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ABSTRACT
Crowd Flow Prediction (CFP) is one major challenge in the in-
telligent transportation systems of the Sydney Trains Network.
However, most advanced CFP methods only focus on entrance and
exit flows at the major stations or a few subway lines, neglecting
Crowd Flow Distribution (CFD) forecasting problem across the
entire city network. CFD prediction plays an irreplaceable role in
metro management as a tool that can help authorities plan route
schedules and avoid congestion. In this paper, we propose three
online non-negative matrix factorization (ONMF) models. ONMF-
AO incorporates an Average Optimization strategy that adapts to
stable passenger flows. ONMF-MR captures the Most Recent trends
to achieve better performance when sudden changes in crowd flow
occur. The Hybrid model, ONMF-H, integrates both ONMF-AO
and ONMF-MR to exploit the strengths of each model in different
scenarios and enhance the models’ applicability to real-world sit-
uations. Given a series of CFD snapshots, both models learn the
latent attributes of the train stations and, therefore, are able to
capture transition patterns from one timestamp to the next by com-
bining historic guidance. Intensive experiments on a large-scale,
real-world dataset containing transactional data demonstrate the
superiority of our ONMF models.
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1 INTRODUCTION
Predicting crowd flows in city trains network is strategically impor-
tant for intelligent transportation systems because of the benefits
it brings to many metro management and urban optimization ser-
vices, such as congestion avoidance, route scheduling, public safety,
and so forth [14, 30]. Thanks to the Opal card (Transportation
NSW’s smartcard ticketing system for travel on public transport,
including Sydney Trains), a large amount of transactional data is
now available that contains very detailed information. Based on
these useful data, a number of applicable passenger flow predic-
tion models have been proposed to enhance the metro services
and improve operational performance of transit authorities [16, 29].
To date, most of these applications focus on capturing frequent
passenger movement patterns or the entrance and exit flows for
major stations.

However, in many real-world applications, concentrating solely
on entrance and exit flows does not provide adequate information,
managers also need to know potential passenger distributions, i.e.,
CFD forecasts. Figure 1 (a) illustrates an example CFD prediction.
The model predicts that 450 passengers will "tap on" (enter) with
their Opal tickets at Central Station between 5:00 PM and 5:15
PM and 200 will "tap off" (exit) at Town Hall, 150 at Strathfield,
and 100 at Hurstville. A CFD model can illustrate the crowd flows
among all these stations, which is significant for passenger route
planning, train scheduling, and crowd warning systems. These
models could be especially useful for predicting passenger flows
during irregular events, such as train faults, emergencies, and public
events, where passenger flows may suddenly surge over a short
time span. With a strong CFD model, a transport administrator
could forecast abnormal flow patterns and plan crowd evacuations
for all affected stations to ensure public safety and/or maintain the
normal train scheduled, as shown in Figure 1 (b).
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(a) 450 passengers enter at Central
between 5:00 to 5:15 pm, and the
distribution of this entrance flows

(b) A congestion warning for all
possibly affected stations when oc-
curring non-recurrent events

Figure 1: An example of Crowd Flow Distribution
The existing techniques for addressing crowd flow prediction

problems aremainly based on regression strategies like auto-regressive
integrated moving averages (ARIMA) [24] or Gaussian processes
(GP) [31]. Other strategies, such as neural networks [23], proba-
bility trees [11] and wavelet-SVM [20] have also been proposed
as solutions to passenger flow prediction problems. However, to
the best of our knowledge, none of these techniques are able to
predict crowd flows across an entire train network. Such a task
is much more difficult than simply forecasting entrance and exit
passenger flows from each station as this type of problem contains
three intrinsic challenges.

• High computational complexity. Network-wide CFD prediction
needs to calculate all potential flows. Most existing methods only
focus on entrance/exit flows at major stations or a few subway lines
[4, 5, 14, 20, 23], which is already computationally expensive or
requires a lengthy off-line training period that is difficult to adapt
to network-wide forecasting.

• Real-time data. In a real-time system, there is a time lag between
when a traveler enters a station and exits another. Hence, only
partial data are available until the traveler completes their journey,
making it impossible to get exact origin-destination records to
reveal travel movements and durations during the present timespan.

• Unpredictability. It is difficult to detect the abnormal flows
associated with many kinds of anomalies, such as emergencies,
train faults, and traffic controls.

To address these challenges, we have developed several online
non-negative matrix factorization models (ONMF) for network-
wide crowd flow prediction. Our models are able to forecast both
entrance/exit flows and CFD by combining the current trends in
flow with historic guidance. ONMF has been recently used as an
excellent strategy for successfully solving spatiotemporal network
problems in traffic flow prediction [1, 7]. In these strategies, ONMF
is used to handle network-wide problems in a similar way to the
traditional NMF techniques applied in community and recommen-
dation networks [28], but the model also incorporates temporal
information to detect latent factors and track their evolution as
the data evolves [3]. Based on the idea of network factorization, a
CFD network is embedded into two latent spaces; one represents
the attributes of the entrance stations, the other represents the
exit stations. Our model, called ONMF-AO, goes a step further to
capture the dynamic movements of these latent attributes from one
timestamp to the next via the average optimization of transition
matrices and historic guidance. ONMF-AO relies on an averaging
strategy to describe the CFD trends in a given time window. How-
ever, CFDs will change dramatically when an abnormal incident

occurs or during rush hour. And, in these situations, ONMF-AO is
not always able to capture the sudden changes in flows by solely
considering the averages of several previous CFD trends.

