
Constructing Popular Routes from Uncertain Trajectories
Ling-Yin Wei

National Chiao Tung University
Hsinchu, Taiwan

lywei.cs95g@nctu.edu.tw

Yu Zheng
Microsoft Research Asia

Beijing, China

yuzheng@microsoft.com

Wen-Chih Peng
National Chiao Tung University

Hsinchu, Taiwan

wcpeng@cs.nctu.edu.tw

ABSTRACT

The advances in location-acquisition technologies have led to a
myriad of spatial trajectories. These trajectories are usually
generated at a low or an irregular frequency due to applications’
characteristics or energy saving, leaving the routes between two
consecutive points of a single trajectory uncertain (called an
uncertain trajectory). In this paper, we present a Route Inference
framework based on Collective Knowledge (abbreviated as RICK)
to construct the popular routes from uncertain trajectories.
Explicitly, given a location sequence and a time span, the RICK is
able to construct the top-k routes which sequentially pass through
the locations within the specified time span, by aggregating such
uncertain trajectories in a mutual reinforcement way (i.e.,

uncertain + uncertain → certain). Our work can benefit trip

planning, traffic management, and animal movement studies. The
RICK comprises two components: routable graph construction
and route inference. First, we explore the spatial and temporal
characteristics of uncertain trajectories and construct a routable
graph by collaborative learning among the uncertain trajectories.
Second, in light of the routable graph, we propose a routing
algorithm to construct the top-k routes according to a user-
specified query. We have conducted extensive experiments on
two real datasets, consisting of Foursquare check-in datasets and
taxi trajectories. The results show that RICK is both effective and
efficient.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – data

mining, spatial databases and GIS.

General Terms

Algorithms, Design, Experimentation.

Keywords

Collaborative learning, trajectory data mining, route inference,
social media.

1. INTRODUCTION
The increasing availability of location-acquisition technology (e.g.,
GPS), has led to a huge volume of spatial trajectories that
represent the movement routes of humans, animals, hurricanes,
and vehicles. Without loss of generality, a trajectory is a sequence
of data points where each data point records location information
and a time-stamp [18]. For example, the driving routes of vehicles

and migratory routes of animals are usually recorded by GPS
trajectories. Meanwhile, users could perform check-in services
(e.g., Foursquare) to note their locations via a mobile phone and
share their photos and activities. The time-ordered check-in
records of a user are able to be expressed by trajectories.
Moreover, on a photo sharing website (e.g., Flickr), people share
geotagged photos whose time-stamps and geolocations can be
represented as trajectories as well. However, these trajectories are
usually generated at a low frequency due to energy saving and
features of applications, resulting in the uncertainty of a moving
object’s mobility in a trajectory.

Figure 1 shows statistic information from Foursquare datasets in
Manhattan. As shown in Figure 1(a), most check-in time intervals
vary from 1 to 180 minutes. Moreover, we further investigate the
distances among these check-in records. The medians of the
distances between two check-in records are less than two
kilometers in Figure 1(b). The above two observations show that
even in Manhattan, which has a lot of tourists, the uncertain routes
apparently exist between two check-in records.

(a) (b)

Figure 1. Observations from Foursquare datasets.

(a) Uncertain trajectories (b) Simple concatenation

(c) Uncertain trajectories (d) Mutual reinforcement
Figure 2. Examples of uncertain trajectories.

These low sampled trajectories do not detail the routes, and raise
uncertain routes between two consecutive sampled points in the
trajectories. In this paper, we call such trajectories uncertain
trajectories. Examples of uncertain trajectories are illustrated in
Figure 2. Figure 2(a) shows two check-in trajectories, ����: A →
C → D and ���
: D → B , in a rural space (i.e., road network
information is not available). If a tourist would like to travel from
�� to �
, he/she may have no idea of how to travel without the aid
of road networks or by referring to a trajectory (e.g., ���� or ���
).
In addition, given one migratory trajectory of a bird, we do not
know where the bird flew between two sampled points which are

 0

 0.2

 0.4

 0.6

 0.8

 1

1 60 120 180 240 300

A
c
c
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 r

a
ti
o

Check-in time interval (in minute)

 0

 1

 2

 3

 4

 5

1 30 60 90 120 150 180

D
is

ta
n

c
e

s
 (

in
 k

m
)

Check-in time interval (in minute)

1q

2q2tra
1tra 1q

2q

3tra

4tra

2tra
1tra

1q 1q

2q
2q

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08...$15.00.

several miles away from each other. Due to the uncertainty of low
sampled trajectories, how to derive detailed routes from uncertain
trajectories is an important task.

The prior work [16] proposed a framework to discover the routes
from historical trajectories. Explicitly, given a set of historical
trajectories, an underlying road network, and a location sequence,
the work aims to suggest the top-k possible routes sequentially
passing the queried locations. Note that by the aid of the given
road network, the work explores possible routes derived from road
networks. However, for some applications (e.g., animal migration
routes or hurricane routes), road network information is not
available. As for check-in datasets and geo-photo datasets, the
service providers may not have road network information either.
Without road network information, the work [16] cannot derive
the top-k routes.

In this paper, without road network information, we propose a
Route Inference framework based on Collective Knowledge
(abbreviated as RICK) to construct the popular routes from
uncertain trajectories. Explicitly, given a location sequence and a
time span, RICK constructs the top-k routes, sequentially passing
the locations within the specified time span. The RICK is
beneficial for many practical applications. Examples of
applications are trip planning [2,5,7,8,15,17], animal movement
behavior studies [9] and traffic flow analysis [14]. For example, a
user plans to take a tour that consists of three attractions (e.g., the
Temple of Heaven, the Palace Museum and the Houhai Bar Street
in Figure 3(a)) in Beijing, while having no idea of how to travel
around them. At this moment, the RICK can recommend the
popular travel route, inferred from check-in records (or geo-
tagged photos) generated by other tourists. Another example in
Figure 3(b) is to help biologists discover birds’ moving behaviors
from uncertain trajectories.

(a) (b)

Figure 3. Scenarios of applications.

To infer routes from uncertain trajectories, in many cases, we
need to construct a route based on segments from multiple
uncertain trajectories as there is no historical trajectory passing all
the queried locations. For instance, in Figure 2(a), ���� and ���

do not pass through both �� and �
 . If a tourist would like to
travel from �� to �
 , existing trip planning [1,7,15,17] could
explore the sequential relations among these places and derive
A → C → D → B by concatenation in Figure 2(b). However, the
distances between two consecutive locations are still far away and
a travel route still cannot be derived according to the users’
trajectory. In addition, one could extract the trajectories that
capture similar movements. However, due to the sparseness of
data points in uncertain trajectories, two uncertain trajectories
usually have totally different geospatial representations even
though the two trajectories follow the same route or have the same
subroutes (i.e., are correlated). As such, the similarity between
two uncertain trajectories is hard to measure.

