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Spatial Meta Learning with Comprehensive Prior
Knowledge Injection for Service Time Prediction
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Abstract—Intelligent logistics relies on accurately predicting the service time, which is a part of time cost in the last-mile delivery.
However, service time prediction (STP) is non-trivial given complex delivery circumstances, location heterogeneity, and skewed
observations in space, which are not well-handled by existing solutions. In our prior work, we treat STP at each location as a learning
task to keep the location heterogeneity, propose a prior knowledge-enhanced meta-learning to tackle skewed observations, and
introduce a Transformer-based representation module to encode complex delivery circumstances. Maintaining the design principles of
prior work, in this extended paper, we propose MetaSTP+. In addition to fusing the prior knowledge after the meta-learning process,
MetaSTP+ also injects the prior knowledge before and during the meta-learning process to better tackle skewed observations. More
specifically, MetaSTP+ completes the support set of tasks with scarce samples from other tasks based on prior knowledge and is
equipped with a prior knowledge-aware historical observation encoding module to achieve those purposes accordingly. Experiments
show MetaSTP+ outperforms the best baseline by 11.2% and 8.4% on two real-world datasets. Finally, an intelligent waybill
assignment system based on MetaSTP+ is deployed in JD Logistics.

Index Terms—Delivery Data Mining, Meta-Learning, Urban Computing.

✦

1 INTRODUCTION

THE last-mile delivery in logistics mainly relies on couri-
ers. Typically, once a batch of parcels arrives at a deliv-

ery station, it would be assigned to couriers. Then, couriers
would start a delivery trip to deliver the assigned parcels
at several locations, as shown in Figure 1(a). Two types of
time cost for the entire trip are involved in the delivery
trip: travel time and service time. The former is the time
cost traveling between locations, and the later is the time
cost completing the delivery for a set of parcels at a certain
location, namely, a delivery task. Estimating those two types
of time cost facilitates many downstream applications, e.g.,
the route planning with time windows [1], [2], the workload
balancing [3] and the delivery time prediction [4] as demon-
strated in Figure 1(b). While the travel time prediction has
been widely studied [5], [6], [7], there are limited research
focusing on the service time prediction so far. Therefore, in
this work, we mainly focus on the service time prediction.

The challenges of the service time prediction problem
are from three aspects: 1) Complex delivery circumstances. Fig-
ure 2 shows a building with two units under three delivery
circumstances, which have the same number of customers
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Fig. 1. Service time and its applications.

to be delivered to, but totally different delivery processes,
leading to different service time. 2) Location heterogeneity.
The service time could also vary greatly for deliveries at
different locations. As observed in Figure 2(d), the service
time could vary for different types or structure of buildings.
3) Skewed observations. The historical delivery tasks, i.e., data
samples for training, distributed highly imbalanced among
locations, as shown by the heat map in Figure 2(d).

Inspired by techniques of Transformer to encode the
correlation among fine-grained elements and meta-learning
to learn from small samples, in our prior work [8], we
present MetaSTP, a Meta-learning-based method to make
the Service Time Prediction. To tackle the location hetero-
geneity, MetaSTP treats the service time prediction at differ-
ent locations as different learning tasks. When predicting the
service time, MetaSTP first leverages a Transformer encoder-
based representation module to obtain floor-distribution-
aware delivery task embedding, which captures the com-
plex delivery circumstances of each delivery task, then em-
ploys a location prior knowledge enhanced meta-learning
method to produce accurate predictions based on location-
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Fig. 2. Challenges of service time prediction.

specific historical observations, globally learned delivery
knowledge and location prior knowledge, to mitigate the
skewed observation issue.

Although MetaSTP carefully tackled the challenges of
complex delivery circumstances and the location hetero-
geneity thanks to fine-grained delivery task representation
and the individual location modeling, the location prior
knowledge enhanced meta-learning can be improved to
tackle the challenge of skewed observations. Because in
MetaSTP, the utilization of the prior knowledge is a bit shal-
low, which is only injected after the meta-learning process.
We identify two limitations of this design:
• Inadequate modeling for locations with extremely scarce

historical observations. Even though meta-learning is
capable to learn from few-shot data, the sizes of support
sets for a considerable proportion of locations are still
too small to achieve accurate prediction, which cannot
be fully compensated via the late fusion of the location
prior knowledge. As shown in Figure 3, though location
C has moderate training samples compared with location
A, it can still achieve low prediction error as location A
did, benefiting from the knowledge sharing mechanism of
meta-learning. However, the sizes of support set for loca-
tion B, E and D are too small to model the corresponding
delivery events well.
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Fig. 3. Locations with extremely scarce historical observations have
modeling difficulties even meta-learning is employed.

• Ignorance of the prior knowledge when calculating sam-
ple correlations. When modeling the correlation among
the query sample and samples in the support set, the prior

knowledge is ignored. However, the importance of each
historical observation to the query sample depends on the
location. For example, as shown in Figure 4, assume we
have a support sample and a query sample at a certain
location. The support sample contains parcels to be deliv-
ered to floor 6, while the query sample contains parcels to
be delivered to floor 2. If we ignore the prior knowledge
when calculating the sample correlation, the correlation
calculation module would produce the same correlation
score no matter the building is equipped with elevators or
not, e.g., 0.5, as the top part of Figure 4 shown. If the
prior knowledge is incorporated, we can achieve prior
knowledge-aware correlation calculation. As the bottom
part of Figure 4 shown, their correlations are 0.3 and 0.8
for buildings without/with elevator, respectively, which
fits the cases of real world well.
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Fig. 4. The prior knowledge affects the sample correlation calculation.

Maintaining the design principles of MetaSTP, we pro-
pose MetaSTP+, which injects the location prior knowledge
more comprehensive than MetaSTP to tackle the skewed
observations better: in addition to fusing the location prior
knowledge after historical observations are encoded, we in-
ject the location prior knowledge before and during the meta-
learning process in different ways to overcome aforemen-
tioned limitations. More specifically, to address the limitation
of inadequate modeling for locations with extremely scarce histor-
ical observations, we complete the support set of a learning
task with scarce samples with those from similar learning
tasks, the similarities of which are derived from a pre-
trained service time-guided location embedding module.
To address the limitation of ignorance of the prior knowledge
when calculating sample correlations, we devise a novel prior
knowledge-aware historical observation encoding module
to consider the prior knowledge of locations in the process.

Our contributions are four folds:
1) We identify major challenges of service time prediction,

and propose a meta-learning-based service time predic-
tion model, i.e., MetaSTP+. It fuses the prior knowledge
of tasks before, during and after the meta-learning pro-
cess, which is the first of this kind.

2) We design a location similarity-aware support set com-
pletion strategy to handle tasks with extremely scarce
historical observations.

3) We propose a prior knowledge-aware historical obser-
vation encoding module to better model the correlation
between the query sample and the support set.

4) Extensive experiments based on two real delivery
datasets from JD Logistics demonstrate the effectiveness
of MetaSTP+, which outperforms the best baseline by
11.2% and 8.4%, respectively. Besides, we present an in-
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telligent waybill assignment system based on MetaSTP+,
which has been deployed and used internally in JD
Logistics.

