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Abstract

Accurate forecasting of citywide traffic flow has been play-
ing critical role in a variety of spatial-temporal mining
applications, such as intelligent traffic control and pub-
lic risk assessment. While previous work has made signif-
icant efforts to learn traffic temporal dynamics and spa-
tial dependencies, two key limitations exist in current mod-
els: i) Most of these methods solely focus on neighbor-
ing spatial correlations among adjacent regions, and ignore
the global geographical contextual information; ii) These
methods fail to encode the complex traffic transition regu-
larities exhibited with time-dependent and multi-resolution
in nature. To tackle these challenges, we propose a new
traffic flow prediction framework–Spatial-Temporal Graph
Diffusion Network. In particular, ST-GDN is a hierarchi-
cally structured graph neural architecture which learns not
only the local region-wise geographical dependencies, but
also the spatial semantics from a global perspective. Fur-
thermore, a multi-scale attention network is developed to
empower ST-GDN with the capability of capturing multi-
level temporal dynamics. Experiments on four real-life traf-
fic datasets demonstrate that ST-GDN outperforms different
types of state-of-the-art baselines. Source codes are available
at https://github.com/jillbetty001/ST-GDN.

Introduction
Accurate forecasting of traffic flow across different geo-
graphical regions in a city, have played a critical role in
smart transformation systems, such as intelligent transporta-
tion (Wei et al. 2018; Huang et al. 2020) and public risk as-
sessment (Gao et al. 2019; Huang et al. 2018). For example,
in disaster control, by predicting future traffic volume, local
governments and communities is able to design better trans-
portation scheduling and mobility management strategies, to
mitigate the tragedies caused by the crowd flow (Zhao et
al. 2017). In general, the objective of traffic prediction is to
forecast the traffic volume (e.g., inflow and outflow of each
region), from past traffic observations (Diao et al. 2019).

Inspired by the advancement of deep learning techniques,
many efforts have been devoted to developing traffic pre-
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diction methods with various neural network architecture
for spatial-temporal pattern modeling. Inspired by the se-
quence learning paradigm, recent neural networks have been
utilized to model temporal effects of traffic variations (Liu
et al. 2016; Yu et al. 2017a). To make use of spatial fea-
tures, some research work propose to adopt convolutional
neural network to model correlations between adjacent re-
gions (Zhang, Zheng, and Qi 2017), along with using recur-
rent neural layers on temporal dimension (Yao et al. 2018).
Although both spatial and temporal correlations have been
considered in existing methods, we identify three significant
challenges that have not been addressed well.

In real-life scenarios, traffic flow pattern is often complex
and multi-periodic (Zhang, Zheng, and Qi 2017; Deng et al.
2016), as each individual time resolution view (e.g., hourly,
daily, weekly) reflects traffic dynamics from different tem-
poral dimensions. The captured temporal patterns are often
complementary with each other (Wu et al. 2018). Hence,
learning robust representations of traffic variation patterns
requires the collaboration of multiple views with different
time resolutions. While recurrent networks have achieved
good performance on various spatial-temporal sequence pre-
diction tasks, they can only be effective for short-term,
smooth dynamics and hardly make predictions over high-
order multi-dimensional time horizons (Yu et al. 2017b).

Most current forecasting approaches merely focus on
modeling nearby geographical correlations (Yao et al. 2018;
Zhang, Zheng, and Qi 2017), while ignoring the cross-region
inter-dependencies under a global context. For example, two
geographical areas with similar urban functions (e.g., shop-
ping zone or transportation hub) can be correlated in terms
of their traffic distribution, although they are not spatially
adjacent or even far away from each other (Shen et al. 2018;
Wang and Li 2017). Hence, the learned region-wise rela-
tional structures without the global-level traffic transition in-
formation, are insufficient to distill not only local geographi-
cal dependencies, but also semantic relations across regions,
which leads to suboptimal predictions.

To tackle the above challenges, we propose a new predic-
tive framework Spatial-Temporal Graph Diffusion Network,
for region-specific traffic flow. In ST-GDN, we develop
a multi-scale self-attention network to investigate multi-



grained temporal dynamics across various time resolutions,
in order to encode temporal hierarchy of traffic transi-
tional regularities. To promote the collaboration of differ-
ent resolution-aware temporal representations, an aggrega-
tion layer is proposed to model the underlying dependencies
across multi-level temporal dynamics. In addition, the devel-
oped hierarchical graph neural network via attentive graph
diffusion paradigm, endows the ST-GDN with the capabil-
ity to incorporate spatial semantics from local-level spatially
adjacent relations to global-level traffic pattern representa-
tions across the city in a joint manner.