In this paper, given a set of uncertain trajectories (e.g., Figure
2(c)), a routable graph (e.g., the blue part in Figure 2(d)) is
generated for indicating routing information in a free space by
exploring spatio-temporally correlated uncertain trajectories. In
light of the routable graph, we have designed a route score

function and proposed a routing algorithm to construct the top-k
routes (e.g., the dashed curve in Figure 2(d)) satisfying the query.
We have conducted extensive experiments on two real datasets
and the results show the effectiveness and efficiency of the RICK.

The contributions of this paper are summarized as follows:

� Without the aid of road networks, we develop a route
inference framework to infer routes from uncertain trajectories.

� We propose a routable graph with routing information,
generated by exploring spatio-temporal correlations among
uncertain trajectories.

� In light of the routable graph, we define a route score function
and develop a routing algorithm to construct the top-k routes.

� We have conducted extensive experiments using real datasets
of 15,000 driving trajectories and 6,600 check-in sequences.
The results indicate the RICK is effective and efficient.

The remainder of the paper is organized as follows. Section 2
gives the preliminary of our work. Section 3 illustrates the
routable graph construction. Section 4 details the route inference.
Section 5 presents the experimental results. Section 6 reviews
related work. Section 7 concludes the paper.

2. PRELIMINARY
We present some terms and the problem addressed in this paper,
and then overview the proposed framework.

Definition 1 (Trajectory): A trajectory ���
 is a time-ordered

sequence of sampled points, i.e., 	���
: ��
 → �

 → ⋯ → ��
 . Each

point ��
 ∈ ���
 is represented by (��
 . �, ��
 . �) where ��
 . �	 is a

geographic coordinate (a location for short) at a time-stamp ��
 . �.
As discussed before, trajectories are usually generated at a low
sampling rate, leading to the real route between two consecutive
points of a trajectory being uncertain. If a time interval between
two consecutive sampled points is large, the uncertainty of the
route between the two points would increase. In this paper, we
further claim that road networks are not always available for
inferring routes between two locations. For animal trace data and
outdoor activities in urban areas, the movements are not along
road networks. Thus, our problem is defined as follows:

Problem: Given an uncertain trajectory dataset D and a user-
specified query consisting of a time span ∆� and a location
sequence �: �� → �
 → ⋯ → �� , we infer the top-k popular
routes in a free space such that each route sequentially traverses
the given locations, and the travel time of the route between any
two consecutive query locations is within ∆�.
Figure 4 overviews our framework RICK, which consists of two
components: routable graph construction and route inference.

Routable graph construction: This offline component builds up a
routable graph from an uncertain trajectory dataset. To generate a
routable graph, there are two stages: region construction and edge
inference. First, we partition the space into disjoint cells and then
index the given uncertain trajectories in the gridded space. By
exploring the spatio-temporal characteristics of the uncertain
trajectories passing these cells, we merge these individual cells to
form some geographical regions. Here, each cell forms a vertex in
the routable graph that we are going to build up. Second, we infer
the edges between the cells with the uncertain trajectories. These
edges can be categorized into two types: they are inside a region
or they are between regions. The information inferred for an edge
comprises a moving direction, a transition support, and a travel
time, indicating the transition relationship between two cells.

Route inference: This component, consisting of the route
generation and the route refinement, is responsible for on-line
queries. In the route generation stage, given a query, we propose a
routing algorithm to infer the top-k rough routes, each of which is
represented by a sequence of cells, with the constructed graph.
The routing algorithm first finds out the qualified subroutes
between any two consecutive query locations, and then
concatenates these subroutes into completed routes in a branch-
and-bound manner. In addition, we define a score function based
on historical movements for ranking these routes. In the route
refinement stage, we further refine each rough route to derive a
detailed route represented by a sequence of consecutive segments
from historical data points of uncertain trajectories.

Figure 4. Overview of RICK.

Table 1. Notations

Symbol Description

��
 The jth point in trajectory i

�.g The cell that � locates in
(x,y) A cell id
c(x,y) The number of distinct trajectories traversing (x,y)

θ A temporal constraint

C A minimum connection support

�(g	 → g’	,	���) A set of the travel times from g to g’ by ���

3. ROUTABLE GRAPH CONSTRUCTION

3.1 Region Construction
To construct a routable graph, we discover connected
geographical areas by collaborative learning among historical
uncertain trajectories. We first observe the spatial and temporal
characteristics of the uncertain trajectories. For instance, Figure

5(a) shows three trajectories, ����:	��� ��	�
� !""""# �
�
�	�
� !""""# �$� ,

���
:	��
 �$	�
� !""""# �

 ��	�
� !""""# �$
 , and ���$:	��$ $�	�
� !""""# �
$, where

times are travel times between two consecutive points. The
locations of data points of ����	and ���
 are different even if the
two trajectories follow the same route (e.g., the black solid line).

We observe that 1) �
�. � and �

. � are at the same place; 2) ����

and ���
 have similar travel times from their first points (e.g., ���,

��
) to the place; 3) ���. � and ��
. � are spatially close. The

observations indicate that the route of ����	from ��� to �
� and the

route of ���
	from ��
 to �

 may be the same. We say that the two

subtrajectories ��� → �
�	 and ��
 → �

 are spatio-temporally

correlated (st-correlated). Moreover, if ���	and ��
 are sampled on

the same route, ���. �	and ��
. � could be connected. Specifically,

this means that there exists at least one route between ��� . � and

��
. �. On the other hand, in Figure 5(a), although �
�. � and �
$. � are

at the same place and ���	and ��$ are spatially close, ���$ may be
sampled from the other route (e.g, the green dotted line). The

reason is that ���$ has a longer travel time from ��$ to �
$.

(a) (b)

Figure 5. Spatio-temporally correlated uncertain trajectories.

Based on the aforementioned observations, we define some terms
for constructing connected geographical areas. Table 1
summarizes the notations used in this paper. To clearly describe
spatial relations among data points of uncertain trajectories, we
adopt a gridded space. First, we divide a geographical range into
disjoint cells by a given cell length l. The set of the cells is
denoted as %, and the GID of a cell g is represented by (&, ') .
Moreover, each point of an uncertain trajectory can be mapped
into a cell, and an uncertain trajectory can be transformed into a
sequence of cells. As such, given an uncertain trajectory

���
: ��
 → �

 → ⋯ → ��
 , the trajectory can be transformed into

��
 .g → �

 .g → ⋯ → ��
 .g, where ��
 .g represents the cell that ��
 . �
locates in. Given two cells g = (&, ') and g′ = (&′, '*), the cells g

and g′ are called spatially close if |& − &*| ≤ 1 and |' − '*| ≤ 1.