Motivated by this issue, we further developed another ONMF
model based on the most recent CFD trends and historic guid-
ance, called ONMF-MR, to handle irregular events. In this model,
changes in CFD are primarily predicted by their most recent tenden-
cies. ONMF-MR performs better than ONMF-AO when passenger
flows suffer a sharp change. Additionally, given that each model
demonstrates relatively better strengths in different scenarios, we
propose a third hybrid model, called ONMF-H, that incorporates
both ONMF-AO and ONMF-MR for use in real-world applications.
The main contributions of this paper are summarized as follows:

• We formulate network-wide CFD prediction problems as a
graph network problem and propose a data-driven forecasting
model, called ONMF-AO, that combines current flow trends with
historic guidance to address the three inherent challenges associ-
ated with network-wide crowd flow prediction.

• To further improve the effectiveness of the model in real-world
situations, we designed another extended ONMF model, called
ONMF-MR, that is able to adapt to sudden changes in crowd flows.

• A hybrid model, called ONMF-H, integrates both ONMF-AO
and ONMF-MR to address a variety of challenging traffic scenarios.

•We compare each of the proposed models with five available
prediction methods in a set of intensive experiments on a large, real-
world Opal Card dataset covering Sydney Trains. The experiments
assess the models’ effectiveness from four perspectives, including:
CFD predictions across the entire network at different timestamps,
CFD predictions at major stations, comparisons between weekdays
and weekends, and comparisons between peak and non-peak times.
The experimental results show that ONMF-AO achieved the best
results for the weekend tests, and ONMF-H proved to be more
stable and effective for all weekday tests.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related work. In Section 3, we formalize the problem
of network-wide CFD prediction for Sydney Trains. The proposed
CFD prediction model ONMF-AO is detailed in Section 4. Section
5 proposes ONMF-MR model and the hybrid strategy, ONMF-H,
to improve the forecasting accuracy. The experimental results are
presented in Section 6. Section 7 concludes the paper.

2 RELATEDWORK
For the consideration of readers, current studies on crowd flow
prediction are discussed first, followed by the common applications
for ONMF.

2.1 Crowd Flow Prediction
Thanks to the increasingly wide availability of transactional data,
there has been a recent explosion of studies on crowd flow predic-
tion problems. Most are focused on entrance/exit flows at specific
stations within a network or on a few select subway lines. For
instance, Wei et al. proposed an approach for exploring the time
variants in short-term passenger flows on a single metro line [5]
and developed a modified forecasting method using neural net-
works [23]. Several scholars have studied prediction methods based
on entrance/exit flows at a specific set of stations [4, 11, 14, 20].



Table 1: Symbol Description

Symbols Descriptions

G; n city trains network; number of stations
DOD/DDO entrance or exit CFD matrices

W ; H latent space matrices
k the number of dimensions of latent attributes
T the number of consecutive snapshots in a window
A; B transition matrices ofW and H

COD/CDO potential adjacency matrix
P indication matrix for all complete entries of D

λ1; λ2;η1;η2; ξ regularization parameters

Ni et al. [14] improved prediction accuracy by using social media
events as auxiliary information, while Leng et al. [11] and Sun
et al. [20] both take the transfer passenger flows for each station
into consideration. However, none of the above studies construct
a network-wide prediction system because the widely-used time
series approaches, such as ARIMA [24], GP[31], neural network
[23, 25, 26], are either computationally expensive or require lengthy
off-line training periods that are difficult to adapt to large-scale
network-wide flow forecasting. A few studies have explored move-
ment patterns rather than flow predictions on metro networks,
such as [13, 19]. But, again, no method addresses network-wide
CFD prediction problems because these tasks present far greater
complexity.

2.2 Online Non-negative Matrix Factorization
Ever since non-negative matrix factorization (NMF) was first pro-
posed, it has gained extensive popularity as a solution for network-
wide problems, such as in recommendation systems [8] and com-
munity detection systems [28]. Unlike traditional NMF, online
NMF methods can consider temporal information to track potential
changes as time passes [3, 6]. To date, ONMF has been successfully
applied to several areas. Deng et al. [7] proposed a state-of-the-art
latent space model that relies on the temporal and topological at-
tributes of roads to predict network traffic speeds. Blondel et al.
[2] presented an online passive-aggressive algorithm using NMF
to solve a constrained optimization problem, and Wang et al. [22]
used ONMF to efficiently handle very large-scale and/or streaming
datasets. However, the existing ONMF methods are not yet able
to directly solve CFD prediction problems. In this paper, we take
advantage of ONMF to design two CFD prediction models that are
tailored to adapt to different situations and can be applied directly.

3 PROBLEM STATEMENT
This section presents a formal definition of the CFD prediction
problem in the Sydney Trains network. For ease of presentation,
the main symbols used in this paper are summarized in Table 1.

In this CFD prediction problem, every origin-destination pair for
every crowd flow needs to be recorded. The CFD network is defined
as a directed graphG = (V ,E), where V is the set of vertexes and E
is the set of edges. A vertex vi ⊆ V denotes the entrance or exit of
a train station, and an edge e(vi ,vj ) records an origin-destination
pair from stationvi tovj . Since our model focuses on both entrance
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Figure 2: The topology example of Sydney trains network

and exit flows, the value of each edge e(vi ,vj ) is associated with two
observed flows x(vi ,vj ) and y(vi ,vj ), where x(vi ,vj ) records the
number of passengers that tapped on tickets at the ith station and
are going to the jth station (i.e., an origin to destination pair, (OD));
y(vi ,vj ) records the number of passengers that tapped off tickets
at the ith station and came from jth station (i.e., a destination to
origin pair, (DO)). Let DOD = (xi j ) and DDO = (yi j ) be the two
correspondingmatrices ofG, xi j andyi j are represented by x(vi ,vj )
and y(vi ,vj ), respectively.

