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ABSTRACT 

The advances in location-acquisition technologies have led to a 
myriad of spatial trajectories. These trajectories are usually 
generated at a low or an irregular frequency due to applications’ 
characteristics or energy saving, leaving the routes between two 
consecutive points of a single trajectory uncertain (called an 
uncertain trajectory). In this paper, we present a Route Inference 
framework based on Collective Knowledge (abbreviated as RICK) 
to construct the popular routes from uncertain trajectories. 
Explicitly, given a location sequence and a time span, the RICK is 
able to construct the top-k routes which sequentially pass through 
the locations within the specified time span, by aggregating such 
uncertain trajectories in a mutual reinforcement way (i.e., 

uncertain + uncertain →  certain). Our work can benefit trip 

planning, traffic management, and animal movement studies. The 
RICK comprises two components: routable graph construction 
and route inference. First, we explore the spatial and temporal 
characteristics of uncertain trajectories and construct a routable 
graph by collaborative learning among the uncertain trajectories. 
Second, in light of the routable graph, we propose a routing 
algorithm to construct the top-k routes according to a user-
specified query. We have conducted extensive experiments on 
two real datasets, consisting of Foursquare check-in datasets and 
taxi trajectories. The results show that RICK is both effective and 
efficient.   

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – data 

mining, spatial databases and GIS.  

General Terms 

Algorithms, Design, Experimentation. 

Keywords 

Collaborative learning, trajectory data mining, route inference, 
social media. 

1. INTRODUCTION 
The increasing availability of location-acquisition technology (e.g., 
GPS), has led to a huge volume of spatial trajectories that 
represent the movement routes of humans, animals, hurricanes, 
and vehicles. Without loss of generality, a trajectory is a sequence 
of data points where each data point records location information 
and a time-stamp [18]. For example, the driving routes of vehicles 

and migratory routes of animals are usually recorded by GPS 
trajectories. Meanwhile, users could perform check-in services 
(e.g., Foursquare) to note their locations via a mobile phone and 
share their photos and activities. The time-ordered check-in 
records of a user are able to be expressed by trajectories. 
Moreover, on a photo sharing website (e.g., Flickr), people share 
geotagged photos whose time-stamps and geolocations can be 
represented as trajectories as well. However, these trajectories are 
usually generated at a low frequency due to energy saving and 
features of applications, resulting in the uncertainty of a moving 
object’s mobility in a trajectory. 

Figure 1 shows statistic information from Foursquare datasets in 
Manhattan. As shown in Figure 1(a), most check-in time intervals 
vary from 1 to 180 minutes. Moreover, we further investigate the 
distances among these check-in records. The medians of the 
distances between two check-in records are less than two 
kilometers in Figure 1(b). The above two observations show that 
even in Manhattan, which has a lot of tourists, the uncertain routes 
apparently exist between two check-in records. 

 
(a)                                                   (b) 

Figure 1. Observations from Foursquare datasets. 

 
(a) Uncertain trajectories           (b) Simple concatenation 

 
(c) Uncertain trajectories          (d) Mutual reinforcement 
Figure 2. Examples of uncertain trajectories. 

These low sampled trajectories do not detail the routes, and raise 
uncertain routes between two consecutive sampled points in the 
trajectories. In this paper, we call such trajectories uncertain 
trajectories. Examples of uncertain trajectories are illustrated in 
Figure 2. Figure 2(a) shows two check-in trajectories, ����: A →
C → D  and ���
: D → B , in a rural space (i.e., road network 
information is not available). If a tourist would like to travel from 
�� to �
, he/she may have no idea of how to travel without the aid 
of road networks or by referring to a trajectory (e.g., ���� or ���
). 
In addition, given one migratory trajectory of a bird, we do not 
know where the bird flew between two sampled points which are 
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several miles away from each other. Due to the uncertainty of low 
sampled trajectories, how to derive detailed routes from uncertain 
trajectories is an important task. 

The prior work [16] proposed a framework to discover the routes 
from historical trajectories. Explicitly, given a set of historical 
trajectories, an underlying road network, and a location sequence, 
the work aims to suggest the top-k possible routes sequentially 
passing the queried locations. Note that by the aid of the given 
road network, the work explores possible routes derived from road 
networks. However, for some applications (e.g., animal migration 
routes or hurricane routes), road network information is not 
available. As for check-in datasets and geo-photo datasets, the 
service providers may not have road network information either. 
Without road network information, the work [16] cannot derive 
the top-k routes. 

In this paper, without road network information, we propose a 
Route Inference framework based on Collective Knowledge 
(abbreviated as RICK) to construct the popular routes from 
uncertain trajectories. Explicitly, given a location sequence and a 
time span, RICK constructs the top-k routes, sequentially passing 
the locations within the specified time span. The RICK is 
beneficial for many practical applications. Examples of 
applications are trip planning [2,5,7,8,15,17], animal movement 
behavior studies [9] and traffic flow analysis [14]. For example, a 
user plans to take a tour that consists of three attractions (e.g., the 
Temple of Heaven, the Palace Museum and the Houhai Bar Street 
in Figure 3(a)) in Beijing, while having no idea of how to travel 
around them. At this moment, the RICK can recommend the 
popular travel route, inferred from check-in records (or geo-
tagged photos) generated by other tourists. Another example in 
Figure 3(b) is to help biologists discover birds’ moving behaviors 
from uncertain trajectories.  

 
(a)                                                   (b) 

Figure 3. Scenarios of applications. 

To infer routes from uncertain trajectories, in many cases, we 
need to construct a route based on segments from multiple 
uncertain trajectories as there is no historical trajectory passing all 
the queried locations. For instance, in Figure 2(a), ���� and ���
 
do not pass through both ��  and �
 . If a tourist would like to 
travel from ��  to �
 , existing trip planning [1,7,15,17] could 
explore the sequential relations among these places and derive 
A → C → D → B by concatenation in Figure 2(b). However, the 
distances between two consecutive locations are still far away and 
a travel route still cannot be derived according to the users’ 
trajectory. In addition, one could extract the trajectories that 
capture similar movements. However, due to the sparseness of 
data points in uncertain trajectories, two uncertain trajectories 
usually have totally different geospatial representations even 
though the two trajectories follow the same route or have the same 
subroutes (i.e., are correlated). As such, the similarity between 
two uncertain trajectories is hard to measure.  

