D. Gao, Y. Tong, Y. Ji, and K. Xu, “Team-oriented task planning in
spatial crowdsourcing,” in APWeb-WAIM, pp. 41–56, Springer, 2017.

[44] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” NeurIPS,
vol. 28, 2015.

[45] W. Liu, T. Zhang, R. Wang, K. Li, W. Li, and K. Yang, “Deep rein-
forcement learning for orienteering problems based on decomposition,”
arXiv preprint arXiv:2204.11575, 2022.

[46] R. Gama and H. L. Fernandes, “A reinforcement learning approach to
the orienteering problem with time windows,” Computers & Operations
Research, vol. 133, p. 105357, 2021.

[47] W. Liu, R. Wang, T. Zhang, K. Li, W. Li, and H. Ishibuchi, “Hybridiza-
tion of evolutionary algorithm and deep reinforcement learning for multi-
objective orienteering optimization,” IEEE Transactions on Evolutionary
Computation, 2022.

[48] P. Sankaran, K. McConky, M. Sudit, and H. Ortiz-Pena, “Gamma: graph
attention model for multiple agents to solve team orienteering problem
with multiple depots,” TNNLS, 2022.