To explore connected geographical areas, we formally define st-
correlated relations among uncertain trajectories. Given a cell g, if

g	 = ��
 .g for some ��
 ∈ ���
 , we say that ���
 traverses cell g,
denoted g ∈ ���
 . If ���
 traverses from cell g to cell g’, we say
g	 → g’	 ∈ ���
 . The set of the travel times of g	 → g’	 by ���
 is

denoted by �(g	 → g’	,	���
) . If g	 → g’	 ∈ ���
 , �/g	 →
g’	, ���
0 ≠ ∅.

Definition 2 (Spatio-temporally correlated relation): Given two

uncertain trajectories ���
: ��
 → ⋯ → ��
 and ���� : ��� → ⋯ → ��� ,

and a temporal constraint 3, ���
’s subtrajectory ��
 → ⋯ → ��*

and ����’s subtrajectory �4
� → ⋯ → �4*

�
 are st-correlated if

1)	∃	∆�� ∈ �(��
 .g → ��6

 .g , ���
), ∆�
 ∈ �(�4

� .g → �46
� .g , ����)

s.t.
|∆789∆7:|

;<=>∆78,∆7:?
≤ 3;

2) one of the two rules is satisfied:

Rule1: ��
 .g and �4
�
.g are spatially close, and ��*
 .g = �4*

�
.g.

Rule2: ��
 .g =	�4
�
.g, and ��*
 .g and �4*

�
.g are spatially close.

Note that if a trajectory ���′ is a subtrajectory of a trajectory tra,

we denote it as ���′ ⊆ ���.

Given trajectories in Figure 5(a), Figure 5(b) depicts the st-
correlated relation between ���� and ���
 . Let ∆�� ∈ �(���.g →
�
�.g , ����) and ∆�
 ∈ �(��
.g → �

.g , ���
) and assume ∆t� and
∆t
 satisfy a given temporal constraint. According to Rule 1 in

Definition 2, ��� → �
� and ��
 → �

 are st-correlated, because ���.g

and ��
.g are spatially close and �
�.g = �

.g . Similarly, let
∆�′� ∈ �(�
�.g → �$�.g , ����) and ∆�′
 ∈ �(�

.g → �$
.g , ���
) and
assume ∆�′� and ∆�′
 satisfy a given temporal constraint.

According to Rule 2 in Definition 2, �
� → �$� and �

 → �$
 are st-

correlated since �
�.g =�

.g and �$�.g		and �$
.g are spatially close.

Definition 3 (Connection support): Given an uncertain trajectory
dataset D, a set of cells %, a temporal constraint 3, and two cells
g , 	g' ∈ % , where g and 	g' are spatially close, the connection

support of the cell pair (g	, 	g') is defined as |C� ∪ C
| where

C�={(���
, ����)|���
′ and ����′ are st-correlated, g → g'' ∈ ���
′,
and g'	 → g'' ∈ ����′ for some 	g'' ∈ % − >g , 	g'	? , ���
′ ⊆

1

2p

1

3p

2

1p

2

2p

2

3p
1

1p

3

1p

3

2p

1

2p

1

3p

2

1p

2

2p

2

3p

1
1p

���
 , ����* ⊆ ���� , and C
 ={(���
, ����)| ���
′ and ����′ are st-

correlated, g'' → g ∈ ���
′ , and g''	 → g' ∈ ����′ for some

	g'' ∈ % − >g,	g'	?, ���
′ ⊆ ���
 , ����* ⊆ ����}.

For example, in Figure 5(b), given ���.g and ��
.g , which are

spatially close, the support of the cell pair (���.g, ��
.g) =|C� ∪
C
|=1 because C�={(����, ���
)} and C
 = ∅ . Similarly, given

�
�.g and �$
.g, which are spatially close, the support of the cell

pair (�$�.g,�$
.g)=|C� ∪ C
|=1 because C�=∅ and C
={(����, ���
)}.

Definition 4 (Neighbor): Given an uncertain trajectory dataset D,
a set of cells %, two cells g,	g' ∈ %, a temporal constraint 3, and a
minimum connection support C, if the connection support of the
cell pair (g	 , 	g') is greater than or equal to C, g and g' are
neighbors, denoted as g	Eg'.
We define a region as a connected geographical area as follows:

Definition 5 (Region): Given a set of cells %′, %′ forms a region if
for any two cells g,	g' ∈ %′, there exists a chain of cells (g =)g� =
g
 = ⋯ = g�(= g') s.t. g
Eg
F� for each g
 ∈ %′ and G ∈ [1, I).
To construct regions, a naïve method is that we generate all cell
pairs from the set of cells % and then compute the connection
support of each cell pair by checking other cells in %. We then
verify whether the connection supports of cell pairs satisfy the
given minimum connection support C to construct regions.
However, the time complexity of the method is costly. In this
paper, we propose an efficient algorithm to construct regions.

The proposed algorithm utilizes an index structure presented as
follows. Given a cell length and an uncertain trajectory dataset D,
we build up a grid index in which each cell g has a unique GID, a
value J(g), and a corresponding trajectory list. Note that J(g) =
|>���|g ∈ ���, ��� ∈ K?|. In the grid index, each GID indexes a
list of trajectories that records which uncertain trajectories
traverse the cell and which points of these uncertain trajectories
locate in the cell by TIDs and PIDs, respectively. To improve the
efficiency of the region construction, the trajectories in a cell’s
corresponding trajectory list are sorted by L7MN, where L7MN is the
median of >J(�.g)|� ∈ ���? with given ���.

Figure 6. An example of an index structure.

For instance, given a cell length l and an uncertain trajectory

dataset K = >����, ���
, ���$, ���O, ���P? , Figure 6 shows an
example of an index structure. Given a cell (1,4), J(1,4)=3 since
three distinct uncertain trajectories (i.e., ����, ���$, ���P) traverse
cell (1,4). The trajectory list of cell (1,4) records these TIDs (i.e.,
����, ���$, ���P) and the corresponding PID of each trajectory.
The corresponding PID of ���� is 1 since the point of ���� that
locates in cell (1,4) is the first point of ����. As shown in Figure 6,
���$ traverses four cells (i.e., (1,4), (1,3), (3,2), and (4,1)), and we
can calculate that c(1,4)=3, c(1,3)=2, c(3,2)=2, and c(4,1)=2. The

median among {2, 2, 2, 3} is 2 and thus L7MNR=2.

Before constructing regions, we let %=% − %′, where %′={g|J(g) =
0,	g ∈ %}. The algorithm of region construction is detailed in
Algorithm 1. Note that the term enclosed is defined as follows.