Among the contribution items, 2) and 3) are completely
newly introduced in this extension, and the others are
partially covered in our prior work.

2 PRELIMINARIES

2.1 Problem Formulation
Definition 1 (Waybill). A waybill contains the information
about the parcel to deliver, denoted as a 4-tuple w =
(addr, uid,F, ts). addr is the address, uid is the customer
ID, and F denotes the features of the corresponding parcel,
e.g., the weight and the volume. ts is a planned delivery
time slot of the parcel (e.g., pending to be delivered during
8AM-11AM), which depends on how many delivery trips
would be conducted in a day.

Definition 2 (Delivery Task). The set of parcels to be de-
livered together to the same delivery location is named as
a delivery task. Parcels in a delivery task share the same
planned delivery time slot, therefore, we explicitly denote a
delivery task as t = (W, ts), where W is the set of waybills
of those parcels.

Note that, the delivery location of each waybill, is a
geospatial coordinate in the urban space, which can be
obtained based on its shipping address via Geocoding 1, or
couriers’ annotation [9], [10].
Problem Definition. Given historical delivery tasks and
their corresponding service time, the service time prediction
(STP) problem is to predict the service time for a delivery
task in the future.

We did not consider identities of couriers, since they are
actually implicitly captured because a courier is responsible
for a delivery zone within a period of time. Another advan-
tage is that the generalization ability of our model would be
better, e.g., we can predict the service time for new couriers.
This choice is also employed by the existing work [11].

2.2 Basic Concepts of Meta-Learning
Meta-learning [12] aims to extract meta-knowledge that
is globally shared among related learning tasks, enabling
effective predictions even with limited observations. Each
learning task T comprises a support set Ds and a query set
Dq . The inference for a query sample xq is formulated as:

ŷq = fθ(x
q,Ds) (1)

where fθ is a neural network parameterized by the meta-
knowledge θ. To optimize θ, we use a set of meta-training
tasks Tmeta-train sampled from the task distribution p(T ). The
meta-loss function is:

L (θ) =
∑

Ti∈Tmeta−train

1

|Dq
i |

∑
(xq,yq)∈Dq

i

L(fθ(xq,Ds
i ), y

q)

(2)
where L is the loss function for the learning tasks. The objec-
tive is to find θ that generalizes well to new tasks sampled
from p(T ) based on these formulations. We mainly follow
the paradigm of the model-based meta-learning because it
is easier to be optimized [13].

1. https://en.wikipedia.org/wiki/Geocoding
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Fig. 5. Illustration of learning task setup.

3 METHODOLOGY

3.1 Learning Task Setup
We leverage fixed timestamps to split historical delivery
tasks into training dataset, validation dataset and testing
dataset (same as traditional machine learning settings). We
treat delivery tasks at each location as a learning task.

For each location in the meta-training dataset
Tmeta−train, we always keep r% proportion of data as the
query set (in blue) and leave others as the support set (in
green). And for Tmeta−val/Tmeta−val, the whole training
dataset of each location is treated as the support set, and the
whole validation/test dataset is treated as the query set, as
shown in Figure 5(b).

Some locations have no delivery record during the time
interval of the training dataset, resulting in empty support
set during the meta-validating/testing, as l4 shown in Fig-
ure 5(b). Given this fact, we also include those learning
tasks with empty support set in the meta-training, e.g., l5 in
Figure 5(a). It is achieved by specifying a minimum query
set threshold Nmin

q . For a location in the meta-training, if the
size of query portion is less than Nmin

q , all samples would
be assigned to the query set during the meta-training, which
is formally given as follows:

Nq =

{
⌈r% ∗ |D|⌉, if ⌈r% ∗ |D|⌉ ≥ Nmin

q

|D|, otherwise
(3)

where D is the whole training dataset of a location.

3.2 Model Overview
After we setup the learning tasks by location, the location
heterogeneity can be captured. However, skewed observa-
tions and complex delivery circumstances should be further
handled. To tackle the former challenge, the main idea is
to use samples in the support set of similar learning tasks
to complete the support set of the learning task with scarce
observations, and fuse the prior knowledge of each delivery
location in the task adaption process. To tackle the later
challenge, we further introduce a fine-grained representa-
tion layer in the prediction model.

Since the spatial features are available even if there are
no delivery events ever occurred at a location, we use them
as the prior knowledge of each learning task. For example,
the locations with the same POI type are more likely to have
similar building structures, thus their delivery situations
may be similar. However, the raw spatial features might be
sparse and noisy, we first transform them into a dense repre-
sentation space, and use the latent embedding to complete
the support set and help the later service time prediction.
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Figure 6 depicts the overview of MetaSTP+, which consists
of 3 stages to predict the service time for each delivery task:
• Service Time-Guided Location Embedding, which learns

the latent representation of each location based on the
location profiles via an auto-encoder. During the pre-
training process, we further introduce the auxiliary task,
i.e., average service time prediction, to make sure the
learnt location embeddings are suitable for the service
time prediction (Figure 6(a)).

• Location Similarity-Aware Support Set Completion,
which completes the support set of learning tasks with
scarce samples using that of similar tasks, the similarities
of which are characterized by the previously learnt loca-
tion embeddings (Figure 6(b)).

• Meta Service Time Prediction, which predicts the service
time of each query sample in a learning task based on
delivery task features, corresponding (completed) support
set as well as the learnt location embedding (Figure 6(c)).

The detailed architecture of MetaSTP+ is shown in Fig-
ure 7. Next, we elaborate each stage in detail.

3.3 Service Time-Guided Location Embedding
The module aims to learn the prior knowledge of each
learning task to help the later support set completion and
the prediction.
Main Idea. Since raw location profiles are sparse and noisy,
we need to transform them into dense representations.
There exist various existing works to learn embeddings
of locations based on multi-modal data [14], [15], [16].
However, given that multi-model data may not be always
available on delivery locations, we seek for embedding
models that can take simple semantic features of loca-
tions. However, embeddings learned solely through self-
supervision (e.g., auto-encoders) may not enhance service
time prediction. Therefore, we augment the training with an
auxiliary task that predicts the average service time of each
location based on its embedding. This ensures the learned
embeddings are not only dense and informative but also
strongly correlated with service time prediction.
Implementation. Figure 7(a) depicts the Service Time-
Guided Location Embedding module, which follows the
encoder-decoder structure to learn the prior knowledge of
each location, i.e., location embedding. After the module is

trained, only the encoder is reserved to produce the prior
knowledge of each location.

We consider four types of location profiles as the input:
(1) region (row and column index of a 500m× 500m cell in
the gridded urban space), (2) POI type, (3) built year, and
(4) second-hand house price per square meter. The last two
features implicitly reflect whether the building is equipped
with the elevator, which is usually not publicly available but
also a very important factor to affect the service time.

