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Abstract

Purchase prediction is an essential task in both online and
offline retail industry, especially during major shopping festi-
vals, when strong promotion boosts consumption dramatically.
It is important for merchants to forecast such surge of sales
and have better preparation. This is a challenging problem,
as the purchase patterns during shopping festivals are signif-
icantly different from usual cases and also rare in historical
data. Most existing methods fail at this problem due to the ex-
tremely scarce data samples as well as the inability to capture
the complex macroscopic spatio-temporal dependencies in a
city. To address this problem, we propose the Spatio-Temporal
Meta-learning Prediction (STMP) model for purchase predic-
tion during shopping festivals. STMP is a meta-learning based
spatio-temporal multi-task deep generative model. It adopts
a meta-learning framework with few-shot learning capability
to capture both spatial and temporal data representations. A
generative component then uses the extracted spatio-temporal
representation and input data to infer the prediction results.
Extensive experiments demonstrate the meta-learning general-
ization ability of STMP. STMP outperforms baselines in all
cases, which shows the effectiveness of our model.

Introduction

Reliable purchase prediction is essential for both the online
and offline retail industry to optimize the supply chain, reduce
operational costs, and improve revenue. This becomes even
vital during major shopping “festivals” (e.g., Black Friday
in the US, 11.11 shopping carnivals in China), the sudden
burst of sales boosted by big promotions poses a great chal-
lenge for retailers, causing problems such as stockouts or
even system crash, leading to a bad shopping experience for
consumers. However, accurate purchase forecasts on differ-
ent categories of products can enable better preparation for
their inventories and design appropriate promotion strategies
for products. More importantly, knowing the spatial distribu-
tion of product purchases in different categories also helps to
design effective temporary shipping strategies to ensure more
efficient dispatching of products among warehouses across
different regions during such a special period of time. In this
work, we aim to predict the purchase of multiple categories

*Yu Zheng and Xianyuan Zhan is the corresponding author.
Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

E high
Office ™ I
b
C”"l"ﬁs Ak Hink
Ty
Re%‘

oL 3
Office ™

Residenee gy

low

(a) Weekday

(b) Shopping festival

Figure 1: Purchase distribution in different locations and time

of products in different regions, while improving the predic-
tion accuracy of the burst purchase behavior during major
shopping festivals. This is a particularly challenging problem,
the difficulties mainly arise from two aspects:

Limited reference samples. The spatial distribution of
shopping malls and stores, demographic properties of regions
as well as day types (e.g. weekdays, weekends, or shopping
festivals) often leads to diverse shopping behavior, as shown
in Figure 1. Conventional solution for purchase prediction is
to train an exclusive model for each region or day type (Yi
et al. 2018). However, the data from a single region or a spe-
cific day type are too sparse to support training a good model.
This becomes even worse for prediction on shopping festi-
vals, as these festivals only occur few times a year, leading to
extremely limited data samples. How to transfer information
from different regions and day types to train a model while
remaining their own specific characteristics is a challenge.

Complex spatio-temporal purchase patterns. The pop-
ulation density and demographic characteristics are highly
heterogeneous in different regions of a city, which could lead
to distinct consumption behaviors. Moreover, the economic
development, population growth and movement across re-
gions will also shape-changing consumption behaviors in the
long-term. Modeling such complex spatio-temporal purchase
patterns can be very difficult. To accurately capture the spatial
properties of regions, it requires considering a comprehen-
sive set of spatial features, such as point-of-interest (POI)
distribution, demographic features of regions, etc. Further-
more, the temporal information gathered from historical data
may be biased towards normal purchase patterns, which can
not provide sufficient information to support predicting the
burst of sales during shopping festivals. How to capture the



complete spatio-temporal representation of purchase patterns
for the modeling process is another challenging task.