We highlight the key contributions of this work as:

• We highlight the critical importance of explicitly explor-
ing the multi-resolution traffic transitional information
and local-global cross-region dependencies, in studying
the traffic prediction problem.

• We propose a new traffic prediction framework (ST-GDN)
which explicitly embeds multi-level temporal contextual
signals into resolution-aware latent representations, with
the cooperation of the designed multi-scale self-attention
network and temporal hierarchy aggregation layer.

• ST-GDN preserving both local and global region-wise de-
pendencies, via a hierarchically structured graph neural
architecture which is integrated with a graph attention net-
work and convolution-based graph diffusion mechanism.

• Our extensive experiments on four real-world datasets
demonstrate that ST-GDN outperforms baselines of dif-
ferent types in yielding better forecasting performance.
Furthermore, model efficiency study is conducted for ST-
GDN and several compared methods.

Problem Definition
In this section, we begin with some key definitions and pre-
liminary terms. Then, we present our studied task of traffic
flow forecasting.

Definition 1 Spatial Region. We partition a city into I × J
disjoint grids (given the geographical coordinates), in which
each grid is regarded as a spatial region ri,j (i ∈ [1, ..., I],
j ∈ [1, ..., J ]). ri,j is our target unit for traffic prediction.

Definition 2 Traffic Flow Tensor. After the grid-based par-
tition, we represent the citywide traffic volume distributions
across regions during past T time slots as a three-way ten-
sor: X ∈ RI×J×T , where each entry xti,j denotes the traffic
volume measurement at region ri,j in the t-th time slot (e.g.,
hour or day). To study the prediction on both the incoming
and outgoing traffic follow, we generate two traffic flow ten-
sors: Xα (incoming) and Xβ (outgoing), respectively.

Task Formulation. Based on the aforementioned defini-
tions, the traffic prediction problem is formulated as: In-
put: the observed traffic volume information during past
T time slots across the entire city Xα ∈ RI×J×T and
Xβ ∈ RI×J×T . Output: a predictive function which effec-
tively infers the unknown traffic volume in future time slots.

Methodology
In this section, we elaborate our proposed ST-GDN frame-
work with the technical details (as shown in Figure 1).

Temporal Hierarchy Modeling
We first propose a multi-scale self-attention network to
jointly map multi-level temporal signals into common latent
representations, for capturing the complex traffic patterns.

Definition 3 Temporal Resolution p. We define p to indi-
cate how often we sample traffic volume measurement xti,j
from the overall traffic flow tensor X, i.e., the time difference
between two consecutive data points xti,j and xt

′

i,j measured
from region rm,n. For example, (t′ − t) can be a hour, a day
or a week, given the resolution p is set as hourly, daily and
weekly, respectively, i.e., p ∈ {hour, day, week}.

Given each temporal resolution p, we could generate
resolution-aware traffic series xTp

i,j , where Tp is the corre-
sponding traffic series length with the resolution of p. Then,
we propose a self-attentive network to encode the traffic
variation patterns from the temporal dimension. In partic-
ular, our encoder is built upon the scaled dot-product atten-
tion architecture with three transformation matrices: query
(Q ∈ RTp×d), key (K ∈ RTp×d) and value (V ∈ RTp×d)
matrices. The resolution-aware attentive aggregation mecha-
nism can be formally presented with the matrix calculation:Q

K
V

 = Ep

WQ

WK

WV

 ;Yp = σ(
QKT

√
d

)V (1)

where ypi,j ∈ Yp and ypi,j ∈ Rd denotes the learned
resolution-aware hidden representation of region ri,j . Ep ∈
R|R|×d is the initialized embeddings of all regions ri,j ∈ R.
Additionally, σ(·) denotes the softmax function.