The encoder transforms the POI type into a one-hot
vector xpoi, embeds it through an embedding layer, con-
catenates it with other quantitative features xquant, and
processes them through a four-layer feedforward network
with LeakyReLU activations to obtain the location prior
knowledge representation lemb.

The decoder aims to perform the location profile recon-
struction and the average service time prediction, it uses the
learned embedding lemb as input, and consists of three com-
ponents, which use different feedforward networks (with
the same number of layers as the encoder does):

(1) Quantitative Profile Reconstructor, reconstructing
quantitative features x̂quant.(2) POI Classifier, infering the
POI type distribution p̂poi of a location using an additional
softmax layer before the output.(3) Average Service Time
Predictor, predicting the location’s average service time ŷl.

To obtain the average service time, we first calculate the
service time per customer by normalizing the service time
by the number of customers for each delivery event at the
location, and then adopt the average value of all delivery
events. In this way, high dynamics of service time due to
varying number of customers can be mitigated, and the
inherent attributes of the location can be better captured.

Since the output contains both quantities and categories,
we train the embedding module using a hybrid loss function
Lpre as shown in Equation 4:

Lpre = (xquant − x̂quant)
2 + β

K∑
k=1

(−xk
poi log p̂

k
poi)

+ α(yl − ŷl)
2

(4)

where K is the number of POI types, and α, β are two
hyperparameters to balance three kinds of loss.

3.4 Location Similarity-Aware Support Set Completion

Location similarity-aware support set completion aims to
complete the support set of a learning task with scarce
learning samples using that of similar learning tasks based
on location embeddings learnt in the previous stage.
Main Idea. Though the meta-learning is suitable for learn-
ing from limited learning samples, the extremely scarce or
empty samples are still a problem for a learning task to
adapt well. The key insight we use to address this problem
is that similar locations are likely to have similar delivery
patterns. Therefore, if we can complete the support set of
a sample-insufficient learning task with samples associated
with similar learning tasks, the prediction performance of
the sample-insufficient learning task should be improved.
Implementation. Figure 7(b) depicts the process of the lo-
cation similarity-aware support set completion. Since each
learning task corresponds to the deliveries to a certain
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Fig. 7. The architecture of MetaSTP+.

delivery location, we first project all learning tasks into the
embedding space based on the previously learnt location
embeddings. Then for each learning task, we check whether
the size of its support set is smaller than a preset threshold,
i.e., Numthd. If its size is smaller than Numthd, the support
set completion process would be conducted. For a learning
task whose support set needs to be completed, e.g., Ti,
we find a learning task that is within Disthd and is the
closest to Ti, e.g., Tj in the embedding space (according
to the Euclidean distance in the embedding space). Finally,
we choose a random subset of the support set Ds

j of Tj
to complete the support set Ds

i of T s
i to make the size of

the completed support set reach Numthd. We denote the
completed support set of Ti as Dcs

i .

3.5 Meta Service Time Prediction
Meta service time prediction aims to predict the service time
for each delivery task leveraging the completed support set
and the learnt location embedding, which consists of three
modules as depicted in Figure 7(c).
• Delivery Task Representation, which extracts and em-

beds each delivery task’s floor-level waybill features along
with other features to obtain the fine-grained hidden
representation of each delivery task;

• Historical Observation Encoding, which generates a vec-
tor that encodes the correlation among the query task,
the location prior knowledge, and tasks with labels in the
completed support set;

• Location-wise Knowledge Fusion, which further en-
hances the output vector with the location prior knowl-
edge so that an ideal prediction can still be achieved even
if the support set has no or very limited observations.

3.5.1 Delivery Task Representation
The delivery task representation module aims to encode
each delivery task into an expressive representation to facili-
tate later observation correlation calculation and prediction.
Main Idea. This module aims to capture fine-grained way-
bill information as shown in the bottom left part of Figure 7.
The module first groups waybills in the task by units and
floors, and extracts waybill features for each floor involved.
Then the set of floor-level features are jointly considered to
obtain a floor distribution-aware waybill representation for
each unit. Those representations from all units are further
fused to obtain the floor-level waybill features. At last, it
is combined with location-level waybill features as well as
temporal features to further enrich the representation.

The floor distribution-aware waybill representation is
inspired by three key insights from a delivery task:
1) The transition time at the same floor is much smaller than

that among different floors (which involve waiting for
elevators or walking upstairs) as shown in Figure 2(a).

2) Waybills distributed among all floors in a unit jointly
determine its service time, as observed in Figure 2(b).

3) The service times of all units contribute to the overall
time cost, but they are less affected by each other due to
the unit by unit delivery as illustrated in Figure 2(c).
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Implementation. First, we identify the unit and floor in-
formation from the address of each waybill based on regu-
lar expression (e.g., Floor XX, Unit X, Building X,
...). Waybills in the delivery tasks are then grouped.

Then, for each floor in each unit involved in the delivery
task, we extract the following 5 floor-level features which
potentially contribute to the service time by aggregating
waybills at the floor: (1) the floor number; (2) the number
of customers to deliver parcels to; (3) the total number of
waybills; (4) the total weight of parcels; and (5) the total
volume of parcels. Formally, we use f ji to denote floor-
level features of the ith floor of the jth unit in the delivery
task. Then, all floor-level features of a delivery task can be
represented as a set {Fj}Uj=1, where Fj = {f ji }F

j

i=1, F j is
the total number of floors in the jth unit, and U is the total
number of units in the task.

Next, we extract floor distribution-aware waybill repre-
sentation pf for the task based on {Fj}Uj=1, which is a two-
stage fusion (floor-stage and unit-stage). In the floor stage
fusion, the correlation between floors in the same unit are
captured with a transformer encoder [17] after applying a
feedforward network on floor-level features in Fj . Then
through a sum pooling we obtain the floor distribution-
aware waybill representation of each unit, denoted as uj :

uj = SumPool(TransEnc(FFN(Fj))) (5)

where FFN contains a fully connected (FC) layer.
To obtain pf , we leverages a feedforward network to

transform {uj}Uj=1 into a hidden space, then the unit-level
sum pooling is applied:

pf = SumPool(FFN({uj}Uj=1)) (6)

where FFN contains one FC layer and a ReLU activation.
Together with pf , we extract 6 location-level waybill

features, which describe waybills in the task in a macro
view: (1) the total number of customers to deliver, (2) the
total number of waybills, (3) the total weight and (4) volume
of parcels, (5) the number of units to deliver, and (6) the total
number of floors involved in the addresses of waybills. The
obtained feature vector is denoted as pl.

We further extract two temporal features from the
planned delivery time slot. (1) twk, whether today is work-
day or weekend. (2) ttod, embedding of the time slot within
a day, where [8:00-23:00] is equally divided into 5 bins.

We concatenate pf , pl, twk and ttod, and then send
them to a feedforward network to obtain the delivery task
representation h.

h = FFN([pf ;pl; twk; ttod]) (7)

where FFN contains 2 FC layers with ReLU activation, and ;
means concatenation.

The representation from the support set {hs
i}

Ns
i=1 and that

of the query delivery task hq are all sent to the next module.