In this paper, given a set of uncertain trajectories (e.g., Figure 
2(c)), a routable graph (e.g., the blue part in Figure 2(d)) is 
generated for indicating routing information in a free space by 
exploring spatio-temporally correlated uncertain trajectories. In 
light of the routable graph, we have designed a route score 

function and proposed a routing algorithm to construct the top-k 
routes (e.g., the dashed curve in Figure 2(d)) satisfying the query. 
We have conducted extensive experiments on two real datasets 
and the results show the effectiveness and efficiency of the RICK. 

The contributions of this paper are summarized as follows: 

� Without the aid of road networks, we develop a route 
inference framework to infer routes from uncertain trajectories.  

� We propose a routable graph with routing information, 
generated by exploring spatio-temporal correlations among 
uncertain trajectories.  

� In light of the routable graph, we define a route score function 
and develop a routing algorithm to construct the top-k routes. 

� We have conducted extensive experiments using real datasets 
of 15,000 driving trajectories and 6,600 check-in sequences. 
The results indicate the RICK is effective and efficient. 

The remainder of the paper is organized as follows. Section 2 
gives the preliminary of our work. Section 3 illustrates the 
routable graph construction. Section 4 details the route inference. 
Section 5 presents the experimental results. Section 6 reviews 
related work. Section 7 concludes the paper. 

2. PRELIMINARY 
We present some terms and the problem addressed in this paper, 
and then overview the proposed framework. 

Definition 1 (Trajectory): A trajectory ���  is a time-ordered 

sequence of sampled points, i.e., 	���: �� → �
 → ⋯ → �� . Each 

point �� ∈ ���  is represented by ( �� . �, �� . � ) where �� . �	 is a 

geographic coordinate (a location for short) at a time-stamp �� . �. 
As discussed before, trajectories are usually generated at a low 
sampling rate, leading to the real route between two consecutive 
points of a trajectory being uncertain. If a time interval between 
two consecutive sampled points is large, the uncertainty of the 
route between the two points would increase. In this paper, we 
further claim that road networks are not always available for 
inferring routes between two locations. For animal trace data and 
outdoor activities in urban areas, the movements are not along 
road networks. Thus, our problem is defined as follows: 

Problem: Given an uncertain trajectory dataset D and a user-
specified query consisting of a time span ∆�  and a location 
sequence �: �� → �
 → ⋯ → �� , we infer the top-k popular 
routes in a free space such that each route sequentially traverses 
the given locations, and the travel time of the route between any 
two consecutive query locations is within ∆�. 
Figure 4 overviews our framework RICK, which consists of two 
components: routable graph construction and route inference.  

Routable graph construction: This offline component builds up a 
routable graph from an uncertain trajectory dataset. To generate a 
routable graph, there are two stages: region construction and edge 
inference. First, we partition the space into disjoint cells and then 
index the given uncertain trajectories in the gridded space. By 
exploring the spatio-temporal characteristics of the uncertain 
trajectories passing these cells, we merge these individual cells to 
form some geographical regions. Here, each cell forms a vertex in 
the routable graph that we are going to build up. Second, we infer 
the edges between the cells with the uncertain trajectories. These 
edges can be categorized into two types: they are inside a region 
or they are between regions. The information inferred for an edge 
comprises a moving direction, a transition support, and a travel 
time, indicating the transition relationship between two cells.  



Route inference: This component, consisting of the route 
generation and the route refinement, is responsible for on-line 
queries. In the route generation stage, given a query, we propose a 
routing algorithm to infer the top-k rough routes, each of which is 
represented by a sequence of cells, with the constructed graph. 
The routing algorithm first finds out the qualified subroutes 
between any two consecutive query locations, and then 
concatenates these subroutes into completed routes in a branch-
and-bound manner. In addition, we define a score function based 
on historical movements for ranking these routes. In the route 
refinement stage, we further refine each rough route to derive a 
detailed route represented by a sequence of consecutive segments 
from historical data points of uncertain trajectories.  

 
Figure 4. Overview of RICK. 

Table 1. Notations 

Symbol Description 

��  The jth point in trajectory i 

�.g The cell that � locates in 
(x,y) A cell id 
c(x,y) The number of distinct trajectories traversing (x,y) 

θ A temporal constraint 

C A minimum connection support 

�(g	 → g’	,	���) A set of the travel times from g to g’ by ���  

3. ROUTABLE GRAPH CONSTRUCTION 

3.1 Region Construction 
To construct a routable graph, we discover connected 
geographical areas by collaborative learning among historical 
uncertain trajectories. We first observe the spatial and temporal 
characteristics of the uncertain trajectories. For instance, Figure 

5(a) shows three trajectories, ����:	��� ��	�� !""""# �
� 
�	�� !""""# �$� , 

���
:	��
 �$	�� !""""# �

 ��	�� !""""# �$
 , and ���$:	��$ $�	�� !""""# �
$ , where 

times are travel times between two consecutive points. The 
locations of data points of ����	and ���
 are different even if the 
two trajectories follow the same route (e.g., the black solid line). 

We observe that 1)  �
�. � and �

. � are at the same place; 2) ���� 

and ���
 have similar travel times from their first points (e.g., ���, 

��
 ) to the place; 3) ���. �  and ��
. �  are spatially close. The 

observations indicate that the route of ����	from ��� to �
� and the 

route of ���
	from ��
 to �

 may be the same. We say that the two 

subtrajectories ��� → �
�	 and ��
 → �

  are spatio-temporally 

correlated (st-correlated). Moreover, if ���	and ��
 are sampled on 

the same route, ���. �	and ��
. �  could be connected. Specifically, 

this means that there exists at least one route between ��� . � and 

��
. �. On the other hand, in Figure 5(a), although �
�. � and �
$. � are 

at the same place and ���	and ��$ are spatially close, ���$ may be 
sampled from the other route (e.g, the green dotted line). The 

reason is that ���$ has a longer travel time from ��$ to �
$.  

 
(a)                                                       (b) 

Figure 5. Spatio-temporally correlated uncertain trajectories. 

