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Abstract—Human mobility prediction is a fundamental tech-
nique for many urban applications, e.g., location-based recom-
mendation, traffic scheduling, and travel demand prediction.
Over the past decades, many methods, e.g., Markov Model, RNN,
Transformer, have been leveraged to tackle the problem. How-
ever, existing approaches mainly train a supervised model based
on an offline training dataset, which overlooks the phenomenon
that the mobility behaviors of humans vary across time, and
the trained models may not achieve ideal performance when
applied to the testing data. To tackle this challenge, in this paper,
we propose AdaMove, an efficient Test-Time Adaptive (TTA)
model for human mobility prediction. AdaMove has a Preference-
aware Test-Time Adaptation module called PTTA, which can
adjust the parameters of a trained model based on the input
test trajectory such that the model can generalize to the test
distribution. In addition, to address the issue of reduced inference
efficiency caused by parameter adjustment during the testing
phase, AdaMove is equipped with a Lightweight human Mobility
prediction model called LightMob, which only requires the recent
trajectory as input to accelerate the inference. It is enhanced by
historical trajectory knowledge via contrastive learning during
the training time, so it has competitive performance compared
with existing models. Extensive experiments on three real-world
human mobility datasets demonstrate that AdaMove outperforms
the best baseline by 9.3% on average in accuracy, and accelerates
the inference speed by 28.5% on average compared with the
original TTA-based inference.

Index Terms—human mobility prediction, test-time adaptation,
spatio-temporal data mining

I. INTRODUCTION

Human mobility prediction is widely studied in trajectory
data mining [1]-[3], which predicts the next location based on
past trajectories. It serves as an essential building block for
many urban applications. For example, residents can benefit
from accurate Point of Interest (POI) recommendations based
on their historical trajectories [4], the government leverages it
to design better transportation strategies to handle crowd ag-
gregations [2], mobile advertisers rely on it to prepare targeted
advertisement in advance [5], and ride-sharing platforms can
estimate the travel demands based on the prediction results [6].

The first two authors contributed equally to this work.
*Sijie Ruan is the corresponding author.
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(a) Temporal Shifted Mobility Pattern due to Job Change.
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(b) Mobility Pattern Example. (c) Mobility Pattern Similarity.

Fig. 1: Temporal Shifts in Human Mobility Data.

Over the past decades, tremendous methods have been
developed for human mobility prediction, including Markov
model-based methods [7], [8], RNN-based methods [2], [9]-
[12], Transformer-based methods [13]-[20], and recent LLM-
based methods [21], [22]. Given the strong periodicity patterns
in human trajectories, explicitly feeding historical trajectories
together with recent trajectories into a model of human mobil-
ity prediction can further boost the performance as has been
found by many existing studies [2], [5], [11], [21].

While existing studies have been continuously making
progress in improving the accuracy of the next location predic-
tion task, they are all developed based on the assumption that
the training set and testing set follow the same distribution,
which indicates the models trained based on the training set
would be directly used to make inference on the testing set.
However, this assumption does not always hold as verified
by our explorations on real-world human mobility data. In
fact, the mobility behaviors of humans often vary across time,
as a result, a model that has been trained based on the data
(before some time point) would not work effectively on the
data afterwards.



For example, as shown in Figure 1(a), Alice frequently fol-
lowed the mobility pattern I (home) — lz2(of fice) — l3(bar)
before time ¢ , which is highly regular, making it easy to pre-
dict her next location. However, at certain time t , her activities
became significantly different due to a change of her job. Her
new workplace introduced some new visiting places, altering
her mobility pattern to I (home) — l4(of fice) — l5(bar). To
demonstrate the phenomenon, we randomly pick a user from
a real-world human mobility dataset, i.e., Foursquare!. We
visualize her visiting frequency of different locations over the
course of one year using a heatmap as shown in Figure 1(b),
where each pixel represents the number of visits to a certain
location in every two weeks. From the heatmap, we can
observe that some locations have not been visited in the early
period, which implies the location distribution shifts across
time. To justify the universality of mobility pattern shifts, we
further analyze the mobility pattern similarity across time over
all users in the dataset. More specifically, we first calculate the
location visit distribution for each user in the earliest three
months, and then average those distributions to obtain the
historical mobility distribution. After that, for every two weeks
afterwards, we calculate the biweekly mobility distribution
in the same way based on data during those two weeks.
Finally, we calculate the cosine similarity between those two
distributions to quantify the mobility similarity with respect to
historical data. We visualize the change of mobility similarity
over time in Figure 1(c). As can be observed, with the increase
of time, mobility similarity decreases, and by the 12th week,
the similarity falls below 50%. Therefore, if we train a model
to predict his next location based on the historical trajectories,
the model will likely fail to predict accurately due to the lack
of the latest information.

Fortunately, since the periodicity pattern in human mobility
still exists even in short-term trajectories, it is possible to
adjust the parameters of the prediction model based on recent
trajectory data to achieve higher prediction accuracy. To this
end, in this paper, we propose AdaMove, an efficient test-
time Adaptive model for human mobility prediction. AdaMove
is composed of a Preference-aware Test-Time Adaptation
module, called PTTA, and a Lightweight Mobility prediction
model, called LightMob. We explain the rationale of these two
modules as follows. PTTA adjusts the parameters of a trained
next location prediction model based on input test trajectory,
allowing the trained model can accommodate the distribution
shifts in the test data and improve the prediction performance.
Nevertheless, adjusting model parameters would inevitably
increase the time of inference. To further mitigate this is-
sue, LightMob is developed. LightMob is enhanced by the
historical trajectory knowledge during training via contrastive
learning, which only requires a short recent trajectory as input.
Such design makes LightMob highly efficient during inference
while maintaining competitive performance compared with
existing methods.

Our contributions can be summarized as follows:

Uhttps://foursquare.com/

« We identify the human mobility shifting issue across time,
which is overlooked by existing methods, and present a
framework AdaMove to tackle it.