3.5.2 Historical Observation Encoding
After the previous delivery task representation, all delivery
tasks in the completed support set {tcsi }Ncs

i=1 are transformed
into dense representations {hcs

i }Ncs
i=1 , and the query task tq

is transformed into hq . For each hcs
i , we concatenate it with

its label ycsi , and obtain a dense representation ocs of the

support observation, i.e., ocs
i = [hcs

i ; ycsi ]. The dense repre-
sentation of the support set is denoted as Dcs′ = {ocs

i }Ncs
i=1 .

Taking Dcs′ and hq as inputs, the historical observation
encoding aims to learn the correlation among them, and
generate an embedding vector zq (as shown in the bot-
tom middle part of Figure 7). zq semantically is a high-
dimensional representation of the prediction after “seeing”
the completed support set at the location.

A straightforward idea to accomplish this is to use a
classical model-based meta-learning approach [18], which
proposes to interleave self-attention [17] with temporal
convolution [19] to encode past experiences. It enjoys the
benefit of accepting infinite large past experiences (from
self-attention) and having a high-bandwidth to direct access
a batch of past experiences (from temporal convolution).
However, this approach has two limitations. Firstly, it only
cares about the correlation between the query sample and
observations in the completed support set, ignoring the
difference of sample importance due to different location
prior knowledge. Secondly, it equally treats samples in the
query set and the support set, while we care more about
making an accurate prediction based on the query sample.
Main Idea. Our idea is to fuse the location prior knowledge
before the sample correlation calculation and replace the
original self-attention layer with a query-support attention
layer, so that the importance of each sample in the com-
pleted support set is related to both the query sample and
the location prior knowledge, and the importance of the
query sample can be emphasized.
Implementation. To fuse the location prior knowledge, we
first concatenate the query task representation hq with the
location embedding lemb and then create a prior knowledge-
enhanced query representation okeq by transforming it into
the same size with osc using a feedforward network:

okeq = FFN([hq; lemb]) (8)

where FFN contains one FC layer.
After that, {ocs

1 ,ocs
2 , ...,ocs

Ncs
,okeq} are sent into an es-

pecially designed query-support attention layer, followed
by a temporal convolution layer [19]. Then, another query-
support attention layer is applied to make sure the past
experiences are fully utilized.

In order to make the meta predictor emphasize more
on the query sample, the query-support attention layer
only leverages the attention weights between the query
sample and support samples to make the representation
transformation, rather than different attention weights in the
self-attention mechanism. It first calculates the importance
of each historical observation in the completed support
set with respect to the prior knowledge-enhanced query
representation okeq , i.e., attention weights α, based on
the dot-product attention (Equation 9). Then, for the prior
knowledge-enhanced query representation, the output is
the concatenation of okeq with the weighted sum of value
representations of the support set (Equation 10), and for
each support representation in the completed support set,
the output is the concatenation of ocs with its weighted
value representation (Equation 11).

α = softmax(
qokeqK⊤

Ocs√
dK

) (9)
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okeq′ = [okeq;αVOcs ] (10)

ocs′ = [ocs;αvocs ] (11)

where Ocs represents the matrix [ocs
1 ,ocs

2 , ...,ocs
Ncs

], qokeq =
FC(okeq), KOs = FC(Ocs) and VOs = FC(Ocs).

We take the output from the position of query sample
of the last query-support attention layer, i.e., zq , as the
output of the historical observation encoding module, which
contains the knowledge about how to make the service time
prediction for the query delivery task with location prior
knowledge-aware historical observations encoded.

3.5.3 Location-wise Knowledge Fusion

The location-wise knowledge fusion module takes historical
observation encoded representation zq from the previous
module, further enhances it with location-wise prior knowl-
edge, and gives the final service time prediction (as shown
in the bottom right part of Figure 7).
Main Idea. Though the historical observation encoding
module considers the location prior knowledge, the major
role of it is to determine the importance of different ob-
servations. Here, we emphasize the importance of the prior
knowledge again by the late fusion to explicitly consider the
benefits of it for the service time prediction.
Implementation.

A straightforward approach is then to concatenate lemb

with zq to make the final prediction. However, this strategy
performs badly according to our experimental results. We
guess the reason is that the output of historical observation
encoding already contains rich information for the time
prediction, while lemb is a little bit noisy.

Inspired by ResNet [20], we propose to learn a residual
information based on zq and lemb that is able to refine zq ,
and ultimately make the prediction more accurate, which is
formally defined as follows:

ŷq = FFN(ReLU(zq + FFN([zq;FFN(lemb)]))) (12)

where FFN to calculate the residual contains 2 FC layers,
and the first FC layer is followed by a ReLU activation
following [20], FFN to obtain the output and to transform
the original location prior knowledge contains one FC layer.

3.6 Optimization

To optimize the meta service time predictor, we need to
choose the loss function L for each learning task (delivery
location). Here, we employ MSE, which is widely used for
the regression problem:

L(ŷq, yq) = (yq − ŷq)2 (13)

Then, the meta service time predictor is trained end to
end by minimizing meta loss L (Equation 2) with the above
learning task loss L (Equation 13). The overall training
procedure of MetaSTP+ is given in Algorithm 1.

Algorithm 1 MetaSTP+ Training Algorithm.
Input: Delivery task datasets D; location profiles Fs; loca-
tion embedding encoder gω , location embedding decoder
hϕ; MetaSTP model fθ ; query set rate r; minimum size
of query set Nmin

q , the support set completion threshold
Numthd; the embedding similarity threshold Disthd.
Output: The optimized parameters ω of location embed-
ding encoder, θ of MetaSTP+.

1: group D by locations to construct location task datasets D ;
2: for location delivery task dataset Di ∈ D do
3: calculate Nq based on Equation 3 with Di, r and Nmin

q ;
4: randomly split Di into Ds

i , Dq
i according to Nq ;

// Stage 1: Pre-train the location embedding module.
5: calculate the average service time yl for each location based

on D ;
6: randomly initialize ω and ϕ;
7: repeat
8: randomly select a batch of profiles Fs batch from Fs;
9: Lpre batch ← 0;

10: for Fs ∈ Fs batch do
11: Lpre batch ← Lpre batch + Lpre(hϕ(gω(Fs)), yl,Fs)

12: update ω and ϕ by minimizing Lpre batch;
13: until stopping criteria is met

// Stage 2: Complete the support set.
14: infer the location embedding set E by gω(Fs);
15: for location delivery task dataset Di ∈ D do
16: Dcs

i ← Ds
i ;

17: if |Ds
i | ≤ Numthd then

18: j ← get most similar location(liemb, E , Disthd);
19: if j is not None then
20: Dcs

i ← Ds
i ∪ random subset(Ds

j , Numthd−|Ds
i |);

// Stage 3: Meta-train the meta service time predictor.
21: randomly initialize θ;
22: repeat
23: randomly select a batch of learning tasks Db from D ;
24: L ← 0;
25: for location delivery task dataset Dl ∈ Db do
26: L ← L + 1