Traffic Dependency Learning with Global Context
The goal of this step is to exploit the global-level dependen-
cies across different regions in terms of their dynamic traffic
transition patterns. Towards this end, we first define a re-
gion graph G = (R,E), in which R is the region set and
E denotes the pairwise relationships between two spatial re-
gions. Motivated by the attention neural network in encod-
ing the dependencies among regions (Huang et al. 2019), we
develop an attentive aggregation mechanism to capture both
local and global traffic dependency between regions. Specif-
ically, we perform the message aggregation over G with the
following attentive operations.

mp
(i,j)←(i′,j′) =

H∣∣∣∣∣∣
h=1

ωh(i,j);(i′,j′) · Y
p ·Wp (2)

where mp
(i,j)←(i′,j′) is the feature message propagated from

region ri′,j′ to ri,j . Here, we endow the cross-region rel-
evance encoding with multi-head (h ∈ [1, ...,H]), to cap-
ture the region-wise relation semantic from different learn-
ing subspaces. Furthermore, Wp ∈ Rd×d is the parame-
terized projection matrix. the underlying attentive relevance
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Figure 1: The framework of our developed spatial-temporal graph diffusion networks.
ωh(i,j);(i′,j′) is formally estimated as follows:

ωh
(i,j);(i′,j′) =

exp(LR(αT [ỹp
i,j ||ỹ

p
i′,j′ ]))∑

(i′,j′)∈N (i,j) exp(LR(α
T [ỹp

i,j ||ỹ
p
i′,j′ ]))

where we perform concatenation between ỹpi′,j′ and ỹpi′,j′
(ỹpi′,j′ = ypi′,j′ · Wp). Then, the attentive coefficient vec-
tor α is incorporated with the production. LR(·) denotes the
LeakyReLU function. Based on the constructed message and
learned quantitative region-wise relevance score ω(i,j);(i′,j′),
we perform the information aggregation as:

zpi,j = f(
∑

ri′,j′∈Ni,j

mp
(i,j)←(i′,j′)) (3)

where zpi,j is the aggregated feature embedding of ri,j .
High-order Information Propagation. The information
aggregation from the (l)-th layer to the (l+ 1)-th layer with
the high-order relation modeling is represented as:

zp,(l+1)
i,j ← Aggregate

i∈Nu(j);j′∈Nv(j)

(
Propagate(zp,(l)i,j , G)

)
(4)

Propagate(·) and Aggregate(·) denotes the message con-
struction and information fusion, respectively. We finally
generate the global-level representation of region ri,j as:
zpi,j = zp,(l)i,j ⊕ ...⊕ zp,(L)

i,j . ⊕ is the element-wise addition.

Region-wise Relation Learning with Graph
Diffusion Paradigm
In addition to the global dependencies across different re-
gions in terms of their traffic evolving patterns, we fur-
ther incorporate spatial relationships between regions into
our prediction framework. Particularly, we develop a graph-
structured diffusion network to refine the learned resolution-
aware region representations zpi,j from the above graph at-
tention module. We generate another region-wise relation

graph Gs = (Rs, Es, A) which jointly preserves the ge-
ographical adjacent relations (ri,j’s

√
K ×

√
K = K

neighboring regions) and high traffic dependencies (larger
ω(i,j);(i′,j′) value). A denotes the adjacent matrix which is
weighted by a vertex distance function. Here, we define
Do = A · I to denote the out-degree diagonal matrix, where
I is the identify matrix ofGs. The designed diffusion convo-
lution operation performs the diffusion process across each
vertex in graph Gs to generate new feature representations
as:

f(zpi,j)Θ =

K−1∑
k=0

(θk,1(D−1
o A)k + θk,2(D−1

i Aᵀ)k)zpi,j (5)

where θk,1, θk,2 ∈ RK×2. D−1
o A (in-degree) and D−1

i Aᵀ)
(out-degree) denote the bi-directional transition matrices of
the diffusion process, which corresponds to the inflow and
outflow in our prediction scenario. The parameter tensor de-
noted as Θ ∈ RQ×d×K×2, in which the Q-dimensional out-
put Λp ∈ R|R|×Q of diffusion convolutional layer is given:

Λp
q = LeakyReLU

( d∑
d′=1

f(Zp
d′)Θq,d′

)
(6)

where q ∈ {1, ..., Q}. The obtained region representation
Λp
i,j jointly preserves the temporal (traffic time-varying pat-

terns) and spatial (geographical relations) contextual signals
under a global perspective.