The prediction interval is set to 15 minutes, as recommended in
the relevant literature [5, 18, 20, 21], such that one day is divided
into 96 snapshots. For each time interval t, we obtain DOD,t and
DDO,t from the network Gt . For example, Figure 2 (a) shows a
section of the Sydney Trains networkGt with six stations at one
timestamp t. Figures 2 (b) and (c) show the two corresponding
matrices DOD,t and DDO,t . In Figure 2 (b), x12 = 100 means that
100 passengers tapped on at Chatswood (v1) and they are going
to Town Hall (v2) . So, the sum of each row in DOD,t is the total
number of people exiting each station at timestamp t. In Figure 2
(c),y43 = 80 means there are 80 passengers tapped off at Central (v4)
that came from Strathfield (v3), so the sum of each row in DDO,t is
the total number of exit crowd of each station at timestamp t.

In the real world,DOD,t andDDO,t are very sparse. Hence, even
with a huge amount of historical data, a crowd flow may rarely
occur between some stations. For simplicity, let us take Figure 2 (b)
as an example. The positions red marked x35, x65, and x61 in DOD,t
represent the routes from Hurstville to Chatswood and illustrate
that passengers rarely choose these routes probably because of a
much better alternative. Based on this real-life phenomenon, we
can build the potential adjacency matrices for DOD,t and DDO,t ,
denoted asCOD,t (as shown in Figure 2 (d)) andCDO,t at timestamp
t, to reduce the high computational complexity of the problem. The
position marked as 1 in COD,t means the ith and jth stations are
connected, while a 0 indicates a potential disconnected.

Unlike DDO,t , in real-time system, it is impossible to construct
an exact DOD,t for present timestamp t. We refer to this as the



incomplete data challenge. DDO,t collects exit flow data; thus
it is easy to determine where a passenger came from. However,
DOD,t collects entrance flow data and the number of entries will
grow over the next several timestamps until all passengers have
reached their destination and tapped off, as illustrated in Figure 3.

Figure 3: Data collection for DOD,t

Therefore, several new strategies are required as follows. (1)
A measurement method needs to be developed to ensure that a
complete set of data has been collected. (2) Given the real-time
dynamic sequences of CFD, DOD (DOD,1, DOD,2, · · · , DOD,T )
and DDO (DDO,1, DDO,2, · · · , DDO,T ), we forecast the short-term
changes in CFD, i.e., forecasting DOD,T+1 and DDO,T+1 on-the-fly.

We emphasize that DOD,T and DDO,T matrices are two
separate problems (they are related in daily patterns but not
in 15 min patterns), the former records the number of pas-
sengers that tapped on tickets at the ith station and are going
to the jth station, termed as entrance CFD prediction; the lat-
ter records the number of passengers that tapped off tickets
at the ith station and came from jth station, termed as exit
CFD prediction. Due to the page limitation, in this paper we
have only presented the optimization strategy for entrance
CFD prediction (DOD,T ) because both can be addressed in a
similar way.

4 THE ONMF-AO MODEL
Our prediction model is built on NMF, so Section 4.1 discusses how
a basic NMF model can be applied in Sydney Trains Network. In
Section 4.2, we propose the ONMF-AO model, which incorporates
the average optimization of transition patterns. Lastly, Section 4.3
outlines how historical guidance is used to improve and complete
the model.

4.1 NMF in The CFD Model
In CFD prediction problems, the non-negative matrix factorization
method decomposes the crowd flow matrix DOD ∈ Rn×n+ into two
matricesW ∈ Rk×n+ and H ∈ Rk×n+ , where W and H represent the
latent spaces. Each column in these matrices represents k attributes
of corresponding entrance and exit stations. As we mentioned in
Section 3, here we only use DOD as an example because DDO ∈

Rn×n+ has a similar description to DOD . The interaction between
these attributes determines the crowd flow between the entrance
and exit stations. Therefore, the basic CFD model can be described
as the following optimization objective:

arg min
W ≥0,H ≥0

L0 = | |DOD −W
′

H | |2F (1)

whereW
′

is the transposed matrix ofW.
Figure 4 (a) illustrates how an NMF model can be used to solve a

CFD problem in one snapshot. For example, CFD (x14) is associated

’
OD

(a) NMF model of CFD (b) interaction of latent attributes
to estimate crowd flow

Figure 4: The latent space example of Sydney trains network

with two sets of latent attributes, which can be hypothesized as
a business area, the station level, and a time (rush degree) when
setting k=3, as shown in Figure 4 (b). Note that the dimension of
latent space k is a hyper-parameter, Figure 4 (b) gives a reasonable
assumption for an example to reveal the possible attributes in the
latent spaces .

4.2 Prediction Using an Average Optimization
Strategy

In real life, CFDs are continually changing over time, giving rise
to the dynamics in DOD,t /DDO,t as well as their decomposed
matrices in Wt and Ht . Hence, to achieve accurate predictions,
these transition patterns from previous snapshots to the next need
to be captured.