Nq

∑
(t

q
i ,y

q
i )∈Dq

l
L(fθ(tqi ,D

cs
l , gω(Fs)), y

q
i );

27: update θ, ω by minimizing L ;
28: until stopping criteria is met
29: return θ, ω;

4 EXPERIMENTS

4.1 Datasets
Our datasets consist of historical delivery tasks and spatial
external knowledge, which are introduced as follows.
• Historical Delivery Tasks. We use two real world datasets

from JD Logistics for evaluation, which are collected in
the downtown area (DowBJ) and suburban area (SubBJ)
of Beijing (splitted by the 3rd Ring) over a period of
20 months (from Jan. 1st, 2018 to Sept. 1st, 2019). The
raw data consist of couriers’ trajectories and waybills. We
first use our previous work [9], [10] to infer the delivery
location of each waybill, then group waybills in each
delivery trip into delivery tasks. The pending delivery
time slot of each task is set according to the start time
of each delivery trip, since STP is usually called before
departure. Finally, we match each delivery task to a stay
point (detected from couriers’ trajectories) according to
the accurately annotated delivery time or the spatial close-
ness [9]. The duration of the stay point is treated as the
service time of the corresponding task. After the previous
data pre-processing steps, we obtain a database consisting
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TABLE 1
Statistics of Datasets (“/” is train/val/test separator).

Datasets DowBJ SubBJ
#Delivery Tasks 53,979/5,978/6,138 22,403/4,630/5,520
#Delivery Locations 1,166/628/591 1,520/865/1,018
#New Loc. in Val/Test 13/16 266/424
Avg. Service Time (s) 418 395

of historical delivery tasks as well as their corresponding
service times. We use the data from the first 16 months
as training set, the data from the following 2 months as
validation set, and use the last 2 months for testing. The
details of each dataset are summarized in Table 1.

• Spatial External Knowledge. For each delivery location,
we obtain its POI type via reverse Geocoding 2, which
contains 18 POI types, and the built year and the second-
hand house price for Residence are crawled from the
Web 3, while for other types of POI, we use the mean
to fill missing values.

We provide the distribution of some important aspects
of both datasets as follows.
Number of Observations Distribution. Figure 8(a) shows
the distribution of the number of observations of a delivery
location in both datasets. As can be seen, the observations
are distributed highly skewed in the urban space. For 80%
locations in DowBJ, there are less than 69 observations for
training. The case is even worse in SubBJ, which only have
less than 19 observations under the same criteria.
Number of Customers Distribution. Figure 8(b) shows
the distribution of the number of customers involved in
a delivery task. As observed, both datasets have similar
distribution, for around 40%-50% delivery tasks, couriers
have to deliver parcels for more than one customer at a
location, which introduces many uncertainties for STP.
Number of Floors & Units Distribution. Figure 8(c) shows
the distribution of the number of floors of a delivery task
in both datasets, which also show similar distribution. For
around 40% delivery tasks, couriers need to go to different
floors to complete the delivery task at those locations. In
addition, there are 10% delivery tasks in both datasets, in
which couriers need to go to multiple building units at a
deliver location.
POI Types Distribution. Figure 8(d) shows the distribution
of POI type of a delivery task in both datasets. The top 3
POI types are the same in both datasets: Residence, Office
Building, and School. The deliveries for Residence take up
for around 80%. It can also be noticed that the portion of
deliveries for Office Building is a bit higher in DowBJ than
SubBJ, which is consistent with our common sense.

4.2 Experimental Settings

Baselines. We compare MetaSTP+ with following baselines.
• HA, which gives the historical average service time.
• HLA, giving the location-specific historical average value.
• HCA, assuming the time to be proportional to the number

of customers with a factor estimated from training data.
• GBRT [21], which trains a gradient boosting regression

tree based on historical observations to make prediction.

2. https://lbs.qq.com/
3. https://www.fang.com/
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Fig. 8. Data distributions.

• MLP [22], which trains a 3-layer MLP to make prediction.
• DeepFM [23], which captures both low- and high-order

feature interactions in delivery tasks by combining factor-
ization machines (FM) and deep neural networks.

• Song et al. [11], which is the earliest work focusing on
addressing the service time prediction problem. It trains
a KNN regressor based on aggregated features from way-
bills in a delivery task [24].

• GPD [25], a generative pre-training framework for spatio-
temporal few-shot learning with urban knowledge trans-
fer.

• PWT (SOTA) [3], which is a deep service time prediction
model considering the number of floors the courier needs
to climb based on aggregated waybills.

For all machine learning baselines, features from way-
bills only contain location-level ones, which are concate-
nated with others as input, since it is impractical to pad the
floor-level waybill features to the maximum length given
long-tailed involved floors in samples.
Variants. We also compare MetaSTP+ with following vari-
ants to show the effectiveness of its components.

• MetaSTP+-nMeta, which removes the meta-learning com-
ponent and is trained in the way like traditional machine
learning methods.

• MetaSTP+-nLP, which removes all designs about incorpo-
rating the location prior knowledge. That is, the entire
method only preserves the delivery task representation
module and the classic meta-learning method is used [18].

• MetaSTP+-nPre, which removes the pre-trained location
embedding stage, i.e., the support set completion and
prior knowledge incorporation are implemented directly
based on raw features of locations.

• MetaSTP+-nTS, which removes the sub-decoder of Aver-
age Service Time Predictor, so that the pre-trained location
embedding stage is not guided by average service time.

• MetaSTP+-nC, which removes the location similarity-
aware support set completion stage.

• MetaSTP+-nSeq, which removes the floor distribution-
aware waybill representation pf from MetaSTP.

• MetaSTP+-nPHE, which replaces the newly designed



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

prior knowledge-aware historical observation encoding
module with the classic module used in the model-based
meta-learning [18].

• MetaSTP+-nQSA, which replaces the newly designed
PHE module as MetaSTP+-nPHE does. However, unlike
MetaSTP+-nPHE, it integrates location prior knowledge
before modeling the correlations among samples. Like
MetaSTP+-nPHE, it does not emphasize the importance
of query sample.

• MetaSTP+-OOA, which replaces our newly designed at-
tention layer in PHE module by replacing α and V in Eq.
(11) with the attention weights and values corresponding
to other historical observations in the completed support
set. Its attention also can emphasize the importance of the
query sample. And it also fuses location prior knowledge
before modeling the correlation of samples.

• MetaSTP+-nLKF, which drops the location-wise knowl-
edge fusion module, and predicts the time based on the
output from historical observation encoding via a FC.

• MetaSTP+-nRes, which drops the residual connection, and
directly concatenates l with the output from the historical
observation encoding to make the prediction.

• MetaSTP [8], which is the prior version of this work.