Based on the aforementioned observations, we define some terms 
for constructing connected geographical areas. Table 1 
summarizes the notations used in this paper. To clearly describe 
spatial relations among data points of uncertain trajectories, we 
adopt a gridded space. First, we divide a geographical range into 
disjoint cells by a given cell length l. The set of the cells is 
denoted as %, and the GID of a cell g is represented by (&, ') . 
Moreover, each point of an uncertain trajectory can be mapped 
into a cell, and an uncertain trajectory can be transformed into a 
sequence of cells. As such, given an uncertain trajectory 

���: �� → �
 → ⋯ → �� , the trajectory can be transformed into 

�� .g → �
 .g → ⋯ → �� .g, where �� .g  represents the cell that �� . � 
locates in. Given two cells g = (&, ') and g′ = (&′, '*), the cells g 

and g′ are called spatially close if |& − &*| ≤ 1 and |' − '*| ≤ 1.  

To explore connected geographical areas, we formally define st-
correlated relations among uncertain trajectories. Given a cell g, if 

g	 = �� .g for some ��  ∈ ��� , we say that ���  traverses cell g, 
denoted g ∈ ��� . If ���  traverses from cell g to cell g’, we say 
g	 → g’	 ∈ ��� . The set of the travel times of g	 → g’	 by ���  is 

denoted by �(g	 → g’	,	���) . If g	 → g’	 ∈ ��� , �/g	 →
g’	, ���0 ≠ ∅. 

Definition 2 (Spatio-temporally correlated relation): Given two 

uncertain trajectories ���: �� → ⋯ → ��  and ���� : ��� → ⋯ → ��� , 

and a temporal constraint 3, ���’s subtrajectory �� → ⋯ → ��*  

and ����’s subtrajectory �4
� → ⋯ → �4*

�
 are st-correlated if 

1)	∃	∆�� ∈ �(�� .g → ��6
 .g , ���), ∆�
 ∈ �(�4

� .g → �46
� .g , ����) 

s.t. 
|∆789∆7:|

;<=>∆78,∆7:?
≤ 3;  

2) one of the two rules is satisfied: 

Rule1:  �� .g  and �4
�
.g are spatially close, and ��* .g  = �4*

�
.g. 

Rule2:  �� .g  =	�4
�
.g, and ��* .g  and �4*

�
.g are spatially close. 

Note that if a trajectory ���′ is a subtrajectory of a trajectory tra, 

we denote it as ���′ ⊆ ���. 

Given trajectories in Figure 5(a), Figure 5(b) depicts the st-
correlated relation between ����  and ���
 . Let ∆�� ∈ �(���.g →
�
�.g , ����)  and ∆�
 ∈ �(��
.g → �

.g , ���
)  and assume ∆t�  and 
∆t
 satisfy a given temporal constraint. According to Rule 1 in 

Definition 2, ��� → �
� and ��
 → �

 are st-correlated, because ���.g 

and ��
.g  are spatially close and �
�.g = �

.g . Similarly, let 
∆�′� ∈ �(�
�.g → �$�.g , ����)  and ∆�′
 ∈ �(�

.g → �$
.g , ���
)  and 
assume ∆�′�  and ∆�′
  satisfy a given temporal constraint. 

According to Rule 2 in Definition 2, �
� → �$� and �

 → �$
 are st-

correlated since �
�.g =�

.g and �$�.g		and �$
.g are spatially close. 

Definition 3 (Connection support): Given an uncertain trajectory 
dataset D, a set of cells %, a temporal constraint 3, and two cells 
g , 	g' ∈ % , where g  and 	g'  are spatially close, the connection 

support of the cell pair ( 	g	, 	g'	) is defined as |C� ∪ C
|  where 

C�={(���, ���� )|���′ and ����′ are st-correlated, g → g'' ∈ ���′, 
and g'	 → g'' ∈ ����′  for some 	g'' ∈ % − >g , 	g'	? , ���′ ⊆
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��� , ����* ⊆ ���� , and C
 ={( ���, ���� )| ���′ and ����′ are st-

correlated, g'' → g ∈ ���′ , and g''	 → g' ∈ ����′  for some 

	g'' ∈ % − >g,	g'	?, ���′ ⊆ ��� , ����* ⊆ ����}.  

For example, in Figure 5(b), given ���.g  and ��
.g , which are 

spatially close, the support of the cell pair (���.g, ��
.g) =|C� ∪
C
|=1 because C�={(����, ���
 )} and C
 = ∅ . Similarly, given 

�
�.g and �$
.g, which are spatially close, the support of the cell 

pair (�$�.g,�$
.g)=|C� ∪ C
|=1 because C�=∅ and C
={(����, ���
)}. 

Definition 4 (Neighbor): Given an uncertain trajectory dataset D, 
a set of cells %, two cells g,	g' ∈ %, a temporal constraint 3, and a 
minimum connection support C, if the connection support of the 
cell pair ( 	g	 , 	g'	 ) is greater than or equal to C, g  and g'  are 
neighbors, denoted as g	Eg'.  
We define a region as a connected geographical area as follows: 

Definition 5 (Region): Given a set of cells %′, %′ forms a region if 
for any two cells g,	g' ∈ %′, there exists a chain of cells (g =)g� =
g
 = ⋯ = g�(= g' ) s.t. gEgF� for each g ∈ %′ and G ∈ [1, I). 
To construct regions, a naïve method is that we generate all cell 
pairs from the set of cells %  and then compute the connection 
support of each cell pair by checking other cells in %. We then 
verify whether the connection supports of cell pairs satisfy the 
given minimum connection support C to construct regions. 
However, the time complexity of the method is costly. In this 
paper, we propose an efficient algorithm to construct regions.  

The proposed algorithm utilizes an index structure presented as 
follows. Given a cell length and an uncertain trajectory dataset D, 
we build up a grid index in which each cell g has a unique GID, a 
value J(g), and a corresponding trajectory list. Note that J(g) =
|>���|g ∈ ���, ��� ∈ K?|. In the grid index, each GID indexes a 
list of trajectories that records which uncertain trajectories 
traverse the cell and which points of these uncertain trajectories 
locate in the cell by TIDs and PIDs, respectively. To improve the 
efficiency of the region construction, the trajectories in a cell’s 
corresponding trajectory list are sorted by L7MN, where L7MN is the 
median of >J(�.g)|� ∈ ���? with given ���.  

 
Figure 6. An example of an index structure. 