« We propose a preference-aware test-time adaptation mod-
ule, i.e., PTTA, which leverages the nature of auto-
regressive and stable short-term preferences in human
trajectories to perform the test time adaptation.

e We propose a lightweight human mobility prediction
model, i.e., LightMob, which accelerates the inference
speed while retaining competitive prediction accuracy
compared to existing models.

« Extensive experiments on three real-world human mobil-
ity datasets demonstrate the effectiveness and efficiency
of AdaMove. AdaMove outperforms the best baseline by
9.3% on average in terms of accuracy, and accelerates
the inference speed by 28.5% on average compared to
the original TTA-based inference. We have released the
code for public use?.

II. PRELIMINARIES

In this section, we first give some used definitions, and then
formulate the human mobility prediction problem, and finally
introduce the basic concepts of test-time adaptation.

A. Definitions

Definition 1 (Spatio-temporal Point). The spatio-temporal
point p; is a tuple of a timestamp t and a location identifier
l, i.e., p; = (I, t).

Definition 2 (Trajectory). The trajectory of a particular
person u is a sequence of spatio-temporal points organized
chronologically, i.e., tr* =< p1,pa2,--- ,pN, >-

Definition 3 (Recent Trajectory). The recent trajectory
tri.. is a suffix point sequence of tr", ie., try,. =<
Dj,Dj+1," " PN, >, which satisfies tn, — T < t; < tn,,
T is the time interval of a session, and c is the number of

sessions, i.e., context length.

Problem Definition. Given historical trajectories of all users
T = {tr!,tr? trU}, learn a human mobility prediction model,
which receives a trajectory ¢r* of user u, and predicts his/her
next visit location /.

The semantics of locations, such as POI category, may also
be beneficial for mobility prediction; however, we did not
consider them to maintain consistency with existing work [2],
[11], [14], [18]. Note that such information can be easily fused
as introduced later.

Zhttps://github.com/hhx7/AdaMove
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Fig. 2: The Idea of Test-time Adaptation.

B. Test-time Adaptation (TTA)

We first introduce the basic concept of TTA here. As shown
in Figure 2(a), the main idea of TTA is to adapt a pre-trained
model to make predictions by utilizing the latest knowledge
of the test data during the test phase. TTA can be categorized
into two main categories: fest-time domain adaptation, which
adapts a pre-trained model on source domain to a target
domain at test time; and test-time distribution adaptation,
which adapts a pre-trained model to a test distribution of the
same domain. A comprehensive survey of TTA can be found
in [23].

Since we aim to tackle the distribution shifts of predicted
next locations, test-time distribution adaptation-based methods
are appropriate to be used. Based on whether or not the
backward propagation is involved, existing TTA methods can
generally be categorized into Gradient-based and Gradient-free
methods [24]. Gradient-based methods can be time-consuming
at the test time as they need to update parameters of the
model. On the other hand, gradient-free methods are more
efficient. A representative algorithm of gradient-free methods
is Test-Time Templates Adjuster, i.e., T3A [25]. It provides a
lightweight yet effective mechanism for handling distribution
shifts without completely retraining. The main process of T3A
is shown in Figure 2(b). T3A abstracts the classification model
into an encoder, which is frozen during the test phase and
a classifier, which would be adjusted during the test phase.
To adapt to the test data, T3A first constructs a test-time
knowledge base (implemented by a dictionary), whose key is
one of the class and value is a list initialized with the parameter
vector corresponding to that class in the classifier. Then,
for each test sample, the model predicts its class and T3A
calculates its “importance” to determine whether to keep it. If
the sample is important, T3A adds its hidden representation,
i.e., the output of the encoder, to the list of predicted class in
the knowledge base. After iterating over all test samples, T3A
treats the centroid of vectors for each class in the knowledge
base as the adjusted parameters of the classifier to make the
prediction. The sample importance is characterized by the
entropy of the output probability distribution. Intuitively, if

the entropy is smaller, prediction is more reliable, thus the
sample is more important.

III. METHODOLOGY

In this section, we elaborate our proposed Efficient Test-
time Adaptive Human Mobility Prediction method, i.e.,
AdaMove. We first introduce the framework of AdaMove, and
then present its two components in details.

A. Framework

AdaMove is composed of a preference-aware test-time
adaptation module (PTTA), and a lightweight human mobility
prediction model (LightMob). The framework of AdaMove
is shown in Figure 3. PTTA makes the human mobility
prediction model adapt to the test input trajectory to improve
the prediction accuracy. However, such an approach sacri-
fices the inference efficiency. Therefore, we further propose
LightMob, an efficient lightweight human mobility prediction
model, to accelerate the inference speed while preserving the
performance. In the following, we first explain PTTA, and then
introduce LightMob.

B. Preference-aware Test-time Adaptation

Given a well-trained mobility prediction model, Preference-
aware Test-time Adaptation module adjusts its parameters
based on the input of test sample to make it adapt to the
user’s short-term preference change.

Since human mobility prediction essentially is a classi-
fication problem, a straightforward solution is to adopt an
existing test-time classifier adjustment module, e.g., T3A [25]
as mentioned in Section II-B. However, existing methods are
mainly designed for computer vision tasks, we identify two
limitations of those methods: 1) Unreliable Sample Assign-
ment. As described, the test sample is allocated to the list
of the predicted class in the knowledge base. However, if
the test distribution changes greatly, the predicted class may
not be the actual class of the test sample. Such assignment
may not benefit or even degrade the original classifier in
the later process. 2) Aggressive Sample Filtering. Whether
a sample is added to the list is determined by the entropy
of the output distribution. Again, when the OOD issue is
severe, even for a sample with correct prediction, the entropy
might be large. Though such sample is invaluable for test-
time adaptation, it would be filtered in entropy-based filtering
strategy. Given aforementioned mechanisms, existing methods
are only applicable to handle slight data distribution shifts and
would face significant challenges if the shifts are large.
Main Idea. Though aforementioned limitations are difficult to
be handled in ordinary data formats, e.g., images, fortunately,
we have opportunities to tackle those issues in trajectory data.
Firstly, trajectories are auto-regressive, i.e., the arbitrary prefix
of a trajectory is also a trajectory. A prefix of a trajectory
together with its next item can form a labeled sample, which
can be used to tackle the first limitation. Secondly, the mobility
pattern of human in a short time is relatively stable. We can use
the similarity of mobility pattern to quantify the importance



(a) Preference-aware Test-time Adaptation (PTTA)

(b) Lightweight Mobility Prediction Model
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Fig. 3: Framework of AdaMove.

of each sample to tackle the second limitation. To this end,
we propose Preference-aware Test-time Adaptation module as
shown in Figure 3(a), which is a test-time classifier adjustment
module dedicated for trajectories. It consists of three steps, i.e.,
Labeled Pattern Generation, which generates labeled patterns
based on test trajectory input; Knowledge Base Construction,
which allocates samples into the dictionary based on the label
as well as the preference similarity; and Weight Update, which
updates parameters of the output layer for prediction.