In this paper, we propose the Spatio-Temporal Meta-
learning Prediction (STMP) model to address aforementioned
challenges. The contributions of our work are two-fold:

e Task-specific spatio-temporal representation learning.
As the purchase pattern is diverse across different regions
and day types, the prediction task in each region or day
type can be seen as an individual task. We develop a flex-
ible amortization network to learn task-specific spatial-
temporal representations. It jointly models the dynamic
purchase time-series features and static spatial features to
learn a representative spatio-temporal embedding. More-
over, it integrates instances in the same task by an instance
pooling operation to capture a meta-representation of the
task, which significantly improves the expressive power of
the model in the few-shot scenario.

o Knowledge transfer between tasks. To tackle the data
scarcity issue, we design a generative model that combines
the task-specific spatio-temporal representations and the
embedding of the current purchase data to enable knowl-
edge transferring among different tasks. This is achieved
using shared parameters in the generative model to learn
the meta-knowledge from different tasks, which plays a
key role in transforming information across different tasks
to perform target prediction.

We use a large high-quality online purchase dataset from
JD.com for evaluation. Extensive experiments demonstrate
the meta-learning generalization ability of our model. In all
cases, STMP outperforms the competing baselines, which
demonstrate its effectiveness.

Related Work

There is limited literature related to purchasing prediction
problem for shopping festivals. For this consideration, we ex-
tend the survey to the general time-series prediction problem,
especially some works on deep learning and meta-learning
based methods used in the probabilistic prediction problems.

Deep learning-based time-series prediction. The only
work in literature for purchase prediction in "shopping festi-
vals" is by Zeng et al. (Zeng et al. 2019). It applies collabo-
rative filtering to recommend items for different consumers,
and predict whether a purchase will happen. In another pur-
chase prediction related study, Wang et al. (Wang et al. 2019a)
propose a hybrid model that incorporates the advantage of
both classical time-series model and deep learning method,
which can capture complex patterns in the data and capa-
ble of solving large-scale problems. In addition, some deep
learning-based methods (Lai et al. 2018; Qin et al. 2017; Ma
et al. 2017) for time-series prediction can also be used in
normal purchase prediction scenarios. But these prediction
models either require large amounts of task-relevant data or
focus only on capture ordinary time-series patterns, which
are incapable to handle the burstiness in a temporal sequence.

Meta-learning generative model. Many applications re-
quire predictions to be made on myriad small datasets. In
such cases, it is natural to desire learners can rapidly adapt to
new datasets at test time. These applications have given rise

to a vast interest in few-shot learning (Fei-Fei, Fergus, and
Perona 2006; Lake et al. 2011), which emphasizes data effi-
ciency via information sharing across related tasks. Since the
shopping festival is rare in the purchase data, our task can be
framed as a few-shot prediction problem, thus also relevant to
studies in the area of meta-learning. Moreover, as uncertainty
is rife in few-shot problems, to enhance the robustness of
the prediction model, some meta-learning algorithms extend
to perform probabilistic inference on prediction problems
(Grant et al. 2018). Related approaches include models with
amortized Bayesian (Ravi and Beatson 2019), generative
meta-learning (Rezende et al. 2016; Reed et al. 2018). While
these models can perform probabilistic inference on predic-
tion, their application is limited to notably less challenging
tasks. How to extend few-shot learning to complex spatio-
temporal prediction scenarios is still a challenging task.

In this work, we utilize the merits of both the above ap-
proaches and combine the meta-learning probabilistic infer-
ence with spatio-temporal modeling for purchase prediction
in a few unusual but significant shopping “festivals”.

Problem Statement

As purchase behavior differs greatly across space and time,
we consider a prediction problem with I regions S =
{si]i = 1---1} (divided by the administrative boundaries)
and J day types DT = {d;|j = 1---J} (including week-
days, weekends, and shopping festivals). In each region
and day types, our goal is to accurately predict the number
of future purchase orders, using historical purchase time-
series data, times of products added to the shopping cart,
and other external factors as features. Given a time win-
dow of length 7T, the time-series purchase orders are de-
noted as Y = [y, - ,y}], where y] = [y't’;l, e y{’C],
r = (s;,d;) € R(R = S x DT) represents a specific region
and day type, and C'is the total number of product categories.
The form of the shopping cart data is the same as the purchase
order, which is denoted as (X4)" = [(xq)], - , (z4)7] and
()i = [(wa)i 1, »(wa)} o] The external factors include
region related static features (POIs and demographic profiles)
and the festival interval (number of days between current day
to the most recent weekend and shopping festival) are denoted
as (X.)% . For brevity, we denote X" = [(Xg4)", (X,)].