The transition matrices A ∈ Rk×k+ and B ∈ Rn×n+ reveal the
global potential tendencies ofW

′

and H over a certain time window
T (i.e., T consecutive timestamps) based on an average optimization
strategy. We chose this optimization method to avoid interference
by short-term noise, such as timetable changes, traffic conditions
around the stations, and so forth. Therefore, the global tendency
pattern can be thought of as a representation of the stable CFD
changes from timestamp 1 to timestamp T, i.e.,

∑T
t=1W

′

t =W
′

t−1A

and
∑T
t=1 Ht = Ht−1B, where A and B approximate the average

changes in the time window.
Our model includes two components, the entrance CFD (DOD,t )

and the exit CFD (DDO,t ) prediction. For simplicity, we have only
presented the optimization strategy for DOD,t because both are
addressed in a similar way. Thus, the prediction model based on
the average optimization strategy is shown as Equation 2.

arg min
Wt ,Ht ,A,B

L1 =
T∑
t=1

| |POD,t ⊙ (DOD,t −W
′

tHt )| |
2
F+

λ1

T∑
t=2

(| |W
′

t −W
′

t−1A| |
2
F + | |Ht − Ht−1B | |

2
F )

(2)
where λ1 is the regularization parameter; ⊙ is the Hadamard prod-
uct (entrywise product) operator; and POD,t is the indicationmatrix
for all the complete entries of DOD,t . We discuss how to derive
POD,t in the following.

In the entrance flow prediction problem, we only set POD,t (i j)
= 1 (1 ≤ i, j ≤ n) if the time horizon between t and present time
T is sufficient for the vast majority of people to have arrived at
their destination. Now, let us discuss how to derive POD,t in the
entrance problem.

Given the incomplete data challenge discussed in Section 3,
passengers with the same destination will tap off their Opal card



tickets at different times even though they tapped on at the same
place in the same timestamp. In fact, as time passes, the number
of entries in DOD,t will only complete as the last passenger com-
pletes their journey and taps off at their destination. So, how can
we be sure that the data collected are complete? Based on [9],
the travel times for each origin-destination pair in each times-
tamp can be assumed to be close to the normal distribution, i.e.,
Zq,t ∼ N (µq,t ,σ

2
q,t ). Zq,t denotes the travel times for one origin-

destination pair at timestamp t (qth , q ∈ all potential CFD) (e.g., all
historical travel times the origin to a given destination commencing
from time t ). Then, if the time span is greater than µq,t + 2σq,t ,
we have approximately 98% confidence that all passengers have
arrived at their destination based on the normal distribution.

OD OD OD OD

OD OD OD OD

qq

q q

qq

Figure 5: An example of building indication matrix POD,t

For example, Figure 5 illustrates how to build the indication ma-
trix POD,t . DOD,1 is the entrance matrix that we had collected 320
passengers that tapped on their tickets at station v1 at timestamp 1
(the first timestamp of the window) and then tapped off at station
v4 until T. There are no exit records for the current moment matrix
DOD,T . 152 passengers exited at timestamp 3 but the time span
between 3 and T is smaller than µq,3 + 2σq,3, which does not pro-
vide enough confidence to indicate that 152 reflects complete data.
So, we set p14=0 in POD,3. However, the collected data at times-
tamps 1 and 2 (320 and 315) have enough time spans indicating
these data is complete with a confidence level above 98% (then set
p14 = 1 in POD,1 and POD,2 ). Further, if the origin-destination pair
is potentially disconnected based on the potential adjacency matrix
COD,t , the corresponding position in POD,t will be set to 1 on the
assumption that the latent attributes of disconnected stations for
each origin-destination pair are orthogonal. For instance, we set
p65=1 in POD,T because we assume the latent attributes of entrance
station v6 and exit station v5 are orthogonal.

4.3 Incorporation with Historic Guidance
In the Sydney Trains network, CFDs are usually very stable and
have a strong daily periodic property, especially on weekdays. that
means our prediction objective DOD,T+1 is similar to the history
matrix Dh

OD,T+1 thanks to daily periodicity. Based on this phenom-
enon, we can incorporate historic guidance into our model. Assume
thatW h

T+1 and H
h
T+1 are two latent matrices of the next snapshot

Dh
OD,T+1 of history. We seek to learn the transition matrices A and

B from now to the next timestamp by consulting these two his-
toric matricesW h

T+1 andH
h
T+1. More importantly, historic guidance

brings a strong benefit to sharpening transformation from rush
hour to non-rush hour.

The historic matrices can be easily learned by Equation 2 with
the slight modification, of replacing DOD,t ,Wt andHt with Dh

OD,t ,
W h
t and Hh

t , respectively, and setting T to T + 1. Let all entries
in the indication matrix POD,t is 1, because all historical data are
complete.

To optimize the model and avoid over-fitting problems, we add
a constrain forWt to limit the search space. Considering all the
above strategies, the final loss function of our ONMF-AO prediction
model is defined as:

arg min
Wt ,Ht ,A,B

LAO = L1 + λ2(| |W
h′

T+1 −W
′

TA| |
2
F + | |Hh

T+1 − HT B | |
2
F )

s .t . | |Wt | |
2
F = ξ ,∀t = 1, · · · ,T .

(3)
where λ2 is the regularization parameter;WT and HT are the latent
matrices when t = T ; and ξ is an empirical parameter to constrain
overall change ofWt .