Note that, a user’s mobility pattern may change over time.
Therefore, though the full trajectory of a user is available for
us during the test time, we only take his/her recent trajectory

T, for adaptation. As stated in Definition 3, we only require
a sequence of spatio-temporal points within the past ¢I' hours
to construct ¢r*, ., which can be achieved by a sliding window
strategy in the memory for real-time applications.

The pseudo code of preference-aware test-time adaptation
is given in Algorithm 1. We detail them as follows.
Autoregressive Pattern Generation. Autoregressive Pattern
Generation fully exploits the autoregressive nature of the
trajectory data, which takes a recent trajectory tr;, ., and
generates labeled patterns based on all trajectory prefixes
as well as the next location. For example, if a recent tra-
jectory is < pj,pjy1,Pj+2,Pj+3 >, all its prefixes are
{< pj >, < pj,pji+1 >, < pj,pj+1,pj+2 >} We feed
them into the trajectory encoder fg of the trained model
to obtain the hidden representations, i.e., mobility patterns,
ie, {h;,h;;1,h; -} We use the mobility patterns as well
as the next location to construct the labeled pattern set

P = {(hy,pjs1.0), (hjt1,pjt2.0), (hjs2,pj43.1)} as shown
in Line 1-5.

Knowledge Base Construction. Knowledge Base Construc-
tion takes the generated labeled patterns P, and constructs
a knowledge base K with important patterns from labeled
patterns for adaptation.

Firstly, we retrieve parameters ® € R7XL of output
classification layer gg in the trained model, where H is the
dimension of the hidden representation of a trajectory, and L is
the number of possible locations for prediction. And then, we
use it to initialize the knowledge base K. More specifically, K
is implemented by a dictionary, where each key is a possible
location [, and the value is a list initialized with corresponding
column in O, i.e., 8; € R, as shown in Line 6-8.

After that, we assign labeled patterns P into the knowledge
base K based on the label of the pattern. As previously
mentioned, the mobility pattern of human in a short time is
relatively stable. Therefore, we use the similarity between the
mobility pattern of the test sample and its sub-trajectory to
filter out irrelevant patterns. More specifically, we use hy, to
denote the mobility pattern of test sample, and P; to denote
patterns whose label, i.e., next location, is . For each possible
location [ in KC, we only keep top-M most similar patterns
in addition to 6y, i.e., K; = PlM U {6;} (Line 9-16), where
|PM| = min(M,|P;|) and Vh € PM, vh' € P, — PM,
sim(hy,,h) > sim(hy,,h’), where sim(-,-) is the cosine
similarity, i.e.,



h; h,

sim(hi B) = Ty

6]

Weight Update. Weight Update takes the knowledge base
K, and gives the adjusted parameter weights ©’ of the
classification layer. Since the knowledge base contains the
recent mobility patterns for each possible next location, the
idea is to use the mean vector to update the corresponding
weights, which represents the common mobility pattern for
each possible next location as shown in Line 17-21. More
speci/ﬁcally, the vector 8, in the [-th column of © is replaced
by 6;:

/ 1

0, = < 2

> h

hek;

Note that, for locations do not involve new patterns, i.e., K;
only contains its original weights, we do not need to update
weights for that column.

Inference. After the weight updating, we can make the next
location prediction for ¢r" based on the adjusted model. We
freeze the parameters ® in the trajectory encoder fg, which
serves as a feature extractor to obtain the hidden representation
hy,, and use the updated predictor ge to make the next
location prediction, i.e.,

[ = argmax ge' (hy,)

3)

Complexity Analysis. We give a complexity analysis of the
Preference-aware Test-time Adaptation.

In the first step, we iterate over all prefixes of a recent
trajectory to generate the labeled patterns. Therefore, the time
complexity is O(V,). In the second step, we iterate over all
patterns, which also takes O(NV,), and each pattern might
be added to the knowledge base if its similarity is within
the top-M patterns of the same next location. The top-M
list can be implemented by a priority queue, in which case,
the queue updating only takes O(logM ). Therefore, the time
complexity of the second step is O(N,logM). In the third
step, we iterate over O(L) locations to update parameters. The
updated parameters can be calculated in O(M ). Therefore, the
time complexity of the third step is O(LM).

Since M and L are all constants, the overall complexity
of Preference-aware Test-time Adaptation is O(N,,), which is
practical.

C. Lightweight Mobility Prediction Model

The mobility behavior of human usually has periodicity.
For example, a person tends to visit the same location at the
same day of week and time of day. Therefore, existing studies,
e.g., DeepMove [2], LSTPM [11], and LLMMob [21], find it
beneficial to consider historical trajectories when predicting
the human mobility. However, since historical trajectories
can be arbitrarily long, taking it as the input of the model
introduces great computational costs. The situation becomes

Algorithm 1: Preference-aware Test-time Adaptation.

Input : A test trajectory tr", a well-trained human
mobility prediction model, which is
composed of a trajectory encoder fe and a
predictor gg.

Output: The predicted next location l.