For different regions and day types, we can split the pre-
diction task into multiple sub-tasks, where each sub-task (for
a specific region and day type) is perceived as an SD-task.
Given previous notations, for each SD-task r = (s;,d;), the

features of the task can be unified as (X", Y"). The training

data D" = (z},yy);", and testing data D" = (Z,57);"

are separated for each SD-task r. The overall purchase predic-
tion problem can be naturally formulate as a multi-task predic-
tion problem, which predict future purchase orders Y ; for
all SD-tasks given (Xg)<r, (Xe) and Y<r = {y1,--- ,yr}
from past 7" time steps. In the following section, we use D"
and y" for each SD-task r as the input data and target.

Methodology

In this section, we introduce the STMP framework for the
multi-task purchase prediction problem. STMP includes three
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Figure 2: Graphical models for meta-learning framework.

key elements. First, we utilize meta-learning probabilistic
inference (Finn, Abbeel, and Levine 2017) in our model to
enhance the robustness of few-shot prediction during rare and
uncertain shopping festivals. Second, we leverage shared hid-
den statistical structure between tasks to perform multi-task
learning (Heskes 2000). This treatment allows sharing infor-
mation between tasks about how to learn and perform infer-
ence using meta-learning (Thrun and Pratt 2012). Third, we
enable fast learning of different SD-tasks via amortized vari-
ational inference (Shu et al. 2018), which maps the purchase
data instances to a parameterized approximate posterior distri-
bution. In the following, we first introduce the meta-learning
probabilistic model for general multi-task learning problem,
and further generalize it to the spatio-temporal prediction
settings that relevant to our purchase prediction problem.

Meta-learning Probabilistic Model

To improve the robustness and enhance the model perfor-
mance under limited samples, probabilistic modeling com-
bined with meta-learning has draws lots of attention in solv-
ing the multi-task prediction problem (Gordon et al. 2019).
Such a model framework is typically constructed upon two
ingredients: (i) discriminative models are used to maximize
predictive performance on the prediction tasks, which can
be modeled as a regression problem; and (ii) the shared sta-
tistical structure across tasks in the probabilistic model is
exploited to learn the meta-knowledge of different tasks. This
model construction can be represented as a multi-task di-
rected graphical model illustrated in Figure 2, in which 2",
y" are model inputs and outputs for each task r, the shared
parameters ¢ are common to all tasks and {«)"} are the task-
specific parameters. The shared parameter 6 plays a key role
in transferring meta-knowledge across tasks that greatly alle-
viate the data scarcity issue. On the other hand, the different
patterns within each task are learned and parameterized by
task-specific parameters {1)" }, which extract the targeted in-
formation for different tasks to further enhance the accuracy.
The training D" and testing D" data are distinguished for
each task, which is a key treatment for few-shot learning.

Let X" and Y" be all the inputs and outputs for task r (for
both training and testing). The joint probability distribution
of the outputs Y and task-specific parameters {1)" } for all
tasks given the inputs X" and shared parameters 6 is:

p{Y" W L X THL L 0) =

R N, M,.
11 2@ 10) [T pCilar, vm,0) T1 el ¢, 0)
r=1
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where p(¢)"|0) is the probability distribution of task-specific
parameter " given 0, and p(y” |27, v", 6), p(F' |}, U7, 0)
are the probability distributions of the training and testing
outputs conditioned on inputs X" and parameters. N", M"
are the number of training and testing instances of task r € R.
In the following, we provide a spatio-temporal generaliza-
tion for the meta-learning probabilistic model, and the goal
is to meta-learn fast and obtain a accurate approximated pos-
terior distribution of purchase orders in different SD-tasks.

Spatio-Temporal Meta-learning Probabilistic
Inference

In the spatial-temporal purchase prediction scenario, we ex-
ploit commonalities and differences across SD-tasks and
perform parameter learning jointly to improve learning effi-
ciency and prediction accuracy for purchase orders in each
region and day type, which is illustrated in Figure 2(b).

To learn the meta-knowledge across tasks, we employ
point estimates for the shared parameters 6. As data from all
SD-tasks provide sufficient information to jointly determine
a common high-level statistical structure. Meanwhile, distri-
butional estimates are used for the task-specific parameters
{6} and {yp(4)}]_ (correspond to the purchase be-
havior representation of specific regions and day types), since
there might be few instances (shots) during shopping festival
or in remote regions with limited data, which could result
in a highly uncertain and less constrained statistical pattern.
Considering that different regions and day types have differ-
ent spatial and temporal characteristics, we separately learn
the spatial and temporal shared parameters 6, and 6, instead
of 6, and then integrate them by a specially designed training
process (ST-training, will be introduced in later section).