For instance, given a cell length l and an uncertain trajectory 

dataset K = >����, ���
, ���$, ���O, ���P? , Figure 6 shows an 
example of an index structure. Given a cell (1,4), J(1,4)=3 since 
three distinct uncertain trajectories (i.e., ����, ���$, ���P) traverse 
cell (1,4). The trajectory list of cell (1,4) records these TIDs (i.e., 
����, ���$, ���P) and the corresponding PID of each trajectory. 
The corresponding PID of ���� is 1 since the point of ���� that 
locates in cell (1,4) is the first point of ����. As shown in Figure 6, 
���$ traverses four cells (i.e., (1,4), (1,3), (3,2), and (4,1)), and we 
can calculate that c(1,4)=3, c(1,3)=2, c(3,2)=2, and c(4,1)=2. The 

median among {2, 2, 2, 3} is 2 and thus L7MNR=2. 

Before constructing regions, we let %=% − %′, where %′={g|J(g) =
0,	g ∈ %}. The algorithm of region construction is detailed in 
Algorithm 1. Note that the term enclosed is defined as follows.  

Algorithm 1: Region Construction  

Input: An uncertain trajectory dataset D, a set of cells %, a temporal 
constraint 3, and a minimum connection support C. 
Output: A set of regions R. 
1. %′ ← Sort cells in % in a decreasing order of J(g); 
2. Do 

3.       g	 ←		Pop the cell from %′; 
4.        Foreach tra traversing g by the order stored in the grid index    
5.            U(g) ← >�|�.g = g	�VW	� ∈ ���?; 
6.            Foreach � ∈ ��� − U(g) and �.g is not enclosed     
7.                If �. X is contained in some region 
8.                    r ← The region contains	�.g; 
9.                Else 
10.                    � ← ∅; 
11.              If � is before �* for all �* ∈ U(g)                        
12.                  � ← CM(�, �.g,	g, 3, Z, [\�]1);   
13.              ElseIf � is after �* for all �* ∈ U(g) 
14.                  � ← CM(�, �.g,	g, 3, Z, [\�]2); 
15.              Else 
16.                  � ← CM(�, �.g,	g, 3, Z, [\�]1);   
17.                  � ← CM(�, �.g,	g, 3, Z, [\�]2); 
18.              [ ← [ ∪ >r?; 
19. Until %′ is empty or each cell in % is in some � ∈ R; 
20. Return [;   

 

Algorithm 2: Cell Merging (CM)  

Input: A region r, a cell �.g, a cell g, a temporal constraint 3, a minimum 
connection support C, and an indicator I 
Output: A region r 
1. Let �.g = (&, '); 
2. Foreach cell g′ = (&′, '′) ∈ % − � where |&* − &| ≤ 1 and |'* − '| ≤ 1 
3.        If  I is Rule1     

4.            Verify whether �.g	Eg ′ is held with given g by rule 1; 
5.        Else        

6.            Verify whether �.g	Eg ′ is held with given g by rule 2; 
7.        If �.g	Eg′  
8.            If � = ∅	 
9.                � ← >�.g	?;                       
10.          If g′ is contained in some region   

11.              �′ ← The region contains	g′; 
12.          Else             
13.              �′ ← ∅ 

14.          �′ ← CM(�*,g′,	g, 3, Z, `);   
15.          � ← � ∪ �'; 
16. Return r;   
 

Definition 6 (Enclosed): Given a set of cells % and a cell g ∈ %, 
the cell g is enclosed if there exists a region r	⊆ % s.t. g	,	g' ∈ �, 

∀g' ∈{g'	|	g' and g are spatially close, g' ∈ %}. 

In Algorithm 1, we iteratively merge cells to form regions by 
calculating the connection supports of cell pairs. To efficiently 
construct regions, we determine an order for the calculation of 
connection supports of cell pairs according to J(g). Once a cell is 
chosen, we iteratively pick a trajectory from the cell’s trajectory 
list in Step 4. We then calculate the connection supports of the 
cell pairs around the points of the trajectory and merge qualified 
cells from Step 5 to Step 18. An example of this procedure is 
illustrated in Figure 7. Let a chosen cell be g . Assume the 

trajectory ���� traversed it and �
�.g=�O�.g =	g (i.e., U(g) = >�2
1, �4

1?). 
In Step 6, we pick a point (e.g., ���) from ���� but not the point is 
not in U(g). If the cell that the point locates in is not enclosed, the 
cell would be possibly merged with other cells. The connection 

supports of the cell pairs of ���.g  and each cell around ���.g are 
calculated and the qualified cell pairs will be merged. Based on 
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���.g, a region (e.g., the blue cells in Figure 7) is generated in the 
first round and more cells (e.g., the red cells in Figure 7) are 

merged into the region around ���.g in the second round (i.e., Step 

14 in Algorithm 2). Similarly, for ���.g, a merging process will be 

stopped if no cell can be merged around ���.g. We then chose 

other points (e.g., �$�, �P�) to construct regions around these points 
in the same way. 

 
Figure 7. Region construction process. 

Time complexity analysis: Given an uncertain trajectory dataset K 
and a set of cells %, the time complexity of the naïve method is 
b(LV$)  where |%| = V  and |K| = L . Similarly, the time 

complexity of Algorithm 1 is b(V(�cXV + JL
)), where J is the 
minimal number of the first loop. For Step 1 in Algorithm 1, it 
costs b(V�cXV)  to sort cells in decreasing order of J(g) . In 
addition, the time complexity of Algorithm 2 is b(L) because 
there are at most L  uncertain trajectories for counting the 
connection support of a cell pair. Thus the time complexity of the 

remaining steps in Algorithm 1 is b(JVL
). 

3.2 Edge Inference 
Once the regions are generated, we then infer edges and derive 
edge information including moving directions, transition supports, 
and travel times from historical uncertain trajectories. To generate 
the edges of a routable graph, we infer the edges within each 
region, and then infer the edges among regions. 

A routable graph is a directed graph e = (f, g), where f is a set 
of vertices and g  is a set of edges. Each vertex represents a 
geographical area, i.e., a cell. Each directed edge e indicates a 
transition relationship and has two attributes, the transition 

support e.s and the travel time ]. � . To derive the transition 
support of an edge, we record which distinct uncertain trajectories 
traverse the edge. In other words, an edge has an uncertain 
trajectory list to record which distinct uncertain trajectories 
traverse it. 