/+ Step 1. Autoregressive Pattern
Generation. %/

1 try,. < get recent trajectory from tr";
2 D«
sforkel,- -, |trY,.|—1do
4 L hy  fa(trie[1:k]);
5 D(—DU{(hk,pk+1.l)};
/+ Step 2. Knowledge Base
Construction. %/
6 K« 0;
7 for 6; € © do
8 L ’Cl < {01};
9 hNu <~ f@(trzfec[l : ‘tr}fec”);

10 for (h;,l;11) € D do

11 if |IClj+1| < M then

12 L Ki, o\ Ky U{hyls

13 else

14 s h™" < find the pattern with the
minimum similarity in ICl]. 1

15 if sim(hy,,h;) > s™" then

16 L Replace h™" with hj;

/* Step 3. Weight Updating. */
17 O +— ©O;

18 for K; € K do
19 | if |K;] > 1 then

! 1 .
20 0, — 1 > hek, I
21

Q'] «+ 6,;
22 |+ argmax ger(hy, );
23 return [

more severe when we have to perform the adaptation at the
test time, which makes the inference process inefficient.

Main Idea. To mitigate this issue, a lightweight model,
which can also take historical trajectories into consideration,
is desirable. To this end, we propose Lightweight Mobility
Prediction Model (LightMob). The main idea of LightMob is
to use a simple sequential base model to make the prediction
during the test time, which only takes a recent trajectory
as input, while the knowledge from historical trajectories is
incorporated during the training time. By removing the branch
of encoding the historical trajectory at the test time, the
computational costs can be reduced. The basic idea is that if a
base model have implicitly incorporated the historical knowl-
edge, its representation should be similar to the representation




given by a model that explicitly incorporates the historical
knowledge. We find such learning objective is possible to be
achieved via contrastive learning [26]. For example, CLIP [27],
a well-known multi-modality model trained via contrastive
learning, also has two encoders. The training objective of CLIP
is to pull close representations from both encoders for positive
pairs and push away representations from both encoders for
negative pairs, which ultimately enhances the performance of
individual encoders. Such observation motivates us to design
a constrastive historical knowledge incorporation method as
shown in Figure 3. In the following, we first introduce the
base model, then illustrate how to construct the contrastive
samples based on historical and recent trajectories, and finally
explain how the model is trained.

Base Model. The base model takes the recent trajectory ¢y,
and predicts the next visit location I. We decompose the base
model into two parts, i.e., Trajectory Encoder fg, which takes
try as input, and gives a hidden representation hy, , and Next
Location Predictor ge, which predicts the next visit location

. We detail them as follows.

« Trajectory Encoder fs. In trajectory encoder, we first
embed each spatio-temporal point p; into dense repre-
sentation, i.e., e;. Following existing work [2], for each
point, we encode its location [;, time ¢; and user u. Both
location and user are represented by ID, which can be
directly fed into separate embedding layers. As for time
t;, considering different mobility patterns in workdays
and on weekends, we encode ¢; into 48 discrete slots.
We use [0, 23] to encode hour of day in workdays, and
[24,47] to encode hour of day on weekends. Finally, we
use the concatenation of those information to represent
the embedding of each spatio-temporal point p;:

e; = [Emb(l;); Emb(Code(t;)); Emb(u)] )

where ; denotes the concatenation operation, Code(-) is
the coding scheme for time. The semantic information
can also be concatenated here if available.

Then, to capture the sequential dependency among tra-
jectory points, we can use arbitrary sequential modeling
layer, e.g., GRU [28], LSTM [29], Transformer [30], to
encode the embedding sequence of trajectory points.

’eNu}) )

hy, = SegEncoder({e;j,ej;1, -

« Next Location Predictor geo. The next location predictor
transforms the hidden representation hy, into the output
space via a fully connected (FC) layer parameterized by
©® followed by a softmax layer, i.e.,

Y = Softmax(FC(hy,)) (6)
Then, the location with the maximum predicted proba-
bility is regarded as the predicted next visit location, i.e.,
l=argmaxY.

Constrastive Sample Generation. Constrastive Sample Gen-
eration generates positive and negative samples for constrastive

learning based on historical trajectories and recent trajectories.

First, we treat all spatio-temporal points before try,. =
{p;j,Pj+1, - ,pn,} as the historical trajectory of u, i.e.,
try... = {p1,p2,--- ,pj—1}. Then, we feed try, ., and tr¥,,
to the shared trajectory encoder fg to obtain the hidden rep-
resentations for all points, i.e., HY, , = {hi,hy,--- /h; ¢}
and H,, = {h;,h;41,--- ,hy,}.

Since we want the representations of models with and
without historical knowledge similar, we now need to obtain
representations for points in ¢ry,. that incorporate the histori-
cal trajectory knowledge. Inspired by [2], we use the attention
mechanism to fuse such knowledge. More specifically, we ap-
ply linear transformations to obtain key matrix K € RU—1)xdx
and value matrix V. € RU-D*dv paged on H},..,, and
query matrix Q € R(Nue=7+1)xdk pased on HY,.. Then we

calculate the attention weights A € R(Nu=7+1)x(=1) paged
on aforementioned three matrices:

+
A = Softmax (?/Ic% ) , @)

where /dy, is the scaling factor. Finally, we use the weighted
sum to obtain the history-enhanced representations Hy,. =
{hja hj+17 T ahNu,}:

HY = AV (8)

With history-enhanced representations I:I}fec, We are now

able to construct the positive and negative pairs for learning.
We treat h, and its history-enhanced representation h N, as
positive pair, and regard hy, and some other history-enhanced
representations O%, = {h,|h, € H%, — {hy,} A pgy1.l #
PN, +1.1} as negative pairs. Note that, we filter out some prefix
trajectory representations whose next location is the prediction
target to avoid the confusion of the learning.
Model Training. With constrastive samples generated in the
previous step as well as the label of the next location of the
trajectory, on one hand, we want LightMob predict the next
location as accurate as possible, and on the other hand, we
encourage LightMob to produce similar trajectory representa-
tions whether the historical trajectories are given or not, which
is a typical multi-task training objective.

To optimize the representation similarity objective, we em-
ploy InfoNCE loss [26], which is commonly used in con-
strastive learning. InfoNCE maximizes the similarity between
positive pairs and minimizes the similarity between negative
pairs:

Lovr = —log exp(51m(hN.u,hNu)) ] ©)
Zfleégec exp(sim(hy,, h))

To optimize the prediction accuracy objective, we use the
classic cross entropy loss:

L
Las ==Y yilog(f) (10)
=1



TABLE I: Data Statistics after Pre-processing.