Once the shared parameters 6, 6, are learned, the proba-
bilistic inference to the above multi-task few-shot learning
model comprises two steps. First, form the posterior predic-
tive distribution p(¢)"| D", 05 ,4) over the task-specific param-
eters ¢" given the purchase observations. Second, compute
the purchase posterior predictive p(g"|Z", ¢, 05 ,4) based on
input features 7", parameters ¥", 0 /4. With slight abuse of
notations, we write p(¢" | D", 0, /4) and p(§"|Z", 9", 0,,4) as
p(y"|D") and p(g"| D", ") for simplicity.

Approximate posterior predictive distribution. As di-
rectly model the posterior predictive distributions p(3)"|D")
is intractable, we instead approximate them using purchase
order data and amortized variation inference (Bengio and
LeCun 2014) implemented by a neural network, denoted as
q4(1"|D"). The use of amortized variational inference and
neural networks enable fast predictions at test time. The net-
work of g4(¢)"|D") accepts purchase observations as input,
and outputs the mean and variance to form the predictive dis-
tribution of the task-specific spatio-temporal representation
9" associated with that observation. We can then optimize
the parameters of the neural network instead of maintaining
I + J different sets of task-specific parameter distributions.
The approximate posterior predictive distribution over the
test output y” can thus be evaluated as:

477 |D") = / p(§"| D7 " o (47| D7)
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Figure 3: The construction of the proposed STMP model.

Meta-learning the approximate posterior predictive dis-
tribution. The quality of the approximate posterior predic-
tive distribution for a specific SD-task can be evaluated
by the KL-divergence between the true purchase distribu-
tion and the approximate posterior predictive distribution
KL[p(y"|D")|lgs(y"|D7)]. In order to meta-learn fast and
obtain an accurate approximation of the posterior predic-
tive distribution for unseen shopping festivals or region with
limited data, the goal of learning is set as to minimize the
expected value of KL-divergence over different SD-tasks.

9" = arg;ninER[Ep(m[KL[P(yTIDT)\I%(yT\DT)H]

= angmax B2, o log / p(y"| D707 ) g (471 D7)y

As mentioned previously, the approximated posterior dis-
tribution of task-specific parameter ¢,(¢"|D") is modeled
using a neural network, which we referred to as the amortiza-
tion network with parameters ¢. With task-specific parame-
ters ¢)" sampled from the amortization network, a generative
model p(y"|D", ") with shared global parameters ¢, is
used to generate the predicted purchase y”. The training pro-
cess will therefore return the parameters ¢ and 6,4 that best
approximate the posterior distribution p(y”|D™) in an average
KL sense. Consequently, the representative capability of the
amortization network (approximated posterior distribution
¢4 (17| D7) is essential to retrieve realistic purchase patterns
for each SD-task. This plays a key role in recovering the true
posterior distribution p(1"|D") through global optimization,
and further leads to accurate purchase prediction.

To sum up, the proposed spatio-temporal meta-learning
prediction (STMP) framework consists of an amortization
network and a generative model. The details of the model
construction and a new is ST-training procedure for the spatio-
temporal prediction problem are described in later sections.

Model Construction
Amortization Network

We develop an amortization network (illustrated in Figure 3)
to model the approximated posterior distribution g, (¢"|D")

over spatio-temporal representation ¥" of a target region and
day type, which jointly considers the impacts of purchase
features and related spatial feature. The overall construc-
tion of the amortization network is shown in Figure 3. To
fully capture the temporal characteristics of purchase data
of each SD-task, one needs to consider both the linear and
non-linear temporal dependency among previous steps of his-
torical purchase data, as well as the hidden periodic pattern
of the purchase order and shopping cart records. To model
such complex and dynamic time-series patterns, we use a
linear transformation component to obtain a base estimate of
purchase volume, and a special LSTM layer to capture the
non-linear temporal pattern. The extracted temporal features
are combined with static features through a feature fusion
component to further support building a more informative
spatio-temporal representation of purchase data.