According to the definition of a region, a region is composed of 
connected cells, and thus we first generate virtual bidirected edges 
between cells if the cells are neighbors in a region, To infer edges’ 
realistic directions, transition supports, and travel times, we 
propose a shortest path based inference approach. 

Given a region and an uncertain trajectory dataset, we utilize the 
uncertain trajectories traversing the region to derive edge 
information in the region. For each trajectory traversing the region, 
we infer the shortest path between any two consecutive points of 
the trajectory by virtual bidirected edges in the region. We 
illustrate edge inference in a region in Figure 8. As shown in 
Figure 8(a), four uncertain trajectories pass through the region. 
For instance, in Figure 8(b), an uncertain trajectory �� → �
 → �$ 
(blue squares) traverses the region, and we infer the shortest paths 
from �� to �
 and the shortest paths from �
 to �$. As shown in 
Figure 8(b), we find one shortest path from ��	to	�
 , and two 
shortest paths from �
	to	�$ . After finding the shortest path 
between two consecutive locations, we divide the travel time 
evenly and add it to the travel time list of each edge in the shortest 

path. In addition, each edge of the shortest path adds the trajectory 
ID into its corresponding trajectory list, and the transition support 
of each edge in the shortest path is accumulated one. If there are 
multiple shortest paths between two consecutive locations, we 
similarly update the information of each edge in these paths. 

By using historical uncertain trajectories to infer edge information 
in a region, we further eliminate the redundant edges in the region 
and the edges whose transition supports are 0. Given an edge e1 
from the cell g and the cell g', where g and g' are spatially close, 
the edge e1 is redundant in a region if there exist an edge e2 from 
g to g''  and an edge e3 from g''  to g', such that 1) g and g''  are 

spatially close and g' and g'' are spatially close, 2) 
i:. FiR. 


 > ]�. k, 

and 3) 
|i:.7FiR.79i8.7|

;<=>(i:.7FiR.7),i8.7?
≤ 3  where 3 is a given temporal 

constraint. Figure 8(c) shows the inferred edges in the region after 
reducing edges. The travel time of each edge is estimated by the 
median of all the travel times of the edge. 

 
(a)                                     (b)                                      (c) 

Figure 8. Edge inference in a region. 

 
(a)                                                          (b) 

Figure 9. Edge inference between regions. 

In the following, we construct edges between regions. Similarly, 
we generate edges between regions by using historical uncertain 
trajectories first. This means that if an uncertain trajectory 
traverses a cell of one region to a cell of another region, an edge is 
constructed between the two cells. Next, we eliminate the 
redundant edges between regions. Given an edge e1 from the cell 
g to the cell g', where g and g' are in different regions, the edge e 
is a redundant edge between the two regions if there exists an 

alternative route em → ⋯ → en  from the cell g to the cell g' such 

that 1) 
�

n9mF�∑ ]� . k�
�p > ]. k , and 2) 

q∑ ir.7s
rtu 9i.7q

;<=v∑ ir.7s
rtu ,i.7w

≤ 3  where 

3	is a given temporal constraint. Figure 9 shows an example of 
edge inference between two regions. As shown in Figure 9(a), 
edge ]�  and edge ]
  are generated between the two regions by 
historical uncertain trajectories. For instance, in Figure 9(b), edge 

e�	 is a redundant edge if 1) 
�
O∑ ]� . kP

�p
 > ]�. k , and 2) 

x∑ ir.7y
rt: 9i8.7x

;<=z∑ ir.7y
rt: ,i8.7{

≤ 3 with a given 3. 

Note that the transition information of an eliminated edge is 
propagated to alternative routes. The travel time of an eliminated 
edge is evenly propagated to the edges of each alternative route. 
The trajectory list of an eliminated edge is updated to each edge’s 
corresponding trajectory list in alternative routes.  

4. ROUTE INFERENCE 
Given a location sequence and a time span, we generate the top-k 
popular routes by two phases: route generation and route 
refinement.  In the first phase, we propose routing algorithms to 
search for the top-k coarse routes with the routable graph.  We 
further refine the discovered the top-k routes to effectively derive 
specific routes in the second phase. 

1

3p

1

2p

1
1p 1
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In the route generation phase: we first generate possible routes 
between each two consecutive queried locations (called local 

routes) and then search for the top-k routes (called global routes) 
from the generated local routes. 

A route derived in this phase is represented by a sequence of 
vertices with a given graph e = (f, g). Note that a vertex in the 
graph represents a cell; thus a route here is regarded as a sequence 
of cells, denoted as �:	g� ⟶ g
 ⟶ ⋯ ⟶ g�. Given a sequence of 
query locations and a time span, we search for qualified routes 
between any two consecutive query locations with the constructed 
graph. Before searching for routes with the graph, we need to 
specify the corresponding vertices of query locations. Since a 
vertex represents a geographical area of a cell, a query location 
can be mapped to the vertex whose corresponding geographical 
area overlaps the location.  However, it is possible that a query 
location cannot be mapped to any vertex in the graph.  We further 
select the vertices whose corresponding cells are close to the 
query location. We adopt the minimum distance (MINDIST) [12] 
to formulate the distance between a query location and a cell.  
According to the distance measurement, we specify the cells that 
are close to such query locations. Thus, a given location sequence 
is transformed into a sequence of sets of cells. Moreover, we 
transform a location sequence into cell sequences by combining 
these cells. After query transformation, we search for the top-k 
routes according to each cell sequence. 

For instance, given a location sequence �: �� → �
 → �$ in Figure 
10(a), the locations ��  and �
	 are mapped to cells g1 and g2, 
respectively.  By the minimum distance measurement, the set of 
cells {g3, g4} is used to represent the location �$ . Then, the 
location sequence �� → �
 → �$  is transformed into two cell 

sequences, i.e., g1→g2→g3 and g1→g2→g4. 

 
(a)Query transformation.   (b)Route generation.      (c)Route refinement 

Figure 10. Route inference. 

We generate routes with respect to each cell sequence. Before 
introducing the routing algorithm, we define the score function for 
the routes as follows. 