The latent matricesWt ,Ht ,A and B can be learned through Equa-
tion 3, and the equation for predicting the next snapshot DOD,T+1
is DOD,T+1 = (W

′

TA)(HT B).

4.4 Learning and Prediction with ONMF-AO
As Equation 3 is a non-convex problem, we use the multiplicative
update strategy [10] and the proximal gradient method [12, 15] to
find a local optimal solution. We initialize latent space matrices (Wt
and Ht ) in each timestamp with corresponding historical values,
which were derived from historic data, to ensure a better solution.
Such initialization is reasonable under the assumption that model
parameters won’t change much compared to its historical values.
The update rules forWt , Ht , A, and B are presented in Equations 4
- 9.

Wt = prox(Wt ⊙
Ht (POD,t ⊙ DOD,t )

′
+ λ1(A

′
Wt−1 + AWt+1) + λ̂2(AW h

T+1)

Ht (POD,t ⊙ (W ′

t Ht ))
′
+ λ1(Wt + AA

′Wt ) + λ̂2AA
′WT

)

(4)

Ht = Ht⊙
Wt (POD,t ⊙ DOD,t ) + λ1(Ht−1B + Ht+1B

′

) + λ̂2(Hh
T+1B

′

)

Wt (POD,t ⊙ (W
′

tHt )) + λ1(Ht + HtBB
′
) + λ̂2HT BB

′

(5)
where prox(·) is the proximal operator defined as:

prox(Wt ) = ξWt /| |Wt | |
2
F , (6)

and λ̂2 is given by:

λ̂2 =

{
λ2, t = T
0, otherwise (7)

The update equations for A and B are:



A = A ⊙
λ1

∑T
t=1Wt−1W

′

t + λ2WTW
h′

T+1
λ1

∑T
t=1Wt−1(W

′

t−1A) + λ2WT (W
′

TA)
(8)

B = B ⊙
λ1

∑T
t=1 H

′

t−1Ht + λ2H
′

TH
h
T+1

λ1
∑T
t=1 H

′

t−1(Ht−1B) + λ2H
′

T (HT B)
(9)

Based on the above update equations, the iterative learning and
prediction process for ONMF-AO is summarized in Algorithm 1.

Algorithm 1: ONMF-AO Prediction

INPUT: present CFD (DOD,1, · · · , DOD,T ); historic guidanceW h
T+1,

Hh
T+1; error threshold ε ; maximum iteration I ter
OUTPUT: next snapshot DOD,T+1
(1) initializeWt , Ht , A and B
(2) While i < I ter
(3) If LAO,i -LAO,i+1> ε
(4) For t= 1:T do
(5) updateWt and Ht By Equation 4 - 5
(6) update A and B By Equation 8 and 9
(7) Else Break
(8) Return DOD,T+1 By DOD,T+1 = (W

′

TA)(HT B)

5 THE MODEL FOR SUDDEN FLOW
CHANGES

In this section, we propose a second ONMF-based model,called
ONMF-MR, to handle scenarios where sudden changes flow occur.

5.1 Improved Model ONMF-MR
ONMF-AO relies on an average optimization strategy, which per-
forms better when forecasting stable passenger flows, as shown in
Figure 6 (a). This is because the global potential tendencies can filter
non-recurrent noises, especially in the off-peak times. However,
a sudden increase flow would appear during the rush hour, e.g.,
between 7:15 to 7:30 AM in Figure 6 (b), the crowd flow shoots
upward. However, the ONMF-AO is insensitive to this situation be-
cause it consider the average trends of a given number of previous
timestamps.

(a) in non-rush hour (b) in rush hour
Figure 6: An example CFD from Hurstville to Central

Therefore, to improve the prediction accuracy of the model when
faced with sudden or drastic changes in flow, we designed a second
ONMF model, called ONMF-MR. The improved model aims to learn
the most recent CFD trends. The transition matrices A and B are
disassembled into each timestamp, i.e., learning At and Bt from
one snapshot to the next. Motivated by this idea, we modify the
optimization function L1 in Equation 2 to tackle the most recent
dynamic trends as follows:

arg min
Wt ,Ht ,At ,Bt

L2 =
T∑
t=1

| |POD,t ⊙ (DOD,t −W
′

tHt )| |
2
F+

η1
2

T∑
t=2

(| |W
′

t −W
′

t−1At−1 | |
2
F + | |Ht − Ht−1Bt−1 | |

2
F )

(10)
where η1 is the regularization parameter.

After incorporating the historic guidance described in Section
4.3, the final loss function of ONMF-MR is

arg min
Wt ,Ht ,A,B

LMR = L2 + η2(| |W
h′

T+1 −W
′

TAT | |
2
F + | |Hh

T+1 − HT BT | |
2
F )

s .t . | |Wt | |
2
F = ξ ,∀t = 1, · · · ,T .

(11)
where η2 is the regularization parameter; AT and BT are transition
matrices when t = T .

5.2 Learning and Prediction by ONMF-MR
The update rules ofWt , Ht , At , and Bt are presented in Equations
12 to Equation 15.

Wt = prox(Wt ⊙
Ht (POD,t ⊙ DOD,t )

′
+ η1(A

′

t−1Wt−1 + AtWt+1) + η̂2(ATW h
T+1)

Ht (POD,t ⊙ (W ′

t Ht ))
′
+ η1(Wt + AtA

′

tWt ) + η̂2ATA
′

TWT
)

(12)
where prox(·) is the same proximal operator as in Equation 6.