Feature extraction. We first introduce a linear transforma-
tion component, modeled as a classical linear autoregressive
(AR) model (Yates and Goodman 1999) that captures the lin-
ear temporal dependency among previous steps of purchase
data, and obtains a rough but stable estimate of the current
purchase orders from the historical purchase and shopping
cart data. Denote the W as the parameters of the AR model
and h; are the purchase orders and shopping cart records of
time step t. The AR model is formulated as:

hy = Wlhy - he_1] +b

In the purchase prediction scenario, multiple shopping
patterns with different periodicity may hide in the same time-
series data. Conventional time-series models pay more atten-
tion to the neighboring time period and incapable of modeling
multiple periodic patterns. In STMP, we use the skip-LSTM
(Wang et al. 2019b) (see Figure 4(a)) which models the pur-
chase time-series data with different skip intervals to learn
multiple periodic patterns and outputs the temporal purchase
embeddings for different intervals . The skip-LSTM is for-
mulated as follows:

ht = LSTI\/[Skip (Ita ht—p)

where p = 1 for mining recent purchase preference, 7 for the
weekly pattern, and 30 for the monthly pattern.

4 4
Istm Istm
t tr-30

purchase order / shopping cart

Istm Istm - Istm

Figure 4: Skip-LSTM unit

Feature Fusion. To make full use of different features to
give a more expressive representation, as shown in Figure
3, two fully connected components are used to integrate the
dynamic and static features. One receives the output of the
skip-LSTM to merge the temporal dependencies as well as
long-term periodic characteristics of data. Another learns the
embeddings of POlIs, festival intervals and demographic pro-
files, and then aggregates them to output the final embedding
of static features. This treatment balances the relative weights



of different groups of features, which helps to generate better
feature representations from the data.

After obtaining the final feature embeddings, we can sam-
ple the task-specific spatio-temporal representation of an
instance from g4 (1)"|D") on the fly using means and vari-
ances provided by the amortization network. The biggest
challenge of purchase prediction during shopping festivals
is how to combat the data scarcity issue. To obtain a reliable
spatio-temporal representation of an SD-task over the limited
reference sample, we use the average pooling operation sim-
ilar to (Qi et al. 2017) (shown as the “instance pooling” in the
blue dotted box in Figure 3) to give the overall representation
of training instances in a batch that comes from the same
SD-task. The pooling operation can produce a more repre-
sentative spatio-temporal embedding for instances, which is
essential for the few-shot learning problem.

Generative Model for Purchase Prediction

We introduce a generative model p(y"| D", ") utilizing the
shared statistical structure to learn the meta-knowledge of
the SD-tasks. It greatly improves learning efficiency and pre-
diction accuracy for task-specific prediction. The proposed
generative model (illustrated in Figure 3) can be perceived
similarly to the decoder of a VAE. It uses two different inputs
to generate purchase predictions. The first input focuses on
mining the current purchase embedding hA” by applying the
feature extraction and fusion techniques used in the amorti-
zation network on recent inputs 27, which describes the
most recent variation of purchase patterns. The second input
is the task-specific spatio-temporal representation )" sam-
pled from the amortization network (g4 (¢'"|D)). It captures
the macroscopic spatio-temporal pattern of the target task.
Finally, the generative model combines the two inputs us-
ing a fully connected network to generate the prediction of
purchase orders at a time step 7.

ST-Training

As an SD-task only associated with limited data from a spe-
cific region and day type, which cannot fully describe the
target purchase behavior. Inspired by multi-view learning
(Xu, Tao, and Xu 2013), we build two views (spatial and tem-
poral views) to describe different perspectives of data. These
two views complement each other to enhance the learning
information and obtain more accurate spatio-temporal data
representation. The spatial view tends to learn the purchase
pattern across different regions, while temporal view tends to
mine the temporal changing patterns over different day types.