Definition 7 (Route score): Given a graph e = (f, g), a route 
}:}� → }
 → ⋯ → }� , where }:	g8 ⟶ g: ⟶ ⋯ ⟶ gs , the 

score of the route is defined as ~(}) = ∑ �(})�
p� , where 

�(}) = �
�9� | ⋃ >���|gr → gr�8 ∈ ���?�9�

�p� |. 
For each cell sequence, we first search for the top-k local routes 
between any two consecutive cells in the cell sequence (e.g., g and 
g ' ) by an A*-like routing algorithm. However, a possible 
maximum speed could be derived from historical uncertain 
trajectories or be determined by difference applications. Given a 
maximum speed, possible positions between any two consecutive 
query locations can be restricted in a range if a time interval 
between the two locations is specified [11]. That is, the possible 
routes are restricted in the cells overlapping the range. For the A*-
like routing algorithm, an estimated score of a route from a cell g 

to a cell g' is represented as follows. 

Given two cells g and g', a current visited cell g'', and a specified 

range r, an estimated score of a route }:}� ⟶ }�  from a cell g to 

a cell g' in a specified range r is ~�(}) = �(}�) + ℎ/}�0, where 

}�  is a known route from cell g to cell g'', and ℎ/}�0 is the score 

of an estimated route }�  from cell g'' to cell g'.  
Definition 8 (Optimal score): Given a graph e = (f,g) , an 
uncertain trajectory dataset D, a specified range r, and two cells g 
and g', the optimal score of the routes from a cell g to a cell g' in r 
is defined as 

ℎ�(}) = |>���|���	passes	through	the	range		�, ��� ∈ K?| 
for some estimated route } from a cell g to a cell g'. 
Once a local route is generated from the cell g to the cell g' and 
satisfies the given time span, the score of the local route is 
calculated.  If there are more than k local routes constructed from 
the cell g to the cell g', the k-th maximum score of these local 
routes is recorded and incrementally updated.  Based on the 
estimated optimal score function, a branch of searching routes will 
be stopped if the optimal score of routes generated from the 
branch is less than the updated k-th maximum score. 

Based on the top-k local routes between any two consecutive cells 
of each cell sequence, we search for the top-k global routes by a 
branch-and-bound search approach. For instance, given a cell 
sequence g1→g2→g3 in Figure 10(a), a global route is derived as a 
sequence of cells (dark grey) in Figure 10(b). To derive a specific 
route, a route is further transformed into a line by concatenating 
the centers of any two consecutive cells in the route. Figure 10(b) 
shows an example of such a route by a blue line.  

However, it is possible that we search for local routes between 
two cells belonging to different regions. In the A*-like algorithm, 
although we search for local routes between two given cells in a 
restricted range of a graph, the search space is still large if the 
distance between two given cells is far and they are in different 
regions. It induces that a route between the two cells would 
possibly pass through several other regions. On the other hand, a 
lower bound of transition times between any two regions can be 
estimated by edge information. It helps us stop searching for 
routes between two regions if the lower bound of transition time 
between the two regions exceeds the time span. Hence, to improve 
the efficiency of route generation, we modify the proposed A*-
like routing algorithm and introduce a two-layer routing algorithm. 

 
Figure 11. The scenario of the two-layer routing algorithm. 

Before searching for local routes between two given cells, we first 
determine the region sequences to reduce searching space. By 
utilizing a lower bound of transition times between any two 
regions, we can generate region sequences with respect to two 
given cells. According to each region sequence, we search for 
possible local routes that sequentially traverse these regions. Note 
that the proposed A*-like algorithm is used for searching for 
routes between any two regions here. In Figure 11, for instance, 
given a location sequence �� → �
, and a corresponding range �, 
the location �� and the location �
	locate in region [� and region 
[
, respectively. There are multiple possible region combinations 
for searching for routes between the two locations.  Although the 
searching space of route generation is restricted to the range � 
(e.g., the red part), the routes from ��  to �
  would possibly 



traverse the regions in different orders. In Figure 11, there are 
many possible region sequences from ��  to �
  (e.g., [� → [O , 
[� → [
 → [O , [� → [$ → [O , [� → [
 → [$ → [O  etc.). With 
utilizing lower bounds of transition times between regions, the 
possible region sequences would be reduced to satisfy the given 
time span. For instance, the qualified region sequences are marked 
by red edges in Figure 11 (i.e.,	[� → [
 → [O, [� → [$ → [O). 
After deriving region sequences, we search for possible routes 
which traverse each region sequence. 

After route generation, the top-k routes are inferred, and we 
further refine each route using historical data points. Route 
refinement has three steps: data point selection, segment 
formulation, and segment concatenation. First, given an inferred 
rough route represented by a sequence of cells, we select the 
historical uncertain trajectories that traverse the cells in the same 
order as the route. Next, we extract the data points that locate in 
cells of the rough route from these selected uncertain trajectories, 
and thus derive a set of points for each cell of the route. To 
formulate a specific route from selected points, we adopt linear 
regression for the set of points of each cell to derive a segment. 
We then concatenate the segments in the same order as an original 
inferred route. Figure 10(c) shows an example of a refined route. 

5. PERFORMANCE EVALUATION 
In this section, we evaluate the performance of the proposed 
RICK using real datasets, including check-in records from 
Foursquare and taxi trajectories. The datasets and experimental 
setting is presented in Section 5.1. In the experiments, we first 
demonstrate the results using check-in records in Manhattan. To 
evaluate the effectiveness of our proposed RICK, we use the 
dataset of taxi trajectories. In the experiments of the performance 
study, we compare our proposed RICK with the existing method 
in terms of effectiveness and efficiency. Furthermore, the 
experiments demonstrate the improvements of routable graph 
construction and route inference.  

5.1 Datasets and Settings 

5.1.1 Real Datasets 
In this paper, we use two real datasets to conduct the extensive 
experiments. One is the check-in dataset from Foursquare. We 
collected check-in records in Manhattan, and for each user, a 
series of check-in records recorded in one day is regarded as a 
trajectory. We pruned the trajectories that contained less than 
three check-in records. There are totally 6,600 trajectories. The 
other real dataset contained 15,000 taxi trajectories in Beijing. 
The average sampling rate of the raw trajectories is less than one 
minute. To simulate uncertain trajectories, we resampled each raw 
trajectory such that the time interval between two consecutive 
resampled points of the trajectory at least exceeded a given 
sampling rate S. In the experiments, the sampling rate S is set 
from one minute to five minutes and the default S is five minutes. 
For example, given S=5, the time interval between two 
consecutive resampled points is at least five minutes or even more. 