Algorithm 1: Region Construction

Input: An uncertain trajectory dataset D, a set of cells %, a temporal
constraint 3, and a minimum connection support C.
Output: A set of regions R.
1. %′ ← Sort cells in % in a decreasing order of J(g);
2. Do

3. g	 ←		Pop the cell from %′;
4. Foreach tra traversing g by the order stored in the grid index
5. U(g) ← >�|�.g = g	�VW	� ∈ ���?;
6. Foreach � ∈ ��� − U(g) and �.g is not enclosed
7. If �. X is contained in some region
8. r ← The region contains	�.g;
9. Else
10. � ← ∅;
11. If � is before �* for all �* ∈ U(g)
12. � ← CM(�, �.g,	g, 3, Z, [\�]1);
13. ElseIf � is after �* for all �* ∈ U(g)
14. � ← CM(�, �.g,	g, 3, Z, [\�]2);
15. Else
16. � ← CM(�, �.g,	g, 3, Z, [\�]1);
17. � ← CM(�, �.g,	g, 3, Z, [\�]2);
18. [← [∪ >r?;
19. Until %′ is empty or each cell in % is in some � ∈ R;
20. Return [;

Algorithm 2: Cell Merging (CM)

Input: A region r, a cell �.g, a cell g, a temporal constraint 3, a minimum
connection support C, and an indicator I
Output: A region r
1. Let �.g = (&, ');
2. Foreach cell g′ = (&′, '′) ∈ % − � where |&* − &| ≤ 1 and |'* − '| ≤ 1
3. If I is Rule1

4. Verify whether �.g	Eg ′ is held with given g by rule 1;
5. Else

6. Verify whether �.g	Eg ′ is held with given g by rule 2;
7. If �.g	Eg′
8. If � = ∅	
9. � ← >�.g	?;
10. If g′ is contained in some region

11. �′ ← The region contains	g′;
12. Else
13. �′ ← ∅

14. �′ ← CM(�*,g′,	g, 3, Z, `);
15. � ← � ∪ �';
16. Return r;

Definition 6 (Enclosed): Given a set of cells % and a cell g ∈ %,
the cell g is enclosed if there exists a region r	⊆ % s.t. g	,	g' ∈ �,

∀g' ∈{g'	|	g' and g are spatially close, g' ∈ %}.

In Algorithm 1, we iteratively merge cells to form regions by
calculating the connection supports of cell pairs. To efficiently
construct regions, we determine an order for the calculation of
connection supports of cell pairs according to J(g). Once a cell is
chosen, we iteratively pick a trajectory from the cell’s trajectory
list in Step 4. We then calculate the connection supports of the
cell pairs around the points of the trajectory and merge qualified
cells from Step 5 to Step 18. An example of this procedure is
illustrated in Figure 7. Let a chosen cell be g . Assume the

trajectory ���� traversed it and �
�.g=�O�.g =	g (i.e., U(g) = >�2
1, �4

1?).
In Step 6, we pick a point (e.g., ���) from ���� but not the point is
not in U(g). If the cell that the point locates in is not enclosed, the
cell would be possibly merged with other cells. The connection

supports of the cell pairs of ���.g and each cell around ���.g are
calculated and the qualified cell pairs will be merged. Based on

(1,1)

l

TID PID

tra3

tra5

l

tra1

1

1

1

tra1

tra2

tra3

tra4

tra5

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

(4,1)

(4,2)

(4,3)

(4,4)

GID c(g)

(1,4) 3

TID Sequence of GIDs

tra3 (1,4)(1,3)(3,2)(4,1)

mtra

2

Grid Index

Transformed Trajectory

Sorted by mtra

Trajectory Dataset

���.g, a region (e.g., the blue cells in Figure 7) is generated in the
first round and more cells (e.g., the red cells in Figure 7) are

merged into the region around ���.g in the second round (i.e., Step

14 in Algorithm 2). Similarly, for ���.g, a merging process will be

stopped if no cell can be merged around ���.g. We then chose

other points (e.g., �$�, �P�) to construct regions around these points
in the same way.

Figure 7. Region construction process.

Time complexity analysis: Given an uncertain trajectory dataset K
and a set of cells %, the time complexity of the naïve method is
b(LV$) where |%| = V and |K| = L . Similarly, the time

complexity of Algorithm 1 is b(V(�cXV + JL
)), where J is the
minimal number of the first loop. For Step 1 in Algorithm 1, it
costs b(V�cXV) to sort cells in decreasing order of J(g) . In
addition, the time complexity of Algorithm 2 is b(L) because
there are at most L uncertain trajectories for counting the
connection support of a cell pair. Thus the time complexity of the

remaining steps in Algorithm 1 is b(JVL
).

3.2 Edge Inference
Once the regions are generated, we then infer edges and derive
edge information including moving directions, transition supports,
and travel times from historical uncertain trajectories. To generate
the edges of a routable graph, we infer the edges within each
region, and then infer the edges among regions.

A routable graph is a directed graph e = (f, g), where f is a set
of vertices and g is a set of edges. Each vertex represents a
geographical area, i.e., a cell. Each directed edge e indicates a
transition relationship and has two attributes, the transition

support e.s and the travel time]. � . To derive the transition
support of an edge, we record which distinct uncertain trajectories
traverse the edge. In other words, an edge has an uncertain
trajectory list to record which distinct uncertain trajectories
traverse it.

According to the definition of a region, a region is composed of
connected cells, and thus we first generate virtual bidirected edges
between cells if the cells are neighbors in a region, To infer edges’
realistic directions, transition supports, and travel times, we
propose a shortest path based inference approach.

Given a region and an uncertain trajectory dataset, we utilize the
uncertain trajectories traversing the region to derive edge
information in the region. For each trajectory traversing the region,
we infer the shortest path between any two consecutive points of
the trajectory by virtual bidirected edges in the region. We
illustrate edge inference in a region in Figure 8. As shown in
Figure 8(a), four uncertain trajectories pass through the region.
For instance, in Figure 8(b), an uncertain trajectory �� → �
 → �$
(blue squares) traverses the region, and we infer the shortest paths
from �� to �
 and the shortest paths from �
 to �$. As shown in
Figure 8(b), we find one shortest path from ��	to	�
 , and two
shortest paths from �
	to	�$. After finding the shortest path
between two consecutive locations, we divide the travel time
evenly and add it to the travel time list of each edge in the shortest

path. In addition, each edge of the shortest path adds the trajectory
ID into its corresponding trajectory list, and the transition support
of each edge in the shortest path is accumulated one. If there are
multiple shortest paths between two consecutive locations, we
similarly update the information of each edge in these paths.

By using historical uncertain trajectories to infer edge information
in a region, we further eliminate the redundant edges in the region
and the edges whose transition supports are 0. Given an edge e1
from the cell g and the cell g', where g and g' are spatially close,
the edge e1 is redundant in a region if there exist an edge e2 from
g to g'' and an edge e3 from g'' to g', such that 1) g and g'' are

spatially close and g' and g'' are spatially close, 2)
i:. FiR.