We proposed a new ST-training strategy to train
STMP. In ST-training, both the amortization network
q4(4"|D™) and the generative model p(y"| D", ") are jointly
trained. To perform end-to-end training, we directly mini-
mize KL{p(§"|D")lg¢(5" | D")] rather than KL[p(y" | D")||
¢4 (1" |D™)], which gives following objective:

L(¢* 05/(]) = - ER[E[)(DT,HT,:E") [1Og /

P 1D 0", 050)0s (V7| D", 05 q)de)" ]
The training operation feeds a spatial or day type meta-
representation 1" to the generator, which generates the pre-

dicted purchase order 4" of task r. In ST-training, we alter-
natively select a spatial or temporal view by grouping the
instances by corresponding region s; or day type d;, and
then sample training data D". The sampled data are used to
form the posterior predictive distribution g (¢)"|D"), and fur-
ther to compute py (3| D", 9"). Alternating between different
views during training allows transferring meta-knowledge
across different regions or day types even when some regions
or day types have a limited amount of data. Moreover, it also
integrates the spatial and temporal shared statistical structure
0 /d during training and improves the prediction accuracy.
The complete training process is shown in Algorithm 1.

Algorithm 1 ST-Training

Input: Objective function L(¢, 8,,4), spatial and day type dataset
D, spatial region set .S, and day type set DT'.
1: Randomly initialize ¢ and 6; view Q = S;
2: repeat
repeat
Select a region or day type r from () at random.
Sample training data D" from task 7.
Form the posterior predictive gg (1" | D", 85/4).
Compute the log g (y" | D", %", 05/4)-
Update ¢ and 6,4 by minimize L(¢, 0, ,4).
until AL(¢,0,,4) < €
10: If Q@ = S, change view to DT, else to S .
11: until AL(¢,0) < €

R A

Once the model is properly trained, the spatio-temporal
representation " of different regions can be evaluated in ad-
vance by the amortization network using historical data. The
predicted purchase orders can then be obtained by the genera-
tive model using task-specific spatio-temporal representation
and embeddings of the current data features as input.

EXPERIMENTS

In this section, we present the details of experiments, includ-
ing dataset, model comparison and corresponding analysis.

Experimental Settings

Dataset We use a large-high-quality online purchase
dataset from JD.com to evaluate our model. The JD dataset
contains purchase order, shopping cart data as dynamic time-
series features, and regional features such as POIs and demo-
graphic profile data as static features.

e Purchase & Shopping cart data. The study area of this
work contains 18 regions of Beijing from 2015 to 2019. It
contains 30 major product categories (e.g. apparel, elec-
tronics, food, etc.). The instances of purchase order and
shopping cart are both region and time-dependent.

e POIs data. The POIs data contain the distribution of point
location types (such as shops, hospitals, schools, etc.) in
18 regions of Beijing, which indirectly reflect purchase
demand and the functional property of each region.

e Spatial demographic data. The spatial demographic data
including population distributions of age, gender and indi-
vidual buying power in 18 regions of Beijing, which reflect
the regional purchase behavior of the population.



Table 1: Evaluation results of STMP and the baseline methods for daily, weekend and shopping festivals scenarios

Method Overall Weekend China National Day 11.11 12.12 Mid-year promotion
cthods MSE RMSE | MSE RMSE | MSE RMSE | MSE RMSE | MSE RMSE | MSE RMSE
AR 0.0009 0.0294 | 0.0005 0.0236 | 0.0003  0.0181 | 0.0072 0.0848 | 0.0014 0.0372 | 0.0021  0.0459
DeepAR 0.0013  0.0363 | 0.0010 0.0312 | 0.0004  0.0203 | 0.0073 0.0856 | 0.0018 0.0428 | 0.0033  0.0566
LSTNet 0.0008  0.0295 | 0.0005 0.0236 | 0.0003  0.0181 | 0.0072 0.0848 | 0.0014 0.0371 | 0.0021  0.0459
Meta-GRU 0.0011 0.0339 | 0.0009 0.0296 | 0.0004  0.0196 | 0.0051 0.0717 | 0.0016 0.0404 | 0.0035  0.0591
STMP-AR 0.0010 0.0316 | 0.0009 0.0948 | 0.0008  0.0282 | 0.0081 0.090 | 0.0022 0.0469 | 0.0026  0.0509
STMP-VI 0.0003 0.0173 | 0.0002 0.0141 | 0.0002  0.0141 | 0.0019 0.0435 | 0.0005 0.0223 | 0.0011  0.0332
STMP-META | 0.0004 0.0200 | 0.0002 0.0141 | 0.0002  0.0141 | 0.0019 0.0435 | 0.0005 0.0223 | 0.0011  0.0332
STMP-SKIP | 0.0005 0.0223 | 0.0004 0.0200 | 0.0003  0.0173 | 0.0032 0.0565 | 0.0007 0.0264 | 0.0014  0.0374
STMP | 0.0004 0.0200 | 0.0002 0.0141 | 0.0001  0.0100 | 0.0016 0.0400 | 0.0004 0.0200 | 0.0011  0.0331
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Figure 5: Spatio-temporal pattern of purchase in JD dataset.