Dataset NYC TKY LYMOB
City New York Tokyo CityD
Time 2012/04 - 2013/02 | 2012/04 - 2013/02 75 days

#. of Users 637 1,843 500
#. of Loc. 4,713 7,736 5,906
#. of Traj. 50,720 314,202 467,899

where L is the number of possible locations.

Therefore, the final training objective of LightMob is a
hybrid loss function, which can be optimized via stochastic
gradient decent [31].

L= £cls + )\‘Ccon (11)

where A is a trade-off hyperparameter. A controls to what
extent the historical patterns should be memorized to avoid
the overfitting.

IV. EXPERIMENTS

In this section, we conduct extensive experiments on three
real-world human mobility datasets to evaluate the effec-
tiveness and efficiency of AdaMove. Our experiments cover
following five parts:

o Performance Comparison. We compare AdaMove with
eight representative baselines over four evaluation met-
rics. The experiments results show the superiority of the
proposed method.

o Ablation Study. We study the effectiveness of different
components of AdaMove.

o Parameter Sensitivity. We study how different hyperpa-
rameter settings affect on our model.

o Efficiency. The experiment verifies the efficiency of
AdaMove.

o Case Study. A case study is further conducted to illustrate
the effectiveness of AdaMove to tackle the issue of human
mobility behavior change across time.

A. Experimental Setup

Datasets & Data Pre-processing. We evaluate AdaMove as
well as baselines on three real-world datasets, i.e., NYC, TKY
and LYMOB. NYC and TKY were collected from Foursquare
in the city of New York and Tokyo between 2012 and 2013
[32]. These datasets record users’ check-in sequences, captur-
ing the locations they visited on the platform. LYMOB [33]
was an anonymized human trajectory dataset in grid cell
level provided by LY Corporation released in 2024°. The
dataset contains individuals’ trajectories across a 75 day period
collected from four undisclosed, highly populated metropolitan
area. Due to the cost of massive API calling for LLM-based
baselines, we randomly choose trajectories of 500 users from
CityD for comparison.

Following existing pre-processing step [2], locations visited
by fewer than 10 users would be filtered out to avoid noise.

3https://zenodo.org/records/14219563

Then, we segment each user’s trajectory into distinct sessions,
where each session includes the locations visited within a time
window of T' = 72hours. A session contains fewer than 5
locations are also excluded. Furthermore, inactive users, whose
trajectory comprises fewer than 5 sessions, are removed.
Table I summarizes the statistical details of each dataset after
the data pre-processing.

Based on the pre-processed trajectory datasets, for each user,
the earliest 70% sessions of each user are used for training,
the next 10% sessions are for validation, and the last 20%
sessions are for testing. In each train/val/test dataset, we use
the sliding window strategy to create the data samples.
Evaluation Metrics. We utilize two types of commonly
used evaluation metrics from previous work [16]-[18]: Recall
(Rec@K) and MRR to assess the performance of all models.
Recall measures the proportion of true positive samples among
all positive samples. Specifically, Rec@K considers only the
top-K locations predicted by the model. In our evaluation,
we use K = {1,5,10}. Notably, Rec@] is equivalent to
accuracy. Mean Reciprocal Rank, i.e., MRR, is another widely
adopted metric in recommendation systems, used to evaluate
the ranking accuracy of model predictions for user queries. A
higher MRR indicates better ranking quality, enabling users
to find their desired results easier. In our evaluation, we
specifically compute MRR@ [0, which considers the ranking
accuracy within the top 10 predicted locations.

Baselines. We select the following baselines in the field of
human mobility prediction:

e LSTM [34]: This is the classic variant of the RNN
model which has shown strong pattern learning ability
in handling sequential data.

o DeepMove [2]: The method utilizes the RNN-based
method to extract user’s preference from historical and
current trajectory. And predict the next location by
considering user’s long-term preferences with attention
mechanism.

o LSTPM [11]: This method consists of a nonlocal network
for long-term preference modeling and a geo-dilated
RNN for short-term preference learning.

e STAN [14]: This method utilizes a bi-layer attention ar-
chitecture that first aggregates spatio-temporal correlation
within user trajectory and then recalls the target with
consideration of personalized item frequency.

o GETNext [16]: This method utilizes a global trajectory
flow map and a novel Graph Enhanced Transformer
model to better leverage extensive collaborative signals.

o CLSPRec [35]: This method leverages contrastive learn-
ing to learn a shared Transformer-based trajectory en-
coder to encode both long-term and short-term prefer-
ences for next-location prediction.

« MHSA [17]: This method leverages a multi-head self-
attentional neural network to capture location transition
patterns across diverse contexts.

« MCLP [18]: This method predicts the next location for
individuals, where it explicitly models the user preference
and the next arrival time as a a context.



« LLM-Mob [21]: We also choose a recent open-source
LLM-based model for comparison. LLM-Mob introduces
concepts of historical and contextual stays to capture the
long- and short-term dependencies in human mobility.

Implementations. All experiments are conducted on Ubuntu
20.04 with an NVIDIA GeForce 2080Ti GPU. We implement
AdaMove based on the PyTorch 2.1.0 and Python 3.9. Besides,
we use LibCity [36] to implement DeepMove, LSTPM and
STAN, and use codes released by authors for other baselines.
Hyperparameters & Training Details. We train our model
using the Adam optimizer [31]. The maximum number of
training epochs is set to 30, and the batch size is 50. The
learning rate is initialized to 1le~2 and decayed according to
average accuracy. The learning rate decay follows a schedule
where it reduces proportionally with improvements in accu-
racy. The training is early stopped when the learning rate
reaches le~%. Recall that AdaMove receives ¢ consecutive
sessions to form the recent trajectory input. In the training set,
c =1 on all datasets, while in validation/testing set, we set ¢
to a larger value, since larger c indicates more data available
for adaptation. By default, in validation/testing set, c is set to
5, 6, 5 in NYC, TKY, LYMOB, respectively. In AdaMove,
we set the embedding dimension of the location, time and
user ID to {48,8,16}, and employ an LSTM as the default
trajectory encoder. The capacity M of the knowledge base for
each location is set to 5. The trade-off hyperparameter A in
LightMob is set to 0.8, 0.2, 0.6 in NYC, TKY and LYMOB,
respectively. For baselines, hyperparameters are set according
to the best performance on the validation set.