Evaluation Metrics. We leverage three commonly used
metrics for regression problem, i.e., MAE, RMSE and
MAPE, to evaluate the performance of different methods.
MAE = 1

N

∑N
i=1 |yi − ŷi|, where N is the total number

of delivery tasks in the test set. MAE characterizes the
average prediction error with respect to the ground-truth

over all test samples. RMSE =
√

1
N

∑N
i=1(yi − ŷi)2, which

is more sensitive to samples with large prediction errors.
MAPE = 100%

N

∑N
i=1

∣∣∣yi−ŷi

yi

∣∣∣, which measures the average
relative errors of the prediction and the ground-truths.
Training Details & Hyperparameters. Our method as well
as baselines are completely implemented in Python 3.8
using PyTorch 1.11 on a docker with 16 Cores@2.2GHz,
64GB memory and Ubuntu 22.04 Linux. We have released
our code to help understand more implementation details 4.
To setup the meta-training dataset, for each learning task,
r = 0.2 and Nmin

q = 1. (1) In the Service Time-Guided Lo-
cation Embedding stage, the hidden size of the pre-trained
location encoder, the quantitative profile reconstructor, the
POI classifier and the average service time predictor are
[16, 8, 4, 2], [16, 8, 4, 4], [8, 32, 16, 18] and [8, 4, 2, 1], respec-
tively. β and α are set to 1.2, 8.0 and 1.2, 4.0 for DowBJ
and SubBJ, respectively. (2) In the Location Similarity-Aware
Support Set Completion stage, the completion threshold
Numthd and the similarity threshold Disthd are set to 8,
0.2 and 28, 0.2 for DowBJ and SubBJ, respectively. (3) In the
Meta Service Time Prediction stage, we leverage Adam with
β1 = 0.9 and β2 = 0.999 to meta-train with a learning rate
3e-3. We sample 4 learning task in each iteration, and the
whole meta-training dataset is iterated over 8 times. The
hidden size of FC before the transformer, in the transformer
encoder, in the representation output as well as in the
self-attention are all set to 8. FC to obtain u contains 16
neurons. WorkdayOrNot is embedded to R3. The temporal
convolution is stacked by 4 dilated 1D convolutions with

4. https://github.com/YangQY2000/metastp-plus

TABLE 2
Overall Evaluation.

Methods DowBJ SubBJ
MAE RMSE MAPE MAE RMSE MAPE

HA 253.9 368.1 126.0 229.6 320.3 112.0
HLA 204.2 295.0 88.2 205.8 282.9 93.8
HCA 174.0 269.3 68.7 157.7 235.5 64.4
MLP 161.4 257.7 65.9 150.0 259.5 61.5
GBRT 156.4 239.5 67.0 152.0 241.4 56.9
DeepFM [23] 156.2 239.5 63.2 157.1 250.1 56.2
Song et al. [11] 154.4 237.4 63.5 153.5 223.0 60.7
GPD [25] 156.2 237.2 66.5 150.8 239.6 65.2
PWT (SOTA) [3] 153.6 233.9 66.1 149.6 236.6 57.0
MetaSTP+-nMeta 149.8 232.5 59.4 145.8 246.2 56.3
MetaSTP+-nRes 144.3 224.4 54.6 141.9 282.7 51.8
MetaSTP+-nLP 144.1 229.4 54.8 141.2 241.6 53.8
MetaSTP+-nSeq 141.3 215.9 55.8 139.6 271.3 54.9
MetaSTP [8] 139.7 226.9 48.9 138.5 216.0 50.0
MetaSTP+-nC 139.1 219.0 50.3 138.8 211.4 49.6
MetaSTP+-nPre 138.8 215.7 50.2 139.7 210.9 52.5
MetaSTP+-nPHE 137.9 216.1 48.9 138.5 211.8 48.8
MetaSTP+-nQSA 137.7 215.9 48.7 138.3 211.1 49.7
MetaSTP+-nLKF 137.7 217.6 48.6 138.2 207.9 51.4
MetaSTP+-OOA 137.2 216.6 48.4 138.0 210.5 49.2
MetaSTP+-nTS 137.0 215.7 47.9 138.1 209.3 49.9
MetaSTP+-nW 197.0 292.2 77.5 191.2 288.4 71.4
MetaSTP+-nSE 139.4 217.4 49.0 145.1 213.7 55.8
MetaSTP+-nT 138.8 215.0 52.1 137.7 209.3 47.0
MetaSTP+ (Ours) 136.4 214.3 47.6 137.1 206.3 47.7

16 filters. POI Type is embedded to R2. To learn zres, the
hidden size is 2. The hyperparameters of baselines are also
selected based on the best validating performance.

4.3 Evaluation
Overall Performance. The overall performance of MetaSTP+

compared with baselines over all three metrics is shown in
Table 2. As can be observed, directly predicting the service
time based on historical average (HA) leads to huge errors,
indicating that it is far from enough to empirically estimate
the service time without considering the information of a
certain delivery task. HLA is better than HA, which shows
the uniqueness of different locations. HCA is better than
HLA, which shows the number of customers surely is a
shared strong signal affects the time among different loca-
tions. Traditional machine learning methods (MLP, GBRT,
and KNN) show superior performance than aforementioned
empirical ones, since they are able to model various factors
by aggregating waybills in the delivery task. Nevertheless,
the coarse-grained location-level features is not representa-
tive enough. GPD, considers the heterogeneity of different
tasks. However, it requires informative spatial and temporal
prompts for each task, in which the temporal prompts are
derived from historical observations of a location, but we
have many locations with extremely scarce historical obser-
vations. The state-of-the-art (SOTA) method, PWT, considers
the floor information, leading to better results. However, the
delivery task representation is still not fine-grained enough
and the universal model is not able to fit locations with
few observations well. Those limitations leave us the room
for improvements. Our method, i.e., MetaSTP+, not only
encodes the delivery task into a finer-grained level, but
also leverages meta-learning and the prior knowledge to
tackle the problem of skewed observations among locations.
MetaSTP+ consistently outperforms baselines over three
metrics on two datasets. Its MAE is 136.4s on DowBJ and
137.1s on SubBJ, which outperforms the best baseline by
11.2% and 8.4%, respectively.
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Ablation Study. The ablation study is also conducted in
Table 2 to validate the effectiveness of different components
of MetaSTP+. After removing the meta-learning strategy
(MetaSTP+-nMeta), a significant performance drop is wit-
nessed, which shows the advantages of using meta-learning
to tackle the skewed observation issues. The prior knowl-
edge about the location is also vital for the service time
prediction. As can be observed, without incorporating the
prior knowledge, the prediction performance is severely de-
graded, which shows the necessity of introducing the prior
knowledge-enhanced spatial meta-learning (compared with
MetaSTP+-nLP). If we ignore the encoding for floor-level
waybill features (MetaSTP+-nSeq), the performance degra-
dation is also obvious, indicating that the floor distribution-
aware waybill representation learning did provide finer-
grained information for service time prediction. When re-
moving the pre-trained location embedding (MetaSTP+-
nPre), there is also a performance drop, which shows the
raw location profiles are not appropriate to be directly used
as the prior knowledge. Comparing with MetaSTP+-nPHE,
we see that emphasizing the importance of query sample
and leveraging prior knowledge before modeling the corre-
lation of samples is helpful to the performance. Comparing
MetaSTP+-nQSA with MetaSTP+-nPHE, it shows that fusing
location prior knowledge before modeling the correlation of
samples is beneficial. MetaSTP+-OOA (its attention is of a
different design from query-support attention layer, but also
to emphasize the importance of query sample) performs
better than MetaSTP+-nQSA, which shows that emphasizing
the importance of query sample is beneficial to the time
prediction. But it performs worse than MetaSTP+, which
shows the necessity of a subtly designed attention layer for
the service time prediction problem.