 >]�. k,

and 3)
|i:.7FiR.79i8.7|

;<=>(i:.7FiR.7),i8.7?
≤ 3 where 3 is a given temporal

constraint. Figure 8(c) shows the inferred edges in the region after
reducing edges. The travel time of each edge is estimated by the
median of all the travel times of the edge.

(a) (b) (c)

Figure 8. Edge inference in a region.

(a) (b)

Figure 9. Edge inference between regions.

In the following, we construct edges between regions. Similarly,
we generate edges between regions by using historical uncertain
trajectories first. This means that if an uncertain trajectory
traverses a cell of one region to a cell of another region, an edge is
constructed between the two cells. Next, we eliminate the
redundant edges between regions. Given an edge e1 from the cell
g to the cell g', where g and g' are in different regions, the edge e
is a redundant edge between the two regions if there exists an

alternative route em → ⋯ → en from the cell g to the cell g' such

that 1)
�

n9mF�∑]� . k�
�p
 >]. k , and 2)

q∑ ir.7s
rtu 9i.7q

;<=v∑ ir.7s
rtu ,i.7w

≤ 3 where

3	is a given temporal constraint. Figure 9 shows an example of
edge inference between two regions. As shown in Figure 9(a),
edge]� and edge]
 are generated between the two regions by
historical uncertain trajectories. For instance, in Figure 9(b), edge

e�	 is a redundant edge if 1)
�
O∑]� . kP

�p
 >]�. k , and 2)

x∑ ir.7y
rt: 9i8.7x

;<=z∑ ir.7y
rt: ,i8.7{

≤ 3 with a given 3.

Note that the transition information of an eliminated edge is
propagated to alternative routes. The travel time of an eliminated
edge is evenly propagated to the edges of each alternative route.
The trajectory list of an eliminated edge is updated to each edge’s
corresponding trajectory list in alternative routes.

4. ROUTE INFERENCE
Given a location sequence and a time span, we generate the top-k
popular routes by two phases: route generation and route
refinement. In the first phase, we propose routing algorithms to
search for the top-k coarse routes with the routable graph. We
further refine the discovered the top-k routes to effectively derive
specific routes in the second phase.

1

3p

1

2p

1
1p 1

5p

1

4p

In the route generation phase: we first generate possible routes
between each two consecutive queried locations (called local

routes) and then search for the top-k routes (called global routes)
from the generated local routes.

A route derived in this phase is represented by a sequence of
vertices with a given graph e = (f, g). Note that a vertex in the
graph represents a cell; thus a route here is regarded as a sequence
of cells, denoted as �:	g� ⟶ g
 ⟶ ⋯ ⟶ g�. Given a sequence of
query locations and a time span, we search for qualified routes
between any two consecutive query locations with the constructed
graph. Before searching for routes with the graph, we need to
specify the corresponding vertices of query locations. Since a
vertex represents a geographical area of a cell, a query location
can be mapped to the vertex whose corresponding geographical
area overlaps the location. However, it is possible that a query
location cannot be mapped to any vertex in the graph. We further
select the vertices whose corresponding cells are close to the
query location. We adopt the minimum distance (MINDIST) [12]
to formulate the distance between a query location and a cell.
According to the distance measurement, we specify the cells that
are close to such query locations. Thus, a given location sequence
is transformed into a sequence of sets of cells. Moreover, we
transform a location sequence into cell sequences by combining
these cells. After query transformation, we search for the top-k
routes according to each cell sequence.

For instance, given a location sequence �: �� → �
 → �$ in Figure
10(a), the locations �� and �
	 are mapped to cells g1 and g2,
respectively. By the minimum distance measurement, the set of
cells {g3, g4} is used to represent the location �$. Then, the
location sequence �� → �
 → �$ is transformed into two cell

sequences, i.e., g1→g2→g3 and g1→g2→g4.

(a)Query transformation. (b)Route generation. (c)Route refinement

Figure 10. Route inference.

We generate routes with respect to each cell sequence. Before
introducing the routing algorithm, we define the score function for
the routes as follows.

Definition 7 (Route score): Given a graph e = (f, g), a route
}:}� → }
 → ⋯ → }� , where }
:	g
8 ⟶ g
: ⟶ ⋯ ⟶ g
s , the

score of the route is defined as ~(}) = ∑ �(}
)�

p� , where

�(}
) = �
�9� | ⋃ >���|g
r → g
r�8 ∈ ���?�9�

�p� |.
For each cell sequence, we first search for the top-k local routes
between any two consecutive cells in the cell sequence (e.g., g and
g ') by an A*-like routing algorithm. However, a possible
maximum speed could be derived from historical uncertain
trajectories or be determined by difference applications. Given a
maximum speed, possible positions between any two consecutive
query locations can be restricted in a range if a time interval
between the two locations is specified [11]. That is, the possible
routes are restricted in the cells overlapping the range. For the A*-
like routing algorithm, an estimated score of a route from a cell g

to a cell g' is represented as follows.

Given two cells g and g', a current visited cell g'', and a specified

range r, an estimated score of a route }:}� ⟶ }� from a cell g to

a cell g' in a specified range r is ~�(}) = �(}�) + ℎ/}�0, where

}� is a known route from cell g to cell g'', and ℎ/}�0 is the score

of an estimated route }� from cell g'' to cell g'.
Definition 8 (Optimal score): Given a graph e = (f,g) , an
uncertain trajectory dataset D, a specified range r, and two cells g
and g', the optimal score of the routes from a cell g to a cell g' in r
is defined as

ℎ�(}) = |>���|���	passes	through	the	range		�, ��� ∈ K?|
for some estimated route } from a cell g to a cell g'.
Once a local route is generated from the cell g to the cell g' and
satisfies the given time span, the score of the local route is
calculated. If there are more than k local routes constructed from
the cell g to the cell g', the k-th maximum score of these local
routes is recorded and incrementally updated. Based on the
estimated optimal score function, a branch of searching routes will
be stopped if the optimal score of routes generated from the
branch is less than the updated k-th maximum score.

Based on the top-k local routes between any two consecutive cells
of each cell sequence, we search for the top-k global routes by a
branch-and-bound search approach. For instance, given a cell
sequence g1→g2→g3 in Figure 10(a), a global route is derived as a
sequence of cells (dark grey) in Figure 10(b). To derive a specific
route, a route is further transformed into a line by concatenating
the centers of any two consecutive cells in the route. Figure 10(b)
shows an example of such a route by a blue line.

However, it is possible that we search for local routes between
two cells belonging to different regions. In the A*-like algorithm,
although we search for local routes between two given cells in a
restricted range of a graph, the search space is still large if the
distance between two given cells is far and they are in different
regions. It induces that a route between the two cells would
possibly pass through several other regions. On the other hand, a
lower bound of transition times between any two regions can be
estimated by edge information. It helps us stop searching for
routes between two regions if the lower bound of transition time
between the two regions exceeds the time span. Hence, to improve
the efficiency of route generation, we modify the proposed A*-
like routing algorithm and introduce a two-layer routing algorithm.