5.1.2 Metrics 
To evaluate the effectiveness of our RICK, we introduce an 
approach to generate the ground-truth from the raw trajectories to 
evaluate the effectiveness of the inferred routes. For each query, 
the raw trajectories that satisfy the query are selected and ranked. 
To rank these trajectories, a raw trajectory is transformed into a 
sequence of road segments and the frequency of a road segment is 
defined as the number of distinct trajectories that traverse it. The 
score of a transformed trajectory ���: �� → �
 → ⋯ → ��  is 
defined by (∑ d(�)�

mp� ) ���. �]VX�ℎ⁄ , where � is a road segment 

and d(�)  is the frequency of the road segment � . Hence, the 
selected trajectories can be ranked by their scores. 

To evaluate the difference between an inferred trajectory and a 
raw trajectory of the ground-truth, we first apply the length-
normalized dynamic time warping distance (NDTW). Given an 
inferred route � and a raw trajectory ���, we define the NDTW 
between two trajectories as NDTW(�, ���) = DTW(�, ���) �. �]VX�ℎ⁄  
for an optimal alignment path. To further reflect the quality of 
inferred routes, we utilize a maximum distance (MD) between an 
inferred route and a raw trajectory of the ground-truth according 
to the discovered NDTW. MD is defined as the maximum value 
of the distances measured by the optimal alignment path. 
Therefore, the two measurements for evaluating the inferred top-k 
routes are defined as follows: 

NDTW(T,	T′)=	Avg�r∈� min7MN∈�* NDTW(��, ���), and 

MD(T,	T′)=Avg�r∈�MD(�� , ���′), 
where T is the set of inferred top-k routes, T′ is the set of top-k 
raw trajectories, and ���′=Arg	min7MN∈�* NDTW(�� , ���). 
In the experiments, the default rank threshold k is 3. 

5.2 Visualization of Results  
In this subsection, we use the check-in dataset in Manhattan to 
visualize the results derived by RICK. We first demonstrate the 
constructed routable graph in Figure 12 with given cell length 
l=500 (meters), temporal constraint 3 =0.2 and minimum 
connection support C=3. In Figure 12, the regions are represented 
by different colors in Figure 12(a), and Figure 12(b) shows the 
edges between cells. Note that the edges within a region are drawn 
by blue lines, and the edges between regions are drawn by black 
lines. Based on the routable graph, we perform one query and let 
the span time be one hour for each query. Given a query as 

“Central Park → The Museum of Modern Art → Times Square 

→ Empire State Building → SoHo”, the top-1 route inferred by 

RICK is depicted in Figure 12(c). As shown in Figure 12(c), the 
route does not simply connect the query locations, but passes 
through other attractions. For example, for the partial route from 
“The Museum of Modern Art” to “Times Square”, RICK 
constructs this partial route to pass by the “Rockefeller Center” 
based on users’ historical check-in records.  

  
(a) Regions            (b) Routable graph         (c) Top-1 route   

Figure 12. Visualization of results in Manhattan. 

5.3 Performance Study 
In this section, we evaluate the performance of RICK by taxi 
trajectories. First, to analyze the effect of queries, the length of 
query location sequence |�| is set from 2 to 4. In addition, a query 
location sequence is generated by considering a given distance 
between any two consecutive query locations, denoted as ∆d. For 
a query, ∆t is determined according to ∆d. In the experiments, ∆d 
is varied from 1 to 5 (in kilometers), and the corresponding ∆t is 
set from 4 to 20 (in minutes). For each experiment, we perform 
almost 100 queries and averaged the results.  



5.3.1 Evaluation of Route Inference 
We compare our framework with a baseline and analyze the  

effectiveness of our inferred routes in different aspects. 

Baseline: To evaluate the effectiveness of the discovered routes, 
we compare the proposed RICK with the existing approach (MPR) 
in [3]. In [3], given two locations (i.e., |�|=2), the most popular 
rout, which connects the two query locations, is derived. In the 
experiments, the parameters of MPR are set as α=2, β=2, the 
coherence threshold τ=0.8, and the cluster size threshold φ=20. 
For RICK, the settings are l=300 (meter) and k=1. Figure 13 
shows the experimental results of MPR and RICK under the Taxi 
dataset with S and ∆d varied. As shown in Figure 13(a), the error 
of MPR increases as S or ∆d	increases. It is worth mentioning that 
the error of RICK slightly increases as S or ∆d	increases, showing 
that RICK is able to derive the routes from uncertain trajectories. 
Figure 13(a) shows that RICK is more effective than MPR, 
although Figure 13(b) demonstrates that the query time of RICK 
is slightly higher than the query time of MPR. 

Effect on route refinement: In the route inference of the proposed 
RICK, the top-k routes are derived after route generation and are 
further refined by route refinement. In this subsection, we 
compare the effectiveness of the route inference without route 
refinement (w/o RR) and that of the route inference with route 
refinement. We set k=1 and |�|=2 in the experiments.  Figure 14 
shows the error of top-1 routes by NDTW and MD. As shown in 
Figure 14, the errors of inferred routes increase as ∆d increases. In 
addition, a larger l increases the error of routes discovered without 
route refinement. In Figure 14, with route refinement, the error of 
the inferred routes is obviously reduced as l increases. 

Impact of data sparseness: To study the effect of the data 
sparseness, we calculate the number of GPS points per km2 and 
derive different data sparseness by setting different S. The number 
of GPS points per km2 is increased from 77 to 275 while S is 
decreased from five minutes to one minute. Figure 15 shows that 
the errors (both NDTW and MD) slightly decrease as the data 
sparseness increases. When the data sparseness is 275 GPS points 
per km2, the errors of the inferred routes of at least 4 km (i.e., 
|�|=2 and ∆d=4) are less than 500 meters and the errors of the 
inferred routes of at least 12 km (i.e., |�|=4 and ∆d=4) are less 
than 800 meters. However, NDTW is less than 300 meters even 
though the data sparseness is 77 GPS points per km2. The 
proposed framework is effective for inferring the top-k routes. 