MetaSTP+-nTS shows that introducing the average ser-
vice time prediction task in the pre-training stage can
further boost the prediction performance. The support set
completion is also an important stage. If the prediction
is made without it, as MetaSTP+-nC shown, the perfor-
mance would degenerate, which shows the necessity of the
completion and proves its effectiveness to tackle the prob-
lem of skewed observations. Comparing with MetaSTP+-
nLKF, we see the location embedding is helpful to be
fused into the time prediction. Comparing MetaSTP+-nRes
with MetaSTP+-nLKF, we find if the prior knowledge is
not subtly fused, the performance might drop significantly.
Moreover, MetaSTP+-nRes even causes a bit more per-
formance drop than MetaSTP+-nLP, which indicates that
the location prior knowledge is useful but noisy, and the
residual connection can help reducing the effect of noise
while keeping the benefit of the prior knowledge. Lastly,
MetaSTP+ outperforms our prior work MetaSTP by 5.6%
and 4.5% in RMSE in DowBJ and SubBJ, respectively due
to the newly introduced pre-trained location embedding,
location similarity-aware support set completion and the
newly presented meta service time predictor.
Performance On Locations Triggering the Completion. As
is shown in Table 3, we evaluate MetaSTP+, MetaSTP, and
the state-of-the-art baseline PWT on locations with scarce
observations. We define a data-scarce location as one whose
support set needs to be completed. The results indicate that
meta-learning approaches improve performance on scarce

TABLE 3
Performance On Locations Triggering the Completion.

Methods DowBJ SubBJ
MAE RMSE MAPE MAE RMSE MAPE

PWT(SOTA) 147.0 212.1 67.2 149.8 222.2 60.3
MetaSTP 128.5 192.9 52.9 134.7 208.7 55.4
MetaSTP+ (Ours) 122.2 183.1 49.4 128.4 188.5 52.5

locations compared to PWT. We notice that the performance
metrics on data-scarce location are better than the overall
ones. We guess that this is due to higher sample diversity
in locations with abundant samples, which leads to greater
errors. However, focusing on data-scarce location enhances
the ability to handle newly seen locations, which is still of
high values.
Changes in the Number of Support Set Samples After
Completion. As shown in Figure 9, before the comple-
tion, the proportion of data-scarce location with fewer than
Numthd historical observations is 0.43 and 0.90 on the two
datasets, respectively. It proves the wide existence of ex-
tremely data-scarce locations. But after the completion, the
proportions decrease significantly. On average, a location
with scarce observations gains 6.4 and 15.8 additional sam-
ples during the completion operation on DowBJ and SubBJ,
respectively. Although our completion operation aims to
complete a location’s support set up to the size of Numthd

(with its most similar location’s samples), a proportion
of locations still have fewer than Numthd samples after
the completion, it is reasonable because some data-scarce
location identifies another data-scarce location as its most
similar one, limiting the number of samples it can gain
through completion.
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Fig. 9. The distribution of the number of support samples before and
after the support set completion.

Importance of Features. MetaSTP+-nW, MetaSTP+-nSE and
MetaSTP+-nT are MetaSTP+ without features from way-
bills, spatial external knowledge and temporal information
dropped. As expected, the features from waybills play the
most important role for the service time prediction. The
features from spatial and temporal domain also contribute
to the prediction, which shows the complexity of the service
time prediction. However, though the temporal features are
effective, they are more important in DowBJ, (especially the
MAPE of MetaSTP+-nT in SubBJ is even a bit lower). We
guess this phenomenon may attribute the less population in
suburban areas, where the crowdness in a building does not
change much across different time periods and the noise of
temporal features overwhelmed their effect.
Different Weights of Losses in Pre-training. Recalling that
the loss function of the location embedding pre-training has
three parts, which are controlled by the weights for the
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Fig. 10. Different weights of pre-training losses.

loss of the average service time prediction (α) and the POI
classification (β). Figure 10 shows RMSE of MetaSTP+ with
respect to α and β on DowBJ. It can be observed, when α=8
and β=1.2, RMSE reaches the minimum. Changing α or β
makes the prediction error larger, which suggests a trade-
off between the average service time prediction task and
the location profile reconstruction tasks. This experiment
indicates the importance of the average service time predic-
tion task, which proves the effectiveness of enhancing the
location embedding with semantics of average service time.
Different Completion Thresholds. Numthd is one of the
key hyper-parameters in the support set completion, which
is a threshold for the size of a support set to determine
whether the support set of a learning task should be com-
pleted. Figure 11(a) shows the change of MAE of MetaSTP+

and 2 variants, which derives task similarities in differ-
ent ways (MetaSTP+-nPre and +-nTS) with the increase of
Numthd on DowBJ. And two methods without the support
set completion (MetaSTP+-nC and MetaSTP) are also added
for reference. When Numthd is 8, all methods requiring the
support set completion, perform their best, which indicates
Numthd is a trade-off hyper-parameter. When Numthd is
too small, only support sets with a size close to 0 are com-
pleted, and the skewed observation problem is not fully re-
solved. When Numthd is too large, the performance would
also decline, because too many samples from other loca-
tions might dominate the samples of the current location,
which makes the model difficult to capture the uniqueness
of the current location. MetaSTP+ consistently outperforms
MetaSTP+-nPre and +-nTS in different Numthd, indicating
the effectiveness of the service time-guided location embed-
ding. The comparison with MetaSTP+-nC and MetaSTP also
shows that Numthd should be carefully set.
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Fig. 11. Different hyperparameters for the support set completion.

Different Task Similarity Thresholds. Disthd is the other
key hyper-parameter in the support set completion, which
judges the similarity of different learning tasks in the lo-
cation embedding space. Figure 11(b) shows the change of
MAE of MetaSTP+ as well as the same set of variants with
the increase of Disthd on DowBJ. As is shown, when Disthd

(a) Location Embedding Space.

(e) Physical Space.

A
C

B

D

(e) Physical Space.

A
C

B

D

(b) Location A. (d) Location C.(c) Location B.(b) Location A. (d) Location C.(c) Location B.