Baselines We consider several state-of-the-art deep learn-
ing approaches and a few widely used time-series prediction
methods as baselines:

o AutoRegressive (AR). AR (Hamilton 1994) is a widely
used time-series prediction model. Its prediction linearly
depends on previous values as well as a stochastic term.

e DeepAR. DeepAR (Salinas et al. 2019) trains an auto-
regressive recurrent network on a large number of related
time-series, which produces probabilistic forecasts.

e LSTNet. LSTNet (Lai et al. 2018) employs an auto-
regressive mechanism to produce the linear prediction
based on the historical data, and then correct the predic-
tion by a neural network, which consists of a temporal
convolution, an LSTM, and multiple skip-LSTMs layers.

e MetaGRU. Inspired by ST-MetaNet (Pan et al. 2019), we
design a network with MetaGRU units that consider the
spatial meta-knowledge to enhance the prediction capabil-
ity. It learns spatial meta-knowledge from the geographical
information and generates the weights for the GRU units.

e Variant of STMP. We introduce multiple variants of
STMP to fully evaluate its performance, including: 1)
STMP-AR: we drop the AR component to evaluate the
STMP model without linear transformation; 2) STMP-
SKIP: there is no skip-LSTM layer to capture the peri-

odic patterns in the time-series data; 3) STMP-META: the
pooling layer is removed from the amortization network;
4) STMP-VI: to validate the performance of amortized
variational inference, we use point estimation instead of
distributional estimation for the ST-representation v".

Evaluation

We conduct experiments from four aspects: the purchase pre-
diction during shopping festivals, the prediction accuracy
in different SD-tasks, the generative performance under dif-
ferent number of shots, and results under different training
settings. Mean squared error (MSE) and root mean squared
error (RMSE) are used for the evaluation.

Prediction accuracy We first compare our model with
baselines on the JD dataset. To make a fair comparison, we
present the best performance of each method under fine-tuned
parameter settings in Table 1. It can be shown that STMP
achieves superior performance over all baseline methods, in
both general purchase settings and bursty purchase predic-
tion settings (e.g. shopping festivals on 11.11, 12.12, and
Mid-year promotion (6.18) in China). In general purchase
prediction, the shopping patterns are more regular and have
the most sufficient data (about 300 days of a year). STMP
outperforms the best baseline by at least 30% improvements
on both MSE and RMSE. While in bursty purchase prediction
scenarios, STMP still maintains about 30~60% lower RMSE
than the baselines. These results suggest that our method is
effective and robust, especially in bursty purchase scenarios,
when the actual purchase pattern is distinct than usual.

Several observations can be drawn from Table 1. DeepAR
performs badly on almost all day types. A possible reason
might be that it only considers non-linear temporal dependen-
cies in time-series without accounting for more complex tem-
poral characteristics (e.g. periodicity) and spatial attributes
in the purchase data. LSTNet combines a linear transforma-
tion component with a recurrent neural network to add the
linear dependency between historical and current temporal
data. It improves the stability of prediction in non-special
time periods but still can not adapt to the special shopping
festivals with highly bursty purchase patterns. Meta-GRU
has low prediction errors in the biggest shopping festival
(11.11) due to the use of the meta-learning technique. How-
ever, only considering spatial meta-knowledge is insufficient
to tackle such a complex prediction problem. STMP learns
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Figure 6: The predicted purchase for baselines and STMP in
four representative regions
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Figure 7: Results for different few-short settings

the task-specific spatial-temporal representation and uses the
ST-training strategy to combine both the spatial and temporal
meta-knowledge, which has superior expressive power.