Efficiency: We investigated the query time of RICK and show the 
results in Figure 16. In the experiments, l=300 (meters), 3 = 0.1, 
C=8, S=5 (minutes), and k=3. In the route inference, we improve 
the efficiency of the route generation by a two-layer routing 
algorithm. To demonstrate the effectiveness of the two-layer 
routing algorithm, we compare the query time of RICK and the 
query time of RICK without using the two-layer routing algorithm 
(denoted by RICK-) in Figure 16(a) with varied |�| and ∆d. As 
shown in Figure 16(a), RICK outperforms RICK-, and the query 
time is obviously reduced while |�|  or ∆d  is larger. In Figure 
16(b), the query time of RICK gradually increases as |�| or ∆d 
increases. However, the query time is less than one second. 

5.3.2 Evaluation of Routable Graph 
In the routable graph construction of RICK, we construct the 
regions referring to the connected areas and further infer and 
refine the moving directions within the regions.  To investigate 
the impact of exploring shortest path on refining the routable 
graph, we evaluate the graph built without refinement (denoted as 

RG), and the graph refined by shortest path based edge inference 
(denoted as RG+). 

To evaluate the correctness of the connectivity in a routable graph, 
given a raw trajectory dataset D and a graph e =< f, g >, the 
precision of connectivity in G is measured as follows: 

|>]|]	is	traversed	by	some	��� ∈ K	and	] ∈ g?|/|g|. 
The temporal constraint 3 and the minimum connection support C 
are used for constructing a routable graph. Hence, we analyze the 
precision of connectivity in the graph with varying 3 and C. 

In Figure 17, S is set as 5 minutes in the experiments.  In Figure 
17(a), C is varied from 8 to 12 and 3 = 0.1.  Figure 17(a) shows 
that the precision of RG and the precision of RG+ increase as C 
increases.  This is because a stricter constraint induces a higher 

 
(a)                                                       (b) 

Figure 13. Performance comparison of RICK and MPR. 

 
(a)                                                       (b) 

Figure 14. Effect on route refinement. 

 
Figure 15. Effectiveness evaluation with data sparseness varied. 

 
(a)                                                       (b) 

Figure 16. Efficiency evaluation. 

 
(a)                                                       (b) 

Figure 17. Connectivity evaluation. 
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precision (i.e., a higher C). In Figure 17(b), C=8 and 3 is varied 
from 0.1 to 0.9. As shown in Figure 17(b), the precision of RG 
and the precision of RG+ decrease as 3 increases. The reason is 
that the precision is reduced as the constraint is loosened (i.e., a 
higher 3). Figure 17 depicts that the precision of RG+ is higher 
than that of RG, and it demonstrates that the shortest path based 
edge inference improves the correctness of the explored 
connectivity in a geographic space. 

6. RELATED WORK 
Route planning based on GPS trajectories: Route planning is 
widely investigated in [14,13,4,3] with GPS trajectories. The work 
[14] mainly inferred fastest routes from historical trajectories. In 
[13], the authors study travel route planning based on searching 
GPS trajectories. In [4], given a set/a sequence of locations, the 
top-k trajectories that best connect the given locations are 
retrieved from existing GPS trajectories. In [3], the authors 
investigated the problem of popular route planning without road 
network information. They introduced a transfer network model 
by exploiting intersections from historical GPS trajectories, and 
inferred the most popular route between two given locations by 
the turning probability of each intersection. However, these works 
were carried out using high sampled GPS trajectories. Given 
uncertain trajectories, the results obtained by [13,4] are historical 
uncertain trajectories and these uncertain trajectories still reveal 
rough routes. In addition, the trajectories derived by [4] may be 
far away from the query locations because these trajectories are 
low sampled. Using a dataset of uncertain trajectories, the 
accuracy of a transfer network model in [3] would be destroyed 
and then the effectiveness of inferred routes would be decreased.  

Trip Planning based on geo-tagged social media: In recent years, 
mobile social applications have become popular, generating a 
huge volume of social media data, such as check-in records or 
geo-tagged photos. Such social media data can be regarded as 
sequences of visited locations, thereby revealing users’ travel 
experience in terms of travel routes that link points-of-interest 
(POIs). Using geo-tagged photos, several studies [1,7,15] have 
investigated the problem of trip planning. However, the 
recommended trips are represented by a sequence of POIs, and the 
detailed route between two consecutive POIs is not specified. 
Different from these works, our method aims to construct the 
detailed route that is most likely to be taken by people by learning 
from the uncertain POI sequences in a mutual reinforcement way 
(e.g., Figure 2).  

Uncertain trajectories: The research topics of trajectory 
uncertainty are studied in [6,10,11,16]. The work [10] introduces 
the problem of uncertain trajectory clustering, and focuses on the 
trajectory uncertainty caused by measurement errors. To reduce 
the uncertainty of an uncertain trajectory, the work [11] 
formulates an uncertain trajectory in a free space by a given 
maximum moving speed. However, the indistinct parts of an 
uncertain trajectory are enclosed in a spatio-temporal range 
without pointing out specific routes. In addition, the study [6] 
applies the techniques developed in a free space to model an 
uncertain trajectory in a road network. The possible routes 
between two sampled locations of an uncertain trajectory are 
restricted in a set of road segments by road network information 
and speed limits. Although the work [16] investigated the problem 
of discovering the top-k possible routes sequentially passing the 
queried locations from uncertain trajectories, they use road 
network information to reduce the uncertainty of low sampled 

trajectories. These works cannot derive routes from uncertain 
trajectories without road network information.  

7. CONCLUSIONS 
In this paper, we proposed RICK to infer the top-k routes 
traversing a given location sequence within a specified travel time 
from uncertain trajectories. The proposed RICK consists of the 
routable graph construction and the route inference. We have 
evaluated the proposed RICK in terms of both effectiveness and 
efficiency using two real datasets, check-in datasets and driving 
trajectories. The experiments show three aspects: 1) the inferred 
routes not only connect user-specified locations but also indicate 
detailed routes; 2) the proposed routable graph provides a good 
model of the uncertain trajectory dataset with an accuracy of 0.9; 
3) on average, our routing algorithm can find the top-3 routes 
within 0.5 seconds, with a distance error smaller than 300 meters 
compared to its corresponding ground-truth. Meanwhile, RICK 
clearly outperforms the baseline by generating routes 300-700 
meters closer (than those of the baseline) to the ground-truth. The 
experiments demonstrate the effectiveness and the efficiency of 
RICK. In the future, we will plan routes considering different start 
times and different user preferences. In addition, we will evaluate 
RICK by given other uncertain trajectory datasets, e.g., geo-
tagged photo trips. 
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