We next aggregate the resolution-aware traffic representa-
tion Λp

i,j by introducing a gating mechanism. To be specific,
our gated aggregation mechanism conducts the parametric
matrix-based sum operation over the multi-resolution traffic
pattern representations, i.e., hourly (Λph ), daily (Λpd ) and
weekly (Λpw ) as follows:

Λi,j = Wh ◦Λh
i,j + Wd ◦Λd

i,j + Ww ◦Λw
i,j (7)

Here, the trainable transformation matrices are denoted as
Wh, Wd and Ww corresponding to hourly, daily and weekly



patterns. We finally generate the conclusive multi-resolution
traffic representation Λi,j which preserves multi-grained
temporal hierarchy of traffic regularities.

Traffic Prediction Phase
In the urban sensing scenario, there exist external factors
(e.g., meteorological conditions) which impact traffic tran-
sitional regularities. Thus, we further augment our ST-GDN
with the capability of fusing heterogeneous external factors.
In particular, we consider three categories of external fac-
tors: Weather conditions, Temperature/◦C, Wind speed/mph.
We follow the similar strategies in (Liang et al. 2018) for
mapping these features into vectors gt. After that, we utilize
a multi-layer perceptron framework to perform projection
over ĝt. Finally, we feed the concatenated embedding (Λi,j

and ĝt) into the prediction layer to infer the traffic volume.
Optimized Loss Function. We define our loss function with
the joint consideration of inflow and outflow traffic volume
of each region in a city as below:

L =

I−1∑
i=0

J−1∑
j=0

λ[(x̄αi,j,t)− (xαi,j,t)]
2

+(1− λ)[(x̄βi,j,t)− (xβi,j,t)]
2

(8)

where x̄αi,j,t and x̄βi,j,t denotes the estimated incoming and
outgoing traffic volume of region ri,j at the t-th time slot,
respectively. Their influences are decided by λ. Ground truth
information are represented xαi,j,t and xβi,j,t.
Model Complexity Analysis. We analyze the time com-
plexity of our ST-GDN framework. Particularly, the multi-
scale self-attentive network takes O(3× T × I × J × d) for
learning query, key and value matrices, and O(3 × T 2 × d)
for weighted summation. The next graph attention module
takes O(3 × I2 × J2 × d′) to estimate the relevance scores
and perform feature aggregation, which dominates the com-
putational cost of our ST-GDN. Additionally, the graph
diffusion-based spatial relation modeling takesO(K×|Es|).
The external factor fusion takes the O(3× d) complexity.

Evaluation
In this section, we evaluate the performance of ST-GDN on
a series of experiments on several real-world datasets, which
are summarized to answer the following research questions:
• RQ1: How is the overall traffic prediction performance of

ST-GDN as compared to various baselines?
• RQ2: How do designed different sub-modules contribute

to the model performance?
• RQ3: How does ST-GDN perform w.r.t different time

granularity configurations for temporal context modeling?
• RQ4: What is the influence of hyperparameter settings?
• RQ5: How is the model efficiency of ST-GDN?

Experimental Settings
Data Description. Our experiments are performed on four
real-world traffic datasets, which are summarized in Table 1:

BJ-Taxi (Zhang, Zheng, and Qi 2017). There are 34,000+
processed taxi trajectories included in this data. Each trajec-
tory is mapped into one of 32× 32 grid-based geographical
regions. The traffic volume is measured every half an hour.
NYC-Taxi (Yao et al. 2019). This data contains 22,000,000+
taxi trajectories collected from 01/01/2015 to 03/01/2015 in
New York City with a 10 × 20 grid map. The traffic data
sample period is also half an hour.
NYC-Bike-1 (Zhang, Zheng, and Qi 2017). It includes the
trajectories of the bike system from New York with a 16× 8
grid map. Traffic volume is estimated on a hourly basis.
NYC-Bike-2 (Yao et al. 2019). It is another bike trajectory
data which spans from 07/01/2016 to 08/29/2016 in NYC.
The whole data consists of 2,600,000+ trajectory records
which are collected with 10 × 20 grid map. The data mea-
surement interval is 30 mins.

Evaluation Protocols. In our experiments, we lever-
age two representative metrics for evaluation: Root Mean
Squared Error (RMSE) and Mean Absolute Percentage Er-
ror (MAPE) (Liang et al. 2019). We present the partition de-
tails of training/validation/test datasets in Table 2. Validation
set gives an estimate of model skill while tuning model’s hy-
perparameters with the data held back from training set.

Methods for Comparison. In the performance compar-
ison between our method and state-of-the-art traffic fore-
casting techniques, we consider the following baselines with
various model structures.
Traditional Time Series Prediction Approaches:

• ARIMA (Pan, Demiryurek, and others 2012). it is a rep-
resentative method for forecasting time series data.