Ht = Ht ⊙
Wt (POD,t ⊙ DOD,t ) + η1(Ht−1Bt−1 + Ht+1B

′

t ) + η̂2(H
h
T+1B

′

T )

Wt (POD,t ⊙ (W
′

tHt )) + η1(Ht + HtBtB
′

t ) + η̂2HT BT B
′

T
(13)

At = At ⊙
η1WtW

′

t+1 + η̂2WTW
h′

T+1
η1Wt (W

′

tAt ) + η̂2WT (W
′

TAT )
(14)

Bt = Bt ⊙
η1H

′

tHt+1 + η̂2H
′

TH
h
T+1

η1H
′

t (HtBt ) + η̂2H
′

T (HT BT )
(15)

Equation 12 - 15 satisfy:

η̂2 =

{
η2, t = T
0, otherwise

Based on the above update equations, the iterative learning and
prediction process for ONMF-MR is summarized in Algorithm 2.

Time complexity and convergence. we briefly discuss the
time complexity and convergence of two proposed models ONMF-
AO and ONMF-MR. Equations 4-9 and Equations 12-15 clearly
present that the time complexity is governed by matrix multiplica-
tion operations in each iteration. Therefore, the time complexity of
both two models is O(Tn2k). In terms of convergence, Algorithm 1
and 2 are guaranteed to converge as the proof shown in previous
ONMF-based works [2, 7, 10].



Algorithm 2: ONMF-MR Prediction

INPUT: present CFD (DOD,1, · · · , DOD,T ); historic guidanceW h
T+1,

Hh
T+1; error threshold ε ; maximum iteration I ter
OUTPUT: next snapshot DOD,T+1
(1) initializeWt , Ht , At and Bt
(2) While i < I ter
(3) If LAO,i -LAO,i+1> ε
(4) For t= 1:T do
(5) updateWt , Ht , At and Bt By Equation 12 - 15
(6) Else Break
(7) Return DOD,T+1 By DOD,T+1 = (W

′

TAT )(HT BT )

5.3 A Hybrid Strategy
Given that ONMF-AO and ONMF-MR have been specifically de-
signed to perform well in two distinct scenarios (one with stable
flows and the other with drastic changes to flows). We can build
a hybrid model, ONMF-H, which integrates both ONMF-AO and
ONMF-MR, as shown in Algorithm 3.

Considering current moment T, the ground-truth of DO CFD for
the last timestamp T-1 (matrixDDO,T−1) is available. Therefore, the
ONMF-AO model predicts the current timestamp if the accuracy
of ONMF-AO at the last timestamp is greater than ONMF-MR, and
vice versa.

However, due to the incomplete data challenge, we cannot obtain
the complete ground-truth for predicted OD CFDmatrix (DOD,T−1)
at timestamp T, but only have the total number of entrance passen-
gers for each station at timestamp T -1. Hence, we compare the sum
of each row in DOD,T−1 with ground-truth, and use this accuracy
as the selection criteria for the next prediction.

Algorithm 3: Hybrid Model — ONMF-H

(1) Choose different Accuracy criteria for different prediction problems
as discussed in Section 5.3.

(2) While need prediction
(3) If Last_Accuracy (Algorithm 1) > Last_Accuracy (Algorithm 2)
(4) Using the result of Algorithm 1 for next timespan prediction;

Running Algorithm 1 and 2 in parallel
(5) Else
(6) Using the result of Algorithm 2 for next timespan prediction;

Running Algorithm 1 and 2 in parallel
(7) Until end prediction

6 EXPERIMENTS
In this section, we report on the experiments conducted on the Opal
card transaction data of the Sydney Trains network. All algorithms
were implemented in Matlab, and run on a virtual Linux machine
with 20 CPUs and 64GB memory.

6.1 The Dataset
The dataset is a large-scale, real-world dataset provided by Trans-
port NSW that contains the transactional data pertaining to the
Sydney Trains network. After data cleaning, the dataset included
over 30 million records covering 178 stations between 7 Nov 2016

and 11 Dec 2016. We used the records between 28 Nov. 2016 and 11
Dec. 2016 as our test data; the remaining records were used as the
training data.

It’s remarkable that the proposed methods are online models.
For example, when crowd flow at timestamp T+1 is to be predicted,
all data at timestamp T can be regarded as training data, and data at
timestamp T+1 is used for validation. With the time going on, data
at T+1 timestamp becomes the training data and T+2 becomes vali-
dation data. Finally we go through all the training data, and get the
average error on validation data. With different hyper-parameters,
we got different errors, and we choose hyper-parameters with lower
error to be used in test model.

6.2 Baselines & Measures & Parameters
Baselines.We compare all proposed models, ONMF-AO, ONMF-
MR, and ONMF-H with the following five baselines. All parameters
of proposed and baselines are optimized by the grid search method.

• HA: CFD predictions are made using the historical average
method in each time span. That is, all historical time intervals from
8:00 am to 8:15 am on Mondays are used to make a prediction about
the same timestamp on the test Monday.

• ONMF: We removed the historic guidance in our models to
test the performance of a traditional ONMF-based method.

• LSM-RN-All: A state-of-the-art ONMF-based model for solv-
ing traffic network prediction problem[7].

• SARIMA: the well-known seasonal auto-regressive integrated
moving average model — a linear regression model for forecasting
future values in a time series.