To further investigate the impact of each model component
of STMP, we also compare the performance of STMP with
its variants in Table 1. It is observed that STMP-VI achieved
good performance on overall and weekend scenarios that
have relatively stable and certain purchase patterns, but per-
form worse than STMP on shopping festivals. This is be-
cause STMP-VI uses point estimates instead of distributional
description of task-specific spatio-temporal representations,
which is problematic when the data is limited or has highly
uncertain patterns. Furthermore, the accuracy of STMP-SKIP
is inferior compared with STMP or its other variants, but still
outperforms other baselines. This testifies the need to account
for multiple periodicity patterns in the purchase time-series.
This is also reflected in Figure 5(b), we can see clear periodic
patterns in the purchase time-series data. These demonstrate
that modeling multiple periodicity property in data plays a
significant role in improving model performance.

Prediction result in different SD-tasks Figure 6 shows
the purchase prediction trends in 2019 of some typical base-
lines and STMP. We select four representative regions in
Beijing that cover different numbers of purchase orders (see
Figure 5(a) for detailed geographic locations). In most re-
gions, the baselines are unable to predict the burstiness in
purchase time-series well on shopping festivals, like the peaks
in the purchase on Mid-year promotion and 11.11. They tend
to give conservative results and only focus on improving over-
all accuracy. However, STMP utilizes the spatial-temporal
representation of different regions and day types to support
multi-task few-shot learning to facilitate better prediction for
a specific region and day type. It can be observed that only
STMP can predict the bursty purchase pattern well (fits to
peaks in all figures).

Results of different shots of prediction Figure 7 pro-
vides a quantitative comparison between STMP and Meta-

Table 2: Experiment results under different training settings

11.11 12.12 Mid-year promotion
MSE RMSE | MSE RMSE | MSE RMSE

T-training | 0.0039  0.0626 | 0.0008 0.0292 | 0.0015 0.0393
S-traning 0.0041  0.0643 | 0.0010 0.0321 | 0.0018 0.0422

ST-traning | 0.0016 0.0400 | 0.0004 0.0227 | 0.0011 0.0332

Methods

GRU with different numbers of shots. We choose two major
online shopping festival in the JD Dataset to demonstrate
the effectiveness of STMP. As these shopping festivals only
held once a year, for both STMP and MetaGRU, we con-
duct 1-shot to 4-shot experiments using different numbers
of years’ data (2015~2018). From Figure 7, we can observe
that the MSE of STMP decreases along with the increase of
the number of shots (decrease from 0.005 to 0.002) in these
shopping festivals. MetaGRU only considers learning meta-
knowledge by transferring information across regions using
static spatial features, but lacks consideration of transferring
temporal meta-knowledge across different day types, which
leads to less robust results for purchase prediction.

Results under different training settings We further con-
duct experiments under different training modes, including
T-training, S-training (only train in the temporal or spatial
view), and combined ST-training to evaluate the strength of
the ST-training. Table 2 shows the MSE and RMSE under
different training settings for 11.11, 12.12, and Mid-year
promotion shopping festivals. In the T-training, the pooling
operation integrates instances in a batch from the same day
type without considering the spatial knowledge. And the
S-training integrates instances in a batch from the same re-
gion without considering the temporal information. From
Table 2 we can see that even the incomplete T-training and
S-training provide higher accuracy over the baselines listed
in Table 1. However, lacking the joint meta-knowledge in
space and time still leads to lower accuracy compared with
the complete ST-training. The different training modes learn
different transformations across regions and day types. The
complementary training from spatial and temporal aspects
can effectively improve the accuracy of the prediction.

Conclusion

We propose the Spatio-Temporal Meta-learning Prediction
(STMP) model for purchase prediction during shopping festi-
vals. Unlike other widely used approaches in time-series pre-
diction problems, STMP jointly considers the short-term pat-
terns and macroscopic spatio-temporal dependencies, which
leads to superior performance in bursty purchase prediction
tasks. In this model, we adopt a meta-learning framework
with few-shot learning capability to capture task-specific
spatio-temporal representations of data. The generative com-
ponent of STMP uses the extracted spatio-temporal repre-
sentation and input data to perform prediction inference. Ex-
tensive experiments on a large high-quality online purchase
dataset from JD.com are used to evaluate the accuracy and
meta-learning generalization ability of STMP. The proposed
STMP outperforms baselines in all tasks, which demonstrate
the effectiveness of the proposed model.
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