• Support Vector Regression (SVR) (Chang and Lin
2011): another traditional time series analysis model via
learning feature mapping functions.

Conventional Hybrid Learning Approach:

• Fuzzy+NN (Srinivasan, Chan, and Balaji 2009): it inte-
grates the feed-forward neural layers with the fuzzy input
filter to model the traffic patterns.

Recurrent Spatial-Temporal Prediction Methods:

• ST-RNN (Liu et al. 2016): it leverages the recurrent neu-
ral networks for capturing both the spatial and temporal
effects for making sequential data prediction.

• D-LSTM (Yu et al. 2017a): it jointly models the nor-
mal and abnormal traffic variations based on stacked long
short-term memory networks.

Convolution-based Network for Traffic Forecasting:

• DeepST (Zhang et al. 2016): it utilizes the convolution
neural network to encode the spatial correlations between
regions over a citywide grid map.

• ST-ResNet (Zhang, Zheng, and Qi 2017): the residual
connection technique is employed to alleviate overfitting
issue for spatial-temporal prediction.

Convolutional Recurrent Predictive Solution:



Table 1: Statistical information of experimented datasets.
Dataset BJ-Taxi NYC-Taxi NYC-Bike-1 NYC-Bike-2 External Factors Beijing New York City

Data type Taxi GPS Taxi GPS Bike Rental Bike Rental Weather Condition sunny, rainy, foggy, snowy sunny, rainy, foggy, snowy
Time interval 30 minutes 30 minutes one hour 30 minutes Temperature/◦C [−24.6, 41.0] [−10.3, 31.40]

Gird map size 32×32 10×20 16×8 10×20 Wind speed/mph [0, 48.60] [0, 63.75]

Number of records 34,000+ 22,000,000+ 6,800+ 2,600,000+ Holidays weekends, national Holidays weekends, national Holidays
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Figure 2: Model ablation study of ST-GDN framework in terms of RMSE and MAPE.

Table 2: Training/validation/test data split details.
Data Training Validation Test

BJ-Taxi 7/1/2013-12/31/2015 1/1/2016-1/21/2016 1/22/2016-4/10/2016
NYC-Taxi 1/1/2015-2/14/2015 2/15/2015-2/19/2015 2/20/2015-3/1/2015

NYC-Bike-1 4/1/2014-9/15/2014 9/16/2014-9/20/2014 9/21/2014-9/30/2014
NYC-Bike-2 7/1/2016-8/14/2016 8/15/2016-8/19/2016 8/20/2016-8/29/2016

• DMVST-Net (Yao et al. 2018): it integrates the graph
embedding method with the joint convolutional recurrent
networks to capture spatial-temporal signals

• DCRNN (Li et al. 2018): it is a data-driven forecasting
framework with diffusion recurrent neural network to cap-
ture the spatial-temporal dependencies.

Attentive Traffic Prediction Model:
• STDN (Yao et al. 2019): it designs a periodically shifted

attention for learning transition regularities of traffic.
Traffic Prediction with Graph Neural Networks:
• ST-GCN (Yu, Yin, and Zhu 2018): it is an integrative

framework of graph convolution network and convolu-
tional sequence modeling layer for modeling spatial and
temporal dependencies.

• ST-MGCN (Geng et al. 2019): it develops a multi-modal
graph convolutional network to capture region-wise non-
Euclidean pair-wise correlations.

• GMAN (Zheng et al. 2020): it is a encoder-decoder traffic
prediction method based on the graph multi-attention.

Deep Hybrid Traffic Flow Predictive Models:
• UrbanFM (Liang et al. 2019): it is a deep fusion network

to model traffic flow distributions.
• ST-MetaNet (Pan et al. 2019): it is a meta-learning ap-

proach to perform knowledge transfer across series with a
recurrent graph attentive network.

Parameter Settings. The ST-GDN is implemented with
Tensorflow. The training phase is performed using the Adam
optimizer with the learning rate of 1e−3 and batch size
of 32. The embedding dimension size d and the depth re-
cursive graph neural layers L are set as 64 and 3, respec-
tively. We select the input sequence length from the range

of {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6}, which re-
spectively corresponds to three different time resolutions
(hour–Th, day–Td and week–Tw). We stack three feed-
forward layers in the final prediction phase. The experiments
of most baselines are performed with their released code.