•GPR:Gaussian process regression (GPR) is a stochastic process
model that can be used to capture spatiotemporal patterns but at a
heavy computational cost [17].

Measures. We measure our methods by Mean Absolute Error
(MAE) and Mean Relative Error (MRE) which are commonly used
to evaluate time series accuracy [27].

MAE =

∑m
i=1 |vi − v̂i |

m
, MRE =

∑m
i=1 |vi − v̂i |∑m

i=1vi
,

where v̂i is a prediction andvi is the ground truth;m is the number
of prediction flows.

Initialization.We initialize latent space matrices of proposed
models and ONMF-based baselines in each timestamp with cor-
responding historical values, which were derived from historic
data, to ensure a better solution. Such initialization is reasonable
under the assumption that model parameters won’t change much
compared to its historical values.

Parameter Settings. The parameters used to achieve the best
performance in different application scenarios are shown in Table
2. In addition, we set the proximal gradient parameter ξ to 30 after
a line search process.

6.3 Results on the Sydney Train Network
The first set of experiments was designed to assess performance
across the entire Sydney Trains network. The results appear in Fig-
ure 7, including the comparisons for entrance/exit CFDs (i.e., OD
and DO CDFs) between rush and non-rush periods and between



Table 2: Symbol Description

ONMF-AO k T λ1 λ2

Entrance CFD in Weekdays 70 6 26 213
Exit CFD in Weekdays 70 6 25 215

Entrance CFD in Weekends 70 6 26 26.5
Exit CFD in Weekends 70 6 22 22

ONMF-MR k T η1 η2

Entrance CFD in Weekdays 70 3 21.5 25
Exit CFD in Weekdays 70 3 25.5 218

Entrance CFD in Weekends 70 3 20.5 22
Exit CFD in Weekends 70 3 23.5 24

weekdays and weekends. We have only included the top four meth-
ods to keep the images clear, as the other baselines performed far
worse than these approaches. The lines of Hybrid model overlap
with the best one of ONMF-AO and ONMF-ND because the Hybrid
model will take advantages of the first two models in different sce-
narios which cause a bad presentation in Figures. Due to the above
reason, we remove the lines of Hybrid model in Figures and place
them to the overall results in Table 3.

As the weekday tests drawn in Figure 7 (a)-(e), it is clearly shown
that ONMF-AO performed better during non-rush times, while
ONMF-MR performed better during rush times in both the en-
trance and the exit CFD prediction tasks. ONMF-AO achieved the
best results on weekends because passengers flows are more stable
throughout the day (as shown in Figure 7 (f)-(h)). The simple strat-
egy HA performed well because CFDs are highly stable across the
Sydney Trains network, especially on weekdays. However, predic-
tions based on historical data may be deceiving when faced with
non-recurring events, as discussed in Section 1. The regression
methods, SARIMA and GPR, are sensitive to missing data [7], but
SARIMA considers seasonal properties, which improved accuracy
to some degree. The traditional ONMF and LSM-RN-All did not
perform well because they do not consider historic trends. More
comparisons are shown in Section 6.5.

6.4 Results for the Major Stations
We further evaluated the effectiveness of each method on the major
stations in the Sydney Trains network. The top 20 stations based
on throughput capacity were selected as the major stations. This
experiment removes any interference created by smaller stations to
assess the models’ performance more deeply, as shown in Figure 8.
The results lead to similar conclusions to the first experiment. Our
models provided better results than the other baselines. ONMF-MR
achieved a slightly better performance than HA in peak times on
weekdays, as shown in Figure 8 (a) (c) and (d). ONMF-AO was the
best prediction method for non-peak times on weekdays and all
times on the weekend, as shown in Figure 8 (b) and (e) - (h).

6.5 Overall Results
Table 3 presents the average errors of all test methods for each
timestamp between 6.00am and 10.00pm. ONMF-AO outperformed
the other baselines onweekends because sudden changes in flow are

(a) Entrance CFD During Morning
Rush on Weekdays

(b) Entrance CFD During
Non-Rush on Weekdays

(c) Entrance CFD During Afternoon
Rush on Weekdays

(d) Exit CFD During Afternoon Rush
on Weekdays

(e) Exit CFD During Non-Rush
on Weekdays

(f) Entrance CFD During Morning
on Weekends

(g) Entrance CFD During Afternoon
on Weekends

(h) Exit CFD During Afternoon
on Weekends

Figure 7: CFD Prediction on the Sydney Trains Network

rare. While on weekdays, ONMF-AO and ONMF-MR each provide
better performance depending on the circumstance; hence, the
hybrid model ONMF-H achieved the best results on weekdays.

Even though the regression methods, such as SARIMA and GPR,
can be used to solve time series problems, we do not recommend
them for solving network-wide CFD prediction problems due to
the huge re-training cost and the high complexity associated with
considering each potential passenger flow. Nor do we recommend
the latest approaches in addressing traffic prediction problems on
networks, such as LSM-RN-All [7] and ONMF [2], as these meth-
ods did not produce good results. We attribute this to the strong
periodicity of CFD prediction problems. LSM-RN-All and ONMF
were able to capture variations in CFD trends within small time
windows but do not incorporate historic guidance, so performance
suffers.

Overall, the two purpose-built ONMF models, ONMF-AO and
ONMF-MR, have their own advantages for network-wide CFD
predictions for Sydney Trains. The hybrid model provides the best
results for weekdays andONMF-AO is themost outstandingmethod
for forecasting on weekends.