B. Performance Comparison

Table II presents the performance of various methods for
human mobility prediction. From the results in Table II, we
have following observations:

e LSTM, GETNext, and MCLP predicts the next loca-
tion based on a recent trajectory. GETNext outperforms
LSTM by utilizing a global trajectory flow map, which
captures more spatial information. The improvement
brought by MCLP is limited due to the unreliable pre-
diction of next arrival time.

o« DeepMove, LSTPM, STAN, MHSA and CLSPRec all
take both a historical trajectory and a recent trajectory
as input, which demonstrate superior learning capabilities
compared to single-branch methods. In particular, MHSA
uses a multi-head self-attention neural network to model
contextual relationships, outperforming other baselines
across three datasets.

o LLM-Mob also follows the two-branch structure, while
it is a language-based model. Though it shows some
prediction ability, its performance is mediocre on Rec@1,
since it is not fine-tuned on the training data. Neverthe-
less, LLM-Mob demonstrates competitive performance
on other metrics.

o Our proposed model outperforms all baselines across all
datasets and metrics. It effectively captures long-term
patterns from historical trajectories while adapting to

TABLE II: Model Performance on Different Datasets

Dataset | Method [ Rec@1 [ Rec@5 [ Rec@10 [ MRR
TST™ 02156 | 05022 | 0.6041 | 03373

DeepMove 02317 | 05324 | 0.6478 | 03594

LSTPM 02068 | 0.5212 | 0.6484 | 03256

STAN 01513 | 04025 | 05242 | 02579

NYC GETNext 0.1947 | 04976 | 06370 | 03286
CLSPRec 0.1725 | 03099 | 03579 | 02303

MCLP 0.1832 | 04818 | 06156 | 03097

MHSA 02250 | 0.5151 | 06137 | 03528

LLM-Mob 0.1929 | 05182 | 0.6430 | 03289

AdaMove (Ours) | 02707 | 0.6044 | 07298 | 0.4112

TSTM 02137 | 04478 | 05377 | 03128

DeepMove 02339 | 04879 | 05826 | 03408

LSTPM 02111 | 04699 | 05700 | 03367

STAN 02031 | 04295 | 05384 | 03153

XY GETNext 02168 | 04841 | 0.5809 | 03343
CLSPRec 02201 | 04128 | 04664 | 03005

MCLP 0.1556 | 04153 | 0.5224 | 02643

MHSA 02379 | 04899 | 0.5901 | 03531

LLM-Mob 0.1626 | 04307 | 05263 | 02733

AdaMove (Ours) | 0.2518 0.5248 0.6282 0.3672

TSTM 02817 | 05170 | 0.6023 | 03825

DeepMove 02932 | 0.5284 | 06148 | 03936

LSTPM 02854 | 05230 | 0.6123 | 03895

STAN 02785 | 0.5064 | 0.5963 | 03724

GETNext 02867 | 05246 | 0.6094 | 0.3895

LYMOB CLSPRec 02912 | 05145 | 05847 | 03904
MCLP 01781 | 04739 | 05710 | 03027

MHSA 02973 | 0.5455 | 0.6332 | 0.4130

LLM-Mob 02131 | 04906 | 05983 | 03272

AdaMove (Ours) | 03125 | 0.5513 | 0.6340 | 0.4149

recent behavior patterns, even when faced with OOD
data. The results demonstrate that our model outperforms
the best baseline by 9.3% on average in Rec@1. Note
that, the improvement of metrics except for Rec@1 on
LYMORB is smaller than other two datasets, which might
be attributed to the shorter time span of LYMOB (75
days), i.e., the smaller distribution shifts. But the results
also indicate that AdaMove can improve the prediction
performance even for small distribution shifts.

C. Ablation Study

To further examine the effectiveness of each component in

our model, we perform a series of ablation studies over all
datasets and assess performance on four metrics.
Impact of Different Components. Our model comprises two
key components: (1) lightweight human mobility prediction
model (LightMob) and (2) preference-aware test-time adapta-
tion (PTTA). To assess the contribution of each component to
the overall performance, we design following variants: (1) w/o
LightMob: This variant removes the attention mechanism and
contrastive learning loss, namely it only uses base model to
perform the adaptation; (2) w/o PTTA: This variant excludes
the process of updating the classifier weights during the test
phase; (3) Base Model: this variant directly leverages the base
model to make the prediction, which essentially is the LSTM
baseline.

Figure 4 illustrates the performance of these variants. Light-
Mob 1is designed to implicitly learn the mobility knowledge
from historical trajectories to capture the long-term behaviors
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of human. PTTA focuses on adapting to changes in user
preferences by capturing short-term patterns from the most
recent trajectories.

The results indicate that both w/o LightMob and w/o PTTA
outperform Base Model, demonstrating the importance of each
component in improving performance. However, the perfor-
mance drop for w/o PTTA is more pronounced compared to
w/o LightMob, highlighting that addressing distribution shifts
is a more critical factor for maintaining model accuracy.
Finally, the full model, i.e., AdaMove, achieves superior
performance compared to w/o LightMob across all metrics,
emphasizing the effectiveness of LightMob to learn historical
trajectory knowledge implicitly via the contrastive learning.
These findings confirm the complementary roles of LightMob
and PTTA in enhancing the overall performance of the model.

Comparison with T3A. Compared to T3A [25], we propose
two key improvements. Firstly, we leverage a new sample
importance calculation strategy. Secondly, we use actual labels
from test trajectory input instead of pseudo-labels predicted
by the model. As can be observed in Fig. 4, AdaMove
outperforms T3A by 32.07% on average in terms of Rec@]1,
which implies the necessity of our dedicated PTTA to handle
the distribution shifts in human mobility data. We further
analyze those two improvements in detail.