Performance Comparison (RQ1)
Performance Superiority of ST-GDN. The performance
comparison results of all methods are presented in Table 3.
We can observe that ST-GDN consistently yields the best
performance in all cases, which demonstrates the effective-
ness of our ST-GDN in jointly modeling of multi-level tem-
poral dynamics and global-level region-wise dependencies.
Figure 3 visualize the prediction error ([(x̄i,j,t)− (xi,j,t)]

2)
of our ST-GDN and five best performed baselines on BJ-taxi
data, where a brighter pixel means a larger error. The supe-
riority of ST-GDN can still be observed, which is consistent
with the quantitative results in Table 3.
Performance Comparison between Baselines. Compared
with conventional time series approaches, neural network-
based models perform better in most evaluation cases. The
subsequent attention-based and recurrent-convolutional net-
work methods (e.g., STDN, DMVST-Net) obtain better per-
formance than recurrent neural models (e.g., D-LSTM),
which justifies the necessity to simultaneously capture both
spatial and temporal relations in traffic prediction. Among
various baselines, GNN-based methods have better perfor-
mance than other types of competitors, which ascertains the
rationality of designing graph-structured information aggre-
gation mechanism to fuse spatial and temporal signals.

Comparison with Variants (RQ2)
We perform ablation experiments to analyze the effects of
sub-modules in our ST-GDN framework with five variants:
• ST-GDN-s: ST-GDN without the multi-scale self-attention

network to capture multi-level traffic dynamics.
• ST-GDN-g: ST-GDN without the graph attention module

to model the global region-wise traffic dependencies.
• ST-GDN-d: ST-GDN without the graph diffusion network

to integrate spatial context with cross-region traffic pat-
tern correlations for representation recalibration.



Table 3: Performance comparison of all methods on four datasets in terms of RMSE and MAPE.
Datasets BJ-Taxi NYC-Bike-1 NYC-Taxi NYC-Bike-2
Metrics RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)
Methods In Out In Out In Out In Out In Out In Out In Out In Out
ARIMA 22.10 24.01 30.89 32.24 9.30 11.81 35.82 36.47 27.21 36.54 20.90 22.18 11.26 11.52 25.74 26.56

SVR 21.44 22.12 22.64 22.32 8.65 9.07 23.58 24.10 26.16 34.71 18.25 21.01 10.10 11.03 23.47 24.01
Fuzzy+NN 22.35 23.06 22.67 22.73 8.56 9.17 24.03 24.48 25.98 34.50 18.92 21.54 11.31 11.84 24.70 25.15
ST-RNN 27.16 27.90 24.17 24.72 8.99 9.24 28.22 28.58 29.88 37.23 25.97 26.55 13.51 15.39 27.06 27.60
D-LSTM 26.99 27.56 23.64 24.17 8.64 9.10 27.51 28.07 29.52 37.04 25.81 26.11 13.64 15.89 27.21 27.88
DeepST 19.30 21.06 22.45 22.52 7.66 8.16 22.81 23.21 23.56 26.79 22.34 22.39 7.60 8.15 22.78 23.18

ST-ResNet 17.00 22.31 23.51 23.74 6.28 6.61 23.92 24.79 21.72 26.30 21.12 21.24 8.84 9.85 23.05 23.15
DMVST-Net 16.61 17.14 22.52 23.06 5.82 6.09 22.45 23.67 20.63 25.80 17.19 17.44 8.70 9.31 21.72 22.35

STDN 15.19 18.63 21.04 22.13 4.50 5.92 21.71 22.61 19.31 24.19 16.43 16.59 8.25 9.00 21.23 22.24
UrbanFM 15.18 18.42 20.54 20.88 3.99 4.64 21.59 22.47 19.11 24.14 16.34 16.46 8.19 8.88 21.25 22.22

ST-MetaNet 15.06 18.29 19.91 20.74 3.85 4.64 21.26 22.18 18.30 23.88 16.19 16.27 8.13 8.82 21.18 21.72
DCRNN 15.13 18.37 20.14 20.88 3.86 4.65 21.14 21.05 18.19 23.74 16.11 16.16 8.15 8.83 21.21 21.94
ST-GCN 15.11 18.30 19.92 20.77 3.76 4.70 21.12 21.94 18.02 23.08 15.94 15.92 8.00 8.74 21.18 21.91