Fig. 12. Case study of location embedding.

is 0.2, all methods requiring the support set completion,
perform their best, which indicates Disthd is also a trade-
off hyper-parameter. When Disthd is too small, the criteria
to judge whether a location is similar is too strict. Thus, for
many learning tasks with limited observations, the support
set cannot be completed due to task dissimilarity. On the
other hand, when Disthd is too large, the completion process
may judge many locations with large embedding distances
as similar locations of the current one. It makes the support
set of the current location be completed with many samples
from locations with quite different delivery patterns, and
thus leads to great prediction errors. Similar to Numthd, the
service time-guided location embedding makes MetaSTP+

outperform other methods to derive the task similarities in
different Disthd, and Disthd should also be carefully set.
Case Study of Location Embedding. To show the effec-
tiveness of the location embedding, we give a case study
to illustrate whether the location embedding works as we
expected, i.e., locations with similar delivery patterns are
close in the embedding space. We plot the embeddings of
different locations in Figure 12(a). As shown in the figure,
we find Location A is close to Location B, has a moderate
distance to Location C, and far away from Location D in the
embedding space. Apart from Location D is a residential
building, Location A, B, and C are office buildings as the
street views shown in Figure 12(b), (c) and (d). But Locations
A and B have some shops on the first floor, while Location
C does not, implying that the location embedding module
did map locations with similar delivery patterns closer in
the embedding space. We further show those locations in
the physical space in Figure 12(e). We find that semantic-
closer locations are not necessarily spatial-closer, showing
the necessity of learning the latent embeddings of locations.

5 DEPLOYMENT

An intelligent waybill assignment system based on
MetaSTP+ is used internally in JD Logistics to balance the
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Fig. 13. System interface.

working hours of couriers.
The interface of the system is shown in Figure 13. The

station master can select one of delivery trips of today, and
the details of the batch of waybills pending to be delivered
would be listed in the table. After the number of couriers to
conduct the delivery for the batch of waybills is entered,
the batch of waybills would be assigned to couriers by
solving the distance/time-constrained capacitated vehicle
routing problem (DCVRP) [26]. The locations in DCVRP are
derived from the waybills, the travel time between locations
is estimated from couriers’ historical transitions, and the
service time at each location is predicted by MetaSTP+.

The system is deployed on Cloud Virtual Machine in JD
Cloud with the trained MetaSTP+ model and a commercial
MIP solver. The historical observations, which acts as the
support set, are obtained from Redis. The waybills allocated
to the station are accessed from an internal Web API. When
deployed online, MetaSTP+ can predict the service time
for 250 tasks/s per thread. The multi-thread processing
is further implemented to increase its throughput. For a
courier, the error of delivery trip time estimation is reduced
by 15 minutes, which greatly balances the working hours of
couriers at the delivery station.

6 RELATED WORK

Stay Time Prediction. The stay time prediction focuses on
modeling the time cost of a user staying at a specific POI.
Chen et al. [27] use GBRT based on various spatio-temporal
features extracted from historical stay points at that lo-
cation, Liu et al. [28] leverage MLP considering spatio-
temporal features as well as context logs in smartphones,
and Gidófalv et al. [29] propose to use Markov models based
on individual’s previous stay sequence. STP differs from
the stay time prediction in that the underlying semantics
of stay are specific and different from general ones, i.e.,
they are driven by the delivery tasks but not others, e.g.,
working, eating. In stay time prediction, what a moving
object is doing at a location usually is unknown, and can
only be inferred from sequential patterns or smartphone
logs, while we explicitly know the stay is caused by delivery,
and the delivery task should be leveraged. The earliest work
focusing on STP is [11], which predicts the service time
using a KNN regressor. However, [11] extracts features
by aggregating waybills, ignoring the fine-grained floor
information. A recent work [3] realized the importance of
the number of floors to deliver, however the features from

waybills are also aggregated. Moreover, both of them did
not tackle the issue of skewed observations, which makes
performance of the prediction model deteriorated.
Estimated Time of Arrival (ETA). ETA aims to estimate
the time that a vehicle/person is expected to arrive at its
destination [30], [31]. A special case for ETA is that there are
multiple intermediate destinations, e.g., parcel deliveries [4],
[32], [33], [34], [35], [36], where the service time at each
location is a part of its time cost. Existing multi-destination
ETA usually implicitly considers the service time, which is
modeled into the time cost between consecutive locations.
However, individually predicting the service time not only
can be used in it, but also benefit other downstream applica-
tions, e.g., workload balancing via service zone partition [3]
and route planning with strict time-windows [1], [2].
Meta-Learning Applications in Spatio-temporal Data Min-
ing. Meta-learning has been adopted in the field of spatio-
temporal data mining when data is limited. For example,
Yao et al. [37] make spatio-temporal prediction in cities
with limited data, and Qin et al. [38] predict the purchase
volume in different regions and day types. Xu et al. [39]
adaptively predict personalized spatial trajectory. Recently,
Yuan et al. [25] propose a generative framework for spatio-
temporal few-shot learning with urban knowledge transfer,
which generates a dedicated network for each task. Jiang
et al. [40] propose Spatio-Temporal Meta-Graph Learning,
and implement this idea into Meta-Graph Convolutional
Recurrent Network (MegaCRN) for traffic forecasting. In
addition, in the map search engine, Fang et al. [7] estimate
the en route travel time, Fan et al. [41] auto-complete POI
and Chen et al. [42] predict the next POI to search. Differ-
ent from these studies, we are the first work to leverage
meta-learning to improve the predictability of service time
in logistics. A representation layer is specially designed
to embed the delivery task. Besides, in our scenario, the
support set could be empty, which is not the case for the
aforementioned works. We design a prior knowledge fusion
module to enhance the performance under this case.
Delivery Data Mining. With the digitization progress of
the logistics industry, there are emerging studies focusing
on delivery data mining. In addition to pick-up/arrival
time estimation [4], [32], [33], [34], [35], [36] and STP [3],
[11], there are many other studies of delivery data mining,
which are reviewed as follows. Based on waybill data,
Ding et al. [43] infer the delivery scope of each merchant,
and Wen et al. [44], [45], [46] predict the pick-up order
of parcels. Guo et al. [3] balance the workload of couriers
via partitioning the delivery zone based on the estimated
service time. With couriers’ trajectories, Dahiya et al. [47]
find the regions of interest, Srivastava et al. [48] improve
the quality of Geocoding, [9], [10], [49] infer the delivery
location, and Jiang et al. [50] detect fake locations registered
by the merchants. Leveraging couriers’ encounter data, Ding
et al. [51] estimate the relative location of couriers indoors.

7 CONCLUSION

In this paper, we study service time prediction (STP),
which is fundamental for intelligent logistics, and propose
MetaSTP+ to solve it. MetaSTP+ treats STP at each location
as a learning task to tackle the location heterogeneity, and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

leverages a fine-grained representation layer to encode the
complex delivery circumstances. A three-stage spatial meta-
learning framework is proposed to tackle the skewed obser-
vations which injects the location prior knowledge before,
during and after the meta-learning process. MetaSTP+ out-
performs baselines by at least 11.2% and 8.4% on two real-
world datasets, and is used internally in JD Logistics.

Though in this work, we focus on STP, the idea of
comprehensive prior knowledge injection by support set
completion, query-support attention, and late knowledge
fusion essentially can be easily transferred to other prob-
lems. It has potential to empower the modeling of other
learning problems with a set of related tasks, which have
prior knowledge. Furthermore, in the future, we envision
a more universal framework to tackle the spatial activity
modeling problem.
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