(1) Impact of Different Sample Importance Calculation
Strategy: Specifically, we implement the w/ ent variant, which
calculates prediction entropy, instead of using similarity, when
storing recent patterns into the knowledge base. The results
indicate that the similarity-based strategy consistently outper-
forms prediction entropy across all metrics. This suggests that
similarity is a more effective approach for constructing new
pattern sets. In contrast, the performance of the prediction
entropy strategy appears to heavily depend on the reliability of
the base model. However, the base model proves to be unre-
liable when encountering out-of-distribution samples, further
highlighting the advantages of the similarity-based approach.

(2) Impact of Pseudo-Label: We now further implement
the w/ pseudo-label variant, where pseudo-labels are used to
collect hidden states instead, i.e., the patterns are stored to the
knowledge base based on the predicted location rather than the
actual next location. Figure 4 shows that the performance of
the w/ pseudo-label variant drops compared to AdaMove after
incorporating pseudo-labels. This result highlights the impor-
tance of using real labels, as actual locations can calibrate
the shifted patterns during the test phase—addressing a major
shortcoming of T3A.

Impact of Different Trajectory Encoders. In Figure 5,
we analyze the impact of different encoders when extracting
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hidden states from trajectories. We evaluate four encoders:
RNN, LSTM, GRU, and Transformer. RNN-based models are
configured with the same hidden size, while Transformer is
set as a two-layer architecture with 8 attention heads.

Overall, the performance of our model varies depending
on the encoder used. The results indicate that GRU outper-
forms the other encoders, delivering the best performance. In
contrast, Transformer performs worse than RNN-based models
across all metrics. Simpler models exhibit higher performance,
likely due to the sparsity of trajectory data, which may prevent
the Transformer from fully leveraging its advantages.

D. Parameter Sensitivity

We further perform parameter sensitivity analysis on critical
hyperparameters, including the number of sessions c¢ used to
prepare the short-term trajectory during the testing phase and
the maximum number M of stored hidden states for each
location %" in the PTTA module.

Impact of the Number of Sessions c. From Figure 6, we
observe that the model’s performance initially improves as the
number c of sessions increases. However, a larger ¢ contributes
little to performance on the NYC and LYMOB dataset and
can even result in a decline in performance on the TKY
dataset. The difference in performance between the datasets
may be due to a more pronounced distribution shift in the
TKY dataset. As the number of sessions increases, short-term
patterns become less distinct, and the trajectory includes too
many diverse patterns for the same location. This causes the
hidden states to align more closely with historical patterns
rather than recent ones. Overall, capturing short-term patterns
becomes challenging when using an excessive number of
sessions, leading the model to struggle with adapting to new
patterns under distribution shifts.

Impact of Capacity of the Knowledge Base ). Figure 7
illustrates the performance of AdaMove when we vary the
capacity of the knowledge base for each location M from 1 to
20. As can be observed, the effect of M is prominent on TKY
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and NYC. Initially, with the increase of M, all metrics become
higher. However, when M is larger than 3, the performance
drops gradually. Such phenomenon is consistent with our
common sense, since if the capacity is too small, the samples
can be used for adaptation is quite limited, which cannot well-
handle the issue of the distribution shifts. However, a large
M is also not ideal, which would make the knowledge base
contain many patterns that are not relevant enough, and bring
noises for adaptation. We find LYMOB is not sensitive to M
because of similar mobility patterns in a short time period.
Impact of \. The parameter A controls the influence of the
contrastive loss on the total loss in the LightMob module,
which determines the extent historical information affects the
model. We vary A from O to 1.0 on all datasets, and report the
performance in Figure 8. As shown in the figure, three datasets
exhibit a consistent trend where the performance improves as
A increases, up to a certain point. Beyond this threshold, the
performance starts to decline. But we find the optimal value
of A\ varies depending on the dataset. Intuitively, a higher A
implies a greater emphasis on historical trajectories. However,
if there is a significant shift between the distributions of current
and historical trajectories, a lower A\ value should be used to
avoid overfitting to historical data.

E. Model Efficiency

To evaluate the efficiency of AdaMove, we compare
AdaMove with a variant that explicitly feeds historical tra-
jectories into the model during the test time. To implement,
we choose the representative baseline, DeepMove [2], which
simultaneously receives a current trajectory and a historical
trajectory as input. We equip it with our proposed PTTA
module, and name the resulted variant as DeepTTA.

Before comparing their efficiency, we first report their
performance differences. As shown in Figure 9, we observe
that our model achieves competitive performance against
DeepTTA. Intuitively, DeepTTA should achieve better perfor-
mance since it incorporates historical trajectories during infer-
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ence, whereas AdaMove does not. However, the experimental
results show that the performance of DeepTTA is on par with
AdaMove, and notably, AdaMove even slightly outperforms
DeepTTA on NYC and LYMOB. This further demonstrates the
effectiveness of contrastive learning in memorizing historical
trajectory knowledge.

The inference efficiency of both methods is reported in
Table III, where the average inference time for an sample is re-
ported. As can be observed, AdaMove outperforms DeepTTA
by 30.4%, 10.1%, 45.2%, demonstrating the efficiency of
our approach. The efficiency improvement on LYMOB is the
greatest, since the trajectories in LYMOB is denser, which
takes longer time for DeepTTA to encode the historical tra-
jectories during the test time.

TABLE III: Computational Costs on Different Datasets.

Average Time (ms)

Dataset DeepTTA  AdaMove Improve
NYC 17.1 11.9 30.4%
TKY 355 31.9 10.1%

LYMOB 35.6 19.5 45.2%

Based on aforementioned experiments, we can now reach a
conclusion that AdaMove not only achieves a higher accuracy
than baselines benefited from PTTA module, but also improves
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the adaptation efficiency given LightMob model.
F. Case Study

We further conduct a case study to illustrate the adaptation
ability of AdaMove. We pick a user from NYC dataset, and
divided his/her check-in points into two parts, i.e., before
and after Jan. 1%, 2013, to represent historical and current
mobility behaviors, respectively. We visualize the distributions
of his/her check-in points on the map (via sampling) as shown
in Figure 10(a). Current check-ins are mainly distributed in
the upper region and have more diversity in categories of
visited POIs, while historical check-ins are mainly distributed
the in lower region. It suggests that mobility patterns vary
greatly. We randomly pick four trajectories after Jan. 1%,
2013, whose ground-truth next location is at the green triangle
in Figure 10(b). We feed those trajectories into AdaMove
and DeepMove to make prediction. The results show that
AdaMove correctly predicts the next location, while Deep-
Move fails to make the prediction. Though we can observe
that for one time, the prediction by DeepMove is quite close
to the ground-truth, it still fails to predict it correctly due the
large distribution shifts.