ST-MGCN 15.08 18.25 19.96 20.70 3.75 4.63 21.04 21.95 17.97 23.00 15.87 15.91 7.92 8.72 21.20 21.71
GMAN 15.07 18.23 19.97 20.68 3.73 4.64 21.02 21.93 17.95 22.96 15.84 15.89 7.88 8.73 21.18 21.70

ST-GDN 14.57 17.56 19.03 20.27 3.00 3.97 20.48 21.31 17.10 22.09 15.17 15.29 7.31 8.43 20.63 21.00

(a) ST-GCN (b) ST-MGCN (c) ST-MetaNet

(d) DCRNN (e) GMAN (f) ST-GDN
Figure 3: Visualization for Traffic Prediction Errors.

• ST-GDN-n: ST-GDN without the incorporation of neigh-
borhood spatial context into the graph diffusion.

• ST-GDN-e: ST-GDN without the external factor fusion.

The evaluation results are shown in Figure 2. We can ob-
serve that the joint version of ST-GDN outperforms other
variants consistently. Hence, each designed sub-modules has
positive effects for prediction performance improvement. It
is necessary to build a joint framework to collectively in-
tegrate the multi-resolution traffic temporal patterns, global
region-wise traffic dependencies, and regions’ geographical
relations, into the spatial-temporal traffic pattern modeling.

Multi-Resolution Temporal Effects (RQ3)
In this subsection, we study the effects of different temporal
resolution settings in our integrative architecture of multi-
scale self-attention network and cross-resolution pattern ag-
gregation layer, with the following contrast models:

• ST-GDNh: P ∈ {hour/30mins}
• ST-GDNh,d: P ∈ {hour/30mins, day}
• ST-GDNh,w: P ∈ {hour/30mins,week}
• ST-GDNh,d,w: P ∈ {hour/30mins, day, week}

We present the study results in Figure 4. As we can seen,
the best prediction accuracy is achieved by ST-GDNh,d,w

which is configured with more resolutions. Leaning the tem-
poral hierarchy with hourly and daily/weekly traffic patterns
(ST-GDNh,d, ST-GDNh,w) provide better results as com-
pared to the variant with singular-dimensional time granu-
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Figure 4: Multi-resolution temporal effect studies.

larity (ST-GDNh). Overall, decomposing the temporal ef-
fects into more multiple resolution-specific feature represen-
tations is helpful for more accurate modeling of traffic tem-
poral regularity and resolution-aware region relations.

Parameter Sensitivity (RQ4)
Depth of Graph Attention Network L. We can notice that
increasing the depth of our graph attention module by stack-
ing multiple embedding propagation layers could boost the
performance. The results also indicate that exploring third-
order relations among region entities is sufficient to capture
the global traffic dependencies.
Length of Encoded Input Sequence T . The performance
is initially improved with the increase of Th and Td, since
longer traffic series can provide more useful temporal infor-
mation. However, the further increasing of sequence length
may introduce noise which mislead the traffic modeling.

Kernel Size K. We vary the kernel size to investigate the
convolution operations in our graph diffusion process. We
can observe that K = 3 achieves the best performance.

# of Sampled Neighbor Regions. As we increase the size
of neighbor sample grid map to 3× 3, a larger geographical
coverage results in better performance. However, the perfor-
mance degrades with 4× 4 and 5× 5. The reason is that the
training of ST-GDN becomes harder with more parameters
are involved when modeling more neighboring relations.
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Figure 5: Hyper-parameter study on NYC-Taxi data in terms of RMSE.
Table 4: Model Efficiency Study.

Methods Training
BJ-Taxi NYC-Taxi NYC-Bike-1 NYC-Bike-2

ST-MetaNet 16121.01 1298.55 1020.14 1218.33
DCRNN 7996.24 981.36 705.64 938.17
ST-GCN 4088.90 744.65 500.40 732.11

ST-MGCN 8263.27 1023.29 789.71 1006.46
GMAN 7368.31 854.66 547.12 781.66
ST-GDN 7625.19 891.63 569.26 791.52

Methods Inference
BJ-Taxi NYC-Taxi NYC-Bike-1 NYC-Bike-2

ST-MetaNet 0.42 0.32 0.29 0.30
DCRNN 0.26 0.24 0.21 0.22
ST-GCN 0.25 0.22 0.19 0.21

ST-MGCN 0.31 0.27 0.25 0.26
GMAN 0.25 0.23 0.19 0.22
ST-GDN 0.26 0.23 0.20 0.22

Channel Dimensionality. The results suggest that larger
channel dimension size does not always bring the stronger
representation ability, due to the overfitting issue.