Figure 11. The scenario of the two-layer routing algorithm.

Before searching for local routes between two given cells, we first
determine the region sequences to reduce searching space. By
utilizing a lower bound of transition times between any two
regions, we can generate region sequences with respect to two
given cells. According to each region sequence, we search for
possible local routes that sequentially traverse these regions. Note
that the proposed A*-like algorithm is used for searching for
routes between any two regions here. In Figure 11, for instance,
given a location sequence �� → �
, and a corresponding range �,
the location �� and the location �
	locate in region [� and region
[
, respectively. There are multiple possible region combinations
for searching for routes between the two locations. Although the
searching space of route generation is restricted to the range �
(e.g., the red part), the routes from �� to �
 would possibly

traverse the regions in different orders. In Figure 11, there are
many possible region sequences from �� to �
 (e.g., [� → [O ,
[� → [
 → [O , [� → [$ → [O , [� → [
 → [$ → [O etc.). With
utilizing lower bounds of transition times between regions, the
possible region sequences would be reduced to satisfy the given
time span. For instance, the qualified region sequences are marked
by red edges in Figure 11 (i.e.,	[� → [
 → [O, [� → [$ → [O).
After deriving region sequences, we search for possible routes
which traverse each region sequence.

After route generation, the top-k routes are inferred, and we
further refine each route using historical data points. Route
refinement has three steps: data point selection, segment
formulation, and segment concatenation. First, given an inferred
rough route represented by a sequence of cells, we select the
historical uncertain trajectories that traverse the cells in the same
order as the route. Next, we extract the data points that locate in
cells of the rough route from these selected uncertain trajectories,
and thus derive a set of points for each cell of the route. To
formulate a specific route from selected points, we adopt linear
regression for the set of points of each cell to derive a segment.
We then concatenate the segments in the same order as an original
inferred route. Figure 10(c) shows an example of a refined route.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
RICK using real datasets, including check-in records from
Foursquare and taxi trajectories. The datasets and experimental
setting is presented in Section 5.1. In the experiments, we first
demonstrate the results using check-in records in Manhattan. To
evaluate the effectiveness of our proposed RICK, we use the
dataset of taxi trajectories. In the experiments of the performance
study, we compare our proposed RICK with the existing method
in terms of effectiveness and efficiency. Furthermore, the
experiments demonstrate the improvements of routable graph
construction and route inference.

5.1 Datasets and Settings

5.1.1 Real Datasets
In this paper, we use two real datasets to conduct the extensive
experiments. One is the check-in dataset from Foursquare. We
collected check-in records in Manhattan, and for each user, a
series of check-in records recorded in one day is regarded as a
trajectory. We pruned the trajectories that contained less than
three check-in records. There are totally 6,600 trajectories. The
other real dataset contained 15,000 taxi trajectories in Beijing.
The average sampling rate of the raw trajectories is less than one
minute. To simulate uncertain trajectories, we resampled each raw
trajectory such that the time interval between two consecutive
resampled points of the trajectory at least exceeded a given
sampling rate S. In the experiments, the sampling rate S is set
from one minute to five minutes and the default S is five minutes.
For example, given S=5, the time interval between two
consecutive resampled points is at least five minutes or even more.

5.1.2 Metrics
To evaluate the effectiveness of our RICK, we introduce an
approach to generate the ground-truth from the raw trajectories to
evaluate the effectiveness of the inferred routes. For each query,
the raw trajectories that satisfy the query are selected and ranked.
To rank these trajectories, a raw trajectory is transformed into a
sequence of road segments and the frequency of a road segment is
defined as the number of distinct trajectories that traverse it. The
score of a transformed trajectory ���: �� → �
 → ⋯ → �� is
defined by (∑ d(�
)�

mp�) ���. �]VX�ℎ⁄ , where �
 is a road segment

and d(�
) is the frequency of the road segment �
 . Hence, the
selected trajectories can be ranked by their scores.

To evaluate the difference between an inferred trajectory and a
raw trajectory of the ground-truth, we first apply the length-
normalized dynamic time warping distance (NDTW). Given an
inferred route � and a raw trajectory ���, we define the NDTW
between two trajectories as NDTW(�, ���) = DTW(�, ���) �. �]VX�ℎ⁄
for an optimal alignment path. To further reflect the quality of
inferred routes, we utilize a maximum distance (MD) between an
inferred route and a raw trajectory of the ground-truth according
to the discovered NDTW. MD is defined as the maximum value
of the distances measured by the optimal alignment path.
Therefore, the two measurements for evaluating the inferred top-k
routes are defined as follows:

NDTW(T,	T′)=	Avg�r∈� min7MN∈�* NDTW(��, ���), and

MD(T,	T′)=Avg�r∈�MD(�� , ���′),
where T is the set of inferred top-k routes, T′ is the set of top-k
raw trajectories, and ���′=Arg	min7MN∈�* NDTW(�� , ���).
In the experiments, the default rank threshold k is 3.

5.2 Visualization of Results
In this subsection, we use the check-in dataset in Manhattan to
visualize the results derived by RICK. We first demonstrate the
constructed routable graph in Figure 12 with given cell length
l=500 (meters), temporal constraint 3 =0.2 and minimum
connection support C=3. In Figure 12, the regions are represented
by different colors in Figure 12(a), and Figure 12(b) shows the
edges between cells. Note that the edges within a region are drawn
by blue lines, and the edges between regions are drawn by black
lines. Based on the routable graph, we perform one query and let
the span time be one hour for each query. Given a query as

“Central Park → The Museum of Modern Art → Times Square

→ Empire State Building → SoHo”, the top-1 route inferred by

RICK is depicted in Figure 12(c). As shown in Figure 12(c), the
route does not simply connect the query locations, but passes
through other attractions. For example, for the partial route from
“The Museum of Modern Art” to “Times Square”, RICK
constructs this partial route to pass by the “Rockefeller Center”
based on users’ historical check-in records.

(a) Regions (b) Routable graph (c) Top-1 route

Figure 12. Visualization of results in Manhattan.

5.3 Performance Study
In this section, we evaluate the performance of RICK by taxi
trajectories. First, to analyze the effect of queries, the length of
query location sequence |�| is set from 2 to 4. In addition, a query
location sequence is generated by considering a given distance
between any two consecutive query locations, denoted as ∆d. For
a query, ∆t is determined according to ∆d. In the experiments, ∆d
is varied from 1 to 5 (in kilometers), and the corresponding ∆t is
set from 4 to 20 (in minutes). For each experiment, we perform
almost 100 queries and averaged the results.

5.3.1 Evaluation of Route Inference
We compare our framework with a baseline and analyze the

effectiveness of our inferred routes in different aspects.