Table 3: Comparison Among Different Methods

Methods Entrance CFD on Weekdays Exit CFD on Weekdays Entrance CFD on Weekends Exit CFD on Weekends Average
MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE

ONMF-AO 1.5932 0.3142 1.9540 0.3748 1.9491 0.5531 2.1559 0.5901 1.9131 0.4581
ONMF-MR 1.5981 0.3182 1.9162 0.3694 2.0426 0.5784 2.2199 0.6048 1.9442 0.4677
ONMF-H 1.5820 0.3139 1.9144 0.3690 1.9847 0.5536 2.1595 0.5902 1.9102 0.4567

HA 1.6498 0.3285 1.9727 0.3819 2.1793 0.6148 2.4340 0.6598 2.0590 0.4963
LSM-RN-All 6.2915 1.1543 3.5580 0.6722 2.1077 0.6031 2.9429 0.8024 3.7250 0.8080

ONMF 4.0940 0.7735 2.5978 0.4879 2.1460 0.6117 3.3827 0.9165 3.0550 0.6974
SARIMA 2.0005 0.4051 2.2514 0.4544 2.3932 0.6851 2.6596 0.7349 2.3262 0.5699
GPR 5.3813 1.1507 5.3324 1.1135 2.4212 0.6854 2.6866 0.7285 3.9554 0.9195

(a) Entrance CFD During Morning
Rush on Weekdays

(b) Entrance CFD During Non-Rush
on Weekdays

(c) Entrance CFD During Afternoon
Rush on Weekdays

(d) Exit CFD During Afternoon Rush
on Weekdays

(e) Exit CFD During Non-Rush hour
on Weekdays

(f) Entrance CFD During Morning
on Weekends

(g) Entrance CFD During Afternoon
on Weekends

(h) Exit CFD During Afternoon
on Weekends

Figure 8: CFD Prediction on the Major Stations

6.6 The Sensitivity of Parameters
In this section, we evaluate the performance of our methods by
varying the parameters of our model. Due to space limitations, we
have only shown the experimental results for the entrance CFD on
weekdays.
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Figure 9: Effect of Parameters

Figure 9 (a) shows the different performances and running times
(RT) with a varying setting for k. Both ONMF-AO and ONMF-MR
achieved better results but longer running times as the number
of latent attributes increased. We set k to 70 for a good balance
between time-consuming and accuracy.

Figure 9 (b) plots the different performances and running times
when changing T. ONMF-AO had a minimum MAE when T=6.
ONMF-MR had a good result when T ≥ 3. thus, we suggest setting
T to 3 the running time appears to grow rapidly as T increases.

Figure 9 (c) reveals the effect of varying λ1 and η1. These two
parameters determine the strength of the current flow trends to
use. λ1=26 and η1=21.5 yielded the best results for ONMF-AO and
ONMF-MR, respectively.

Figure 9 (d) shows the impacts of varying λ2 and η2 which effect
the power of historic guidance. ONMF-AO required more historic
guidance than ONMF-MR to achieve good results. The best values
of λ2 and η2 were 213 and 25, respectively.

6.7 Scalability
We used a scalability test to evaluate the efficiency of each of the
different methods. We only recorded the longest time-consumption
for ONMF-AO and ONMF-MR because these models comprise the
hybrid method. Table 4 shows the results of the training and fore-
casting times for one prediction step across the entire network.



0 50 100 150
Number of iterations

1800

2400

3000

O
b

je
ct

iv
e 

V
al

u
es ONMF-AO

(a) ONMF-AO

0 50 100 150
Number of iterations

50

100

150

200

O
b

je
ct

iv
e 

V
al

u
es ONMF-MR

(b) ONMF-MR
Figure 10: Converge rate

The regression methods, SARIMA and GPR, required an enormous
amount of re-training time, which is difficult to implement in a real-
time system. However, both methods did generate predictions very
quickly. ONMF-AO, ONMF-MR, LSM, and the traditional version
of ONMF had similar running times and did not require additional
re-training time. LSM and ONMF were faster at prediction than
ONMF-AO, ONMF-MR but show a lower accuracy. The scalability
test demonstrates that our models, ONMF-AO and ONMF-MR, per-
form well on large-scale network problems, taking approximately
five seconds for each prediction step.

Convergence. Figures 10 (a) and (b) show the convergence
trends of iterative models ONMF-AO and ONMF-MR. Both Algo-
rithms converge into a local solution in a small amount of iterations.

Table 4: Scalability Test. ONMF-AO/ONMF-MR completed
each prediction step in a reasonable time span (about 5 sec-
onds) with the highest accuracy.

ONMF-AO/MR LSM ONMF SARIMA GPR
re-train(s) - - - 156.55 399.82
pred.(s) 5.01 3.69 4.96 0.68 0.36

train+pred.(s) 5.01 3.69 4.96 157.23 400.18

7 CONCLUSIONS
In this paper, we propose two data-driven models for CFD pre-
diction on the Sydney Trains rail network. The first model, called
ONMF-AO, is based on average optimization and historic guidance
and captures the dynamic changes in latent attributes over time. To
improve prediction accuracy, we further designed another ONMF
model, called ONMF-MR, to tackle sudden changes in CFDs. In-
tensive experiments show that our proposed methods outperform
several baselines. A hybrid strategy, which combines both ONMF-
AO and ONMF-MR, achieves the best results on weekdays, and
ONMF-AO is the most outstanding method for weekend predic-
tions.
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