Model Efficiency Study (RQ5)
We finally investigate the model efficiency (measured by
running time) of our ST-GDN. All experiments are con-
ducted with the default parameter configurations on a single
NVIDIA GeForce GTX 1080 Ti GPU. We observe that in
several best performed baselines, ST-GCN has good predic-
tion accuracy and running speed. Our ST-GDN outperforms
most of compared approaches and could achieve competi-
tive efficiency as compared to ST-GCN, i.e., the attention-
based graph embedding propagation layer has higher com-
putational cost than the adjacent matrix-based graph convo-
lution. Considering the prediction accuracy comparison be-
tween ST-GDN and ST-GCN, the additional computational
cost could bring positive effect via learning global region
inter-dependencies in an explicit manner.

We finally investigate the model efficiency (measured by
running time) of our ST-GDN. Table 4 presents the computa-
tional cost of training (with 300 epochs) and inference phase
for ST-GDN and five best performed baselines on four differ-
ent datasets. All experiments are conducted with the default
parameter configurations on a single NVIDIA GeForce GTX
1080 Ti GPU. We can observe that ST-GDN outperforms
most of compared approaches and could achieve competi-
tive efficiency as compared to ST-GCN, i.e., the attention-
based graph embedding propagation layer has higher com-
putational cost than the adjacent matrix-based graph convo-
lution. Considering the prediction accuracy comparison be-
tween ST-GDN and ST-GCN, the additional computational
cost could bring positive effect via learning global region
inter-dependencies in an explicit manner.

Related Work
Traffic Prediction with Deep Learning. Recently, many ef-
forts have been devoted to developing traffic prediction tech-
niques based on various neural network architectures. One

straightforward solution is to apply the recurrent neural net-
works (e.g., LSTM) to encode the temporal features of traf-
fic series (Yu et al. 2017a; Liu et al. 2016). The subsequent
extensions propose to integrate the recurrent neural layers
with the convolutional network (Zhang, Zheng, and Qi 2017;
Yao et al. 2018) or attention mechanism (Yao et al. 2019),
so as to joint model the spatial-temporal signals. In addi-
tion, some hybrid methods have been proposed for traffic
prediction with the exploration of heterogeneous data fu-
sion (Liang et al. 2019) and meta-learning-based knowl-
edge transfer (Pan et al. 2019). Different from these work,
ST-GDN endows the spatial-temporal pattern representa-
tion process with the preservation of hierarchical temporal
dynamics and global-enhanced region-wise dependencies.
While there exist research work that considers the global de-
pendency among regions (Zhang et al. 2020), it is limited in
its separately modeling of traffic dependency and nearby re-
gion relations. In contrast, ST-GDN incorporates the global
context enhanced region-wise explicit relevance into a graph
diffusion paradigm to capture comprehensive inter-region
dependencies in a joint learning manner.
Graph Neural Networks. It is worth mentioning that sev-
eral recent efforts have investigated GNNs for spatial-
temporal data forecasting (Guo, Lin, and others 2019;
Song et al. 2020). For example, ST-GCN (Yu, Yin, and
Zhu 2018) and ST-MGCN (Geng et al. 2019) proposes
to leverage graph convolution network to model correla-
tions between regions. Furthermore, attention mechanism
has been introduced for information aggregation from ad-
jacent roads (Zheng et al. 2020; Wang et al. 2020). Mo-
tivated by these work, we develop a hierarchical graph
neural architectures to promote the cooperation between
the multi-resolution temporal context with the dual-modal
cross-region inter-dependencies, which have not been well
explored in existing solutions.

Conclusion
This work investigates the traffic prediction problem by
proposing a new architecture (ST-GDN) based graph neu-
ral networks. Specifically, it first designs a resolution-aware
self-attention network to encode the multi-level temporal
signals. Then, the local spatial contextual information and
global traffic dependencies across different regions, are sub-
sequently integrated to enhance the spatial-temporal pat-
tern representations. Comprehensive experiments demon-
strate that the proposed ST-GDN significantly outperforms
15 baselines over four datasets consistently. Our future work
lies in the deployment of our developed prototype in a cloud-
based working system for real-time traffic flow prediction.
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