Baseline: To evaluate the effectiveness of the discovered routes,
we compare the proposed RICK with the existing approach (MPR)
in [3]. In [3], given two locations (i.e., |�|=2), the most popular
rout, which connects the two query locations, is derived. In the
experiments, the parameters of MPR are set as α=2, β=2, the
coherence threshold τ=0.8, and the cluster size threshold φ=20.
For RICK, the settings are l=300 (meter) and k=1. Figure 13
shows the experimental results of MPR and RICK under the Taxi
dataset with S and ∆d varied. As shown in Figure 13(a), the error
of MPR increases as S or ∆d	increases. It is worth mentioning that
the error of RICK slightly increases as S or ∆d	increases, showing
that RICK is able to derive the routes from uncertain trajectories.
Figure 13(a) shows that RICK is more effective than MPR,
although Figure 13(b) demonstrates that the query time of RICK
is slightly higher than the query time of MPR.

Effect on route refinement: In the route inference of the proposed
RICK, the top-k routes are derived after route generation and are
further refined by route refinement. In this subsection, we
compare the effectiveness of the route inference without route
refinement (w/o RR) and that of the route inference with route
refinement. We set k=1 and |�|=2 in the experiments. Figure 14
shows the error of top-1 routes by NDTW and MD. As shown in
Figure 14, the errors of inferred routes increase as ∆d increases. In
addition, a larger l increases the error of routes discovered without
route refinement. In Figure 14, with route refinement, the error of
the inferred routes is obviously reduced as l increases.

Impact of data sparseness: To study the effect of the data
sparseness, we calculate the number of GPS points per km2 and
derive different data sparseness by setting different S. The number
of GPS points per km2 is increased from 77 to 275 while S is
decreased from five minutes to one minute. Figure 15 shows that
the errors (both NDTW and MD) slightly decrease as the data
sparseness increases. When the data sparseness is 275 GPS points
per km2, the errors of the inferred routes of at least 4 km (i.e.,
|�|=2 and ∆d=4) are less than 500 meters and the errors of the
inferred routes of at least 12 km (i.e., |�|=4 and ∆d=4) are less
than 800 meters. However, NDTW is less than 300 meters even
though the data sparseness is 77 GPS points per km2. The
proposed framework is effective for inferring the top-k routes.

Efficiency: We investigated the query time of RICK and show the
results in Figure 16. In the experiments, l=300 (meters), 3 = 0.1,
C=8, S=5 (minutes), and k=3. In the route inference, we improve
the efficiency of the route generation by a two-layer routing
algorithm. To demonstrate the effectiveness of the two-layer
routing algorithm, we compare the query time of RICK and the
query time of RICK without using the two-layer routing algorithm
(denoted by RICK-) in Figure 16(a) with varied |�| and ∆d. As
shown in Figure 16(a), RICK outperforms RICK-, and the query
time is obviously reduced while |�| or ∆d is larger. In Figure
16(b), the query time of RICK gradually increases as |�| or ∆d
increases. However, the query time is less than one second.

5.3.2 Evaluation of Routable Graph
In the routable graph construction of RICK, we construct the
regions referring to the connected areas and further infer and
refine the moving directions within the regions. To investigate
the impact of exploring shortest path on refining the routable
graph, we evaluate the graph built without refinement (denoted as

RG), and the graph refined by shortest path based edge inference
(denoted as RG+).

To evaluate the correctness of the connectivity in a routable graph,
given a raw trajectory dataset D and a graph e =< f, g >, the
precision of connectivity in G is measured as follows:

|>]|]	is	traversed	by	some	��� ∈ K	and] ∈ g?|/|g|.
The temporal constraint 3 and the minimum connection support C
are used for constructing a routable graph. Hence, we analyze the
precision of connectivity in the graph with varying 3 and C.

In Figure 17, S is set as 5 minutes in the experiments. In Figure
17(a), C is varied from 8 to 12 and 3 = 0.1. Figure 17(a) shows
that the precision of RG and the precision of RG+ increase as C
increases. This is because a stricter constraint induces a higher

(a) (b)

Figure 13. Performance comparison of RICK and MPR.

(a) (b)

Figure 14. Effect on route refinement.

Figure 15. Effectiveness evaluation with data sparseness varied.

(a) (b)

Figure 16. Efficiency evaluation.

(a) (b)

Figure 17. Connectivity evaluation.

 0

 300

 600

 900

 1200

 1 2 3 4 5

N
D

T
W

 (
in

 m
)

∆d (in km)

S=3(RICK)

S=5(RICK)

S=3(MPR)

S=5(MPR)

 0

 30

 60

 90

 120

 1 2 3 4 5

Q
u
e
ry

 t
im

e
 (

in
 m

s
)

∆d (in km)

S=3(RICK)

S=5(RICK)

S=3(MPR)

S=5(MPR)

 0

 110

 220

 330

 440

 550

 660

 1 2 3 4 5

N
D

T
W

 (
in

 m
)

∆d (in km)

l=300

l=300(w/o RR)

l=500

l=500(w/o RR)

 0

 300

 600

 900

 1200

 1500

 1 2 3 4 5

M
D

 (
in

 m
)

∆d (in km)

l=300

l=300(w/o RR)

l=500

l=500(w/o RR)

 0

 300

 600

 900

 1200

77 91 113 155 275

E
rr

o
r

(i
n
 m

)

Number of GPS points per km

|q|=2

2

∆d=2(NDTW)

∆d=4(NDTW)

∆d=2(MD)

∆d=4(MD)

 0

 300

 600

 900

 1200

77 91 113 155 275

E
rr

o
r

(i
n

 m
)

Number of GPS points per km

|q|=4

2

∆d=2(NDTW)

∆d=4(NDTW)

∆d=2(MD)

∆d=4(MD)

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5

Q
u
e
ry

 t
im

e
 (

in
 m

s
)

∆d (in km)

|q|=3(RICK-)

|q|=4(RICK-)

|q|=3(RICK)

|q|=4(RICK)

 0

 100

 200

 300

 400

 500

 1 2 3 4 5

Q
u
e
ry

 t
im

e
 (

in
 m

s
)

∆d (in km)

|q|=2

|q|=3

|q|=4

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 8 9 10 11 12

P
re

c
is

io
n

C

RG

RG+

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0.1 0.3 0.5 0.7 0.9

P
re

c
is

io
n

Θ

RG

RG+

precision (i.e., a higher C). In Figure 17(b), C=8 and 3 is varied
from 0.1 to 0.9. As shown in Figure 17(b), the precision of RG
and the precision of RG+ decrease as 3 increases. The reason is
that the precision is reduced as the constraint is loosened (i.e., a
higher 3). Figure 17 depicts that the precision of RG+ is higher
than that of RG, and it demonstrates that the shortest path based
edge inference improves the correctness of the explored
connectivity in a geographic space.