V. RELATED WORK

In this section, we review literature related to our work,
which covers the existing methods for next location prediction
as well as handling distribution shifts in trajectory modeling.

A. Next Location Prediction

Next location prediction (a.k.a., human mobility prediction,
next POI recommendation) has been extensively studied in the
past decade. Depending on whether the target time of the next
location is given or not, it is divided into two settings. The
former mainly focuses on modeling the sequential behaviors,
while the latter is able to incorporate more temporal informa-
tion.



Though the input of different work might vary slightly, one
of the most fundamental problem in next location prediction
is to learn the sequential dependency among trajectory points.
Early work seeks for statistical methods to predict the next
location. For example, GTS-LP [37] mines sequential mobil-
ity patterns in historical trajectories, and formulate the next
location prediction as a pattern matching problem. PFMC-
LR [7] and NLPMM [8] leverage Markov Models to capture
sequential dependency. Given the emergence of deep learning,
various deep models have been widely adopted to tackle the
next location prediction problem. For example, ST-RNN [9],
SERM [10], DeepMove [2], LSTPM [11] and FlashBack [12]
use Recurrent Neural Networks (RNN), e.g., LSTM, GRU, to
encode the trajectory sequence. Transformer and its variants
are exploited by GeoSAN [13], STAN [14], MobTCast [15],
GETNext [16], MHSA [17], MCLP [18], ROTAN [19], and
CLSPRec [35].

Though deep neural networks have the ability to memorize
the historical experiences, given the strong periodicity of hu-
man trajectories, feeding historical trajectories explicitly into
the model is proven to further improve the performance [2].
Among aforementioned methods, [2], [5], [11], [21], [35] all
adopt such kind of strategy. DeepMove [2], LSTPM [11], Jeon,
et al [5] and CLSPRec [35] employ attention-like methods to
fuse historical trajectories. Note that although CLSPRec [35]
also leverages contrastive learning to train a mobility predic-
tion model. It differs significantly from us from the aspect of
learning purpose. It aims to learn a shared encoder that can be
used to encode both historical and recent trajectories, while we
aim to memorize the knowledge of historical mobility patterns
and make our model lightweight at the test time.

Existing work has made significant progress, which ought to
perform well in regular cases. Nevertheless, the parameters of
aforementioned models during the test time are frozen, which
indicates their performance might degrade when human behav-
iors change across time. Besides, feeding historical trajectories
into the model introduces additional computational overheads,
which makes the inference time longer.

In addition to the above expert models, there has been
a surge in the development of large foundation models for
spatio-temporal data mining [38], such as prompt-based mo-
bility prediction models [21], trajectory foundation models
trained on ride-hailing datasets [39], or even billion-scale
worldwide trajectory datasets [22], [40]. Due to their extensive
capacity, these models excel at inference on previously unseen
trajectory data. In contrast, our approach proposes a new test-
time adaptation method that enables expert models to gener-
alize to out-of-distribution data, while significantly reducing
computational costs.

B. Knowledge Transfer in Spatio-temporal Data

In recent years, due to the pursuit of model generalization,
knowledge transfer has increasingly drawn the attention in
the community of spatio-temporal data mining. Representa-
tive methods of knowledge transfer include transfer learn-

ing, domain adaptation, meta-learning and domain generaliza-
tion [41], [42].

Transfer learning and domain adaptation aim to transfer
knowledge learned from data-sufficient domain/distribution to
a data-scarce domain/distribution. For example, FLORAL [43]
transfers the air quality prediction knowledge from a data
sufficient-city to another data-scarce city. MobiTran [44] and
COLA [45] transfer human mobility knowledge to a new city.
Test-Time Adaptation (TTA) [23] introduced in Section II-B
can be considered as a special case to transfer the knowledge,
which finishes its adaptation to new domain/distribution at the
test time.

Meta-learning is another way to achieve knowledge transfer.
For instance, MetaST [1] learns a crowd flow prediction
model from multiple source cities that can generalize well
to a target city. MetaSTP [46] and MetaSTP* [47] learns a
meta-predictor based on historical delivery events at various
locations, which can accurately predict service time based on
limited observations.

Domain generalization, i.e., out-of-distribution (OOD) gen-
eralization, different from aforementioned methods, cannot
access target domain and aims to generalize to unseen
distributions. Some work learns invariant representations to
generalize to test domain, e.g., disentangled representation
learning [48] and causal representation learning [49], [50] for
spatio-temporal prediction.

Different from these work, we introduce TTA [23] into the
human mobility prediction, which is the first of this kind.

VI. CONCLUSION

In this paper, we identify issue of the distribution shifts
of human mobility data across time, and propose a test-time
adaptive human mobility prediction model, i.e., AdaMove,
to tackle it. AdaMove is composed of a preference-aware
test-time adaptation module, i.e., PTTA, which adapts to the
trajectory distribution during the test time, and a lightweight
mobility prediction model, i.e., LightMob, to mitigate the
efficiency reduction due to the adaptation. Extensive experi-
ments on real-world human mobility datasets demonstrate that
AdaMove outperforms the best baseline by 9.3% on average
in accuracy, and accelerates the inference speed by 28.5% on
average compared with the original TTA-based inference.

In this study, we mainly focus on tackling the distribution
shifts in human mobility data and improving the adaptation
efficiency without considering interactions between users and
semantics of geographical locations. In the future, we aim
to extend the base model in AdaMove to a more powerful
lightweight model that can distill knowledge comprehensively,
e.g., teacher-student model.
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