6. RELATED WORK
Route planning based on GPS trajectories: Route planning is
widely investigated in [14,13,4,3] with GPS trajectories. The work
[14] mainly inferred fastest routes from historical trajectories. In
[13], the authors study travel route planning based on searching
GPS trajectories. In [4], given a set/a sequence of locations, the
top-k trajectories that best connect the given locations are
retrieved from existing GPS trajectories. In [3], the authors
investigated the problem of popular route planning without road
network information. They introduced a transfer network model
by exploiting intersections from historical GPS trajectories, and
inferred the most popular route between two given locations by
the turning probability of each intersection. However, these works
were carried out using high sampled GPS trajectories. Given
uncertain trajectories, the results obtained by [13,4] are historical
uncertain trajectories and these uncertain trajectories still reveal
rough routes. In addition, the trajectories derived by [4] may be
far away from the query locations because these trajectories are
low sampled. Using a dataset of uncertain trajectories, the
accuracy of a transfer network model in [3] would be destroyed
and then the effectiveness of inferred routes would be decreased.

Trip Planning based on geo-tagged social media: In recent years,
mobile social applications have become popular, generating a
huge volume of social media data, such as check-in records or
geo-tagged photos. Such social media data can be regarded as
sequences of visited locations, thereby revealing users’ travel
experience in terms of travel routes that link points-of-interest
(POIs). Using geo-tagged photos, several studies [1,7,15] have
investigated the problem of trip planning. However, the
recommended trips are represented by a sequence of POIs, and the
detailed route between two consecutive POIs is not specified.
Different from these works, our method aims to construct the
detailed route that is most likely to be taken by people by learning
from the uncertain POI sequences in a mutual reinforcement way
(e.g., Figure 2).

Uncertain trajectories: The research topics of trajectory
uncertainty are studied in [6,10,11,16]. The work [10] introduces
the problem of uncertain trajectory clustering, and focuses on the
trajectory uncertainty caused by measurement errors. To reduce
the uncertainty of an uncertain trajectory, the work [11]
formulates an uncertain trajectory in a free space by a given
maximum moving speed. However, the indistinct parts of an
uncertain trajectory are enclosed in a spatio-temporal range
without pointing out specific routes. In addition, the study [6]
applies the techniques developed in a free space to model an
uncertain trajectory in a road network. The possible routes
between two sampled locations of an uncertain trajectory are
restricted in a set of road segments by road network information
and speed limits. Although the work [16] investigated the problem
of discovering the top-k possible routes sequentially passing the
queried locations from uncertain trajectories, they use road
network information to reduce the uncertainty of low sampled

trajectories. These works cannot derive routes from uncertain
trajectories without road network information.

7. CONCLUSIONS
In this paper, we proposed RICK to infer the top-k routes
traversing a given location sequence within a specified travel time
from uncertain trajectories. The proposed RICK consists of the
routable graph construction and the route inference. We have
evaluated the proposed RICK in terms of both effectiveness and
efficiency using two real datasets, check-in datasets and driving
trajectories. The experiments show three aspects: 1) the inferred
routes not only connect user-specified locations but also indicate
detailed routes; 2) the proposed routable graph provides a good
model of the uncertain trajectory dataset with an accuracy of 0.9;
3) on average, our routing algorithm can find the top-3 routes
within 0.5 seconds, with a distance error smaller than 300 meters
compared to its corresponding ground-truth. Meanwhile, RICK
clearly outperforms the baseline by generating routes 300-700
meters closer (than those of the baseline) to the ground-truth. The
experiments demonstrate the effectiveness and the efficiency of
RICK. In the future, we will plan routes considering different start
times and different user preferences. In addition, we will evaluate
RICK by given other uncertain trajectory datasets, e.g., geo-
tagged photo trips.

8. REFERENCES
[1] S. Basu Roy, S. Amer-Yahia, G. Das, and C. Yu. Interactive Itinerary

Planning. In IEEE ICDE, pages 15-26, 2011.
[2] X. Cao, G. Cong, and C. S. Jensen. Mining Significant Semantic

Locations from GPS Data. In VLDB, 3(1): 1009-1020, 2010.
[3] Z. Chen, H. T. Shen, and X. Zhou. Discovering Popular Routes from

Trajectories. In IEEE ICDE, pages 900-911, 2011.
[4] Z. Chen, H. T. Shen, H. T., X. Zhou, Y. Zheng, and X. Xie. Searching

Trajectories by Locations: An Efficiency Study. In ACM SIGMOD, pages
255-266, 2010.

[5] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Trajectory Pattern
Mining. In ACM SIGKDD, pages 330-339, 2007.

[6] B. Kuijpers, B. Moelans, W. Othman, and A. Vaisman. Analyzing
Trajectories Using Uncertainty and Background Information. In SSDT,
pages 135-152, 2009.

[7] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel route
recommendation using geotags in photo sharing sites. In ACM CIKM,
pages 579-588, 2010.

[8] Q. Liu, Y. Ge, Z. Li, E. Chen, and H. Xiong. Personalized Travel
Package Recommendation. In IEEE ICDM, pages 407-416, 2011.

[9] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining Periodic Behaviors
for Moving Objects. In

ACM SIGKDD, pages 1099-1108, 2010.
[10] N. Pelekis, I. Kopanakis, E. E. Kotsifakos, E. Frentzos, and Y.

Theodoridis. Clustering Trajectories of Moving Objects in an Uncertain
World. In IEEE ICDM, pages 417-427, 2009.

[11] R. Praing and M. Schneider. Modeling Historical and Future Movements
of Spatio-temporal Objects in Moving Objects Databases. In ACM CIKM,
pages 183-192, 2007.

[12] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries.
In ACM SIGMOD, pages 71-79, 1995.

[13] L.-Y. Wei, W.-C. Peng, B.-C. Chen, and T.-W. Lin. PATS: A Framework
of Pattern-Aware Trajectory Search. In UMMM, pages 372-377, 2010.

[14] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-
drive: Driving Directions Based on Taxi Trajectories. In ACM

SIGSPATIAL GIS, pages 99-108, 2010.
[15] Z. Yin, L. Cao, J. Han, J. Luo, and T. S. Huang. Diversified Trajectory

Pattern Ranking in Geo-tagged Social Media. In SDM, pages 980-991,
2011.

[16] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing Uncertainty of Low-
Sampling-Rate trajectories. In IEEE ICDE, 2012.

[17] Y. Zheng, L. Zhang, X. Xie, and W.-Y Ma, Mining Interesting Locations
and Travel Sequences from GPS Trajectories. In WWW, pages 791-800,
2009.

[18] Y. Zheng and X. Zhou. Computing with Spatial Trajectories. Springer-
Verlag New York Inc, 2011.

