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ABSTRACT  
Bike-sharing systems are widely deployed in many major cities, 
while the jammed and empty stations in them lead to severe 
customer loss. Currently, operators try to constantly reposition 
bikes among stations when the system is operating. However, 
how to effectively reposition to minimize the customer loss in a 
long period remains unsolved. We propose a spatio-temporal 
reinforcement learning based bike reposition model to deal with 
this problem. Firstly, an inter-independent inner-balance 
clustering algorithm is proposed to cluster stations into groups. 
Clusters obtained have two properties, i.e. each cluster is inner-
balanced and independent from the others. As there are many 
trikes repositioning in a very large system simultaneously, 
clustering is necessary to reduce the problem complexity. 
Secondly, we allocate multiple trikes to each cluster to conduct 
inner-cluster bike reposition. A spatio-temporal reinforcement 
learning model is designed for each cluster to learn a reposition 
policy in it, targeting at minimizing its customer loss in a long 
period. To learn each model, we design a deep neural network to 
estimate its optimal long-term value function, from which the 
optimal policy can be easily inferred. Besides formulating the 
model in a multi-agent way, we further reduce its training 
complexity by two spatio-temporal pruning rules. Thirdly, we 
design a system simulator based on two predictors to train and 
evaluate the reposition model. Experiments on real-world 
datasets from Citi Bike are conducted to confirm the 
effectiveness of our model. 
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1 INTRODUCTION 
Bike-sharing systems are widely deployed in many major cities, 
e.g. New York City, Paris and Beijing, providing a convenient 
transportation mode to citizens. A user can rent or return a bike 
at a random station via swiping her membership card, 
generating a bike usage record. However, as the bike usage in a 
city is very unbalanced, there are usually empty stations without 
bikes and congested ones lacking available docks in a system, 
causing severe customer loss. Currently, the system operators 
are conducting dynamic bike reposition to deal with this problem, 
i.e. adopt trikes to constantly reposition bikes among stations 
when the system is operating. However, how to reposition to 
minimize the customer loss in a long period remains an open 
problem. Real-time monitoring is not a good solution as it is too 
late to redistribute the bikes after an unbalance has been 
observed. Repositioning bikes solely based on the bike usage 
prediction for the coming period only results in a greedy and 
myopic policy, which may not be optimal for a long period. We 
summarize three challenges to solve this problem. 

 

Fig 1. Rent demand and transition pattern in Citi Bike 

A bike-sharing system is complex and dynamic. There are 
usually tens of trikes repositioning among hundreds of stations 
in a system simultaneously. Repositioning cooperatively in such 
a large system is complicated, not to mention that the system is 
very dynamic when operating. System dynamics is hard to 
predict for three reasons. 1) Fig. 1 A) shows the rent demand at a 
station in each hour in one month. As we can see, the daily rent 
pattern fluctuates largely, being impacted by multiple complex 
factors, e.g. weather, events and correlation between stations. 2) 
Most transitions seem to be random trips. The first figure in Fig. 
1 B) shows the historical commutes, i.e. the transitions averagely 
happened at least once in the morning on each weekday in Apr. 
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– Oct. 2016, which only account for 18 percentages. We explain 
this with an example shown in Fig. 1 C): there are 12 possible 
inter-station transitions from 𝐴 to 𝐵, among which a customer 
usually chooses a random one to take based on which stations 
have available bikes and docks, making one possible frequent 
transition from 𝐴 to 𝐵 into 12 infrequent inter-station ones. 3) 
The external factors impacting bike usage are highly unbalanced 
observed, e.g. the sunny hours are much more than the rainy 
hours. Therefore, separately training a predictor under each 
condition cannot guarantee the accuracy under the minor ones. 

A single bike reposition has long-term effect. Whether a 
single reposition is good or not cannot be told immediately. We 
elaborate this with two examples in Fig. 2, where a red circle 
denotes a station without available docks while a green one 
denotes an empty station; a solid arrow labelled with a number 
and a time denotes how many bikes will be rented from the 
origin and returned to the destination in that period; a dashed 
arrow describes how a trike repositions; 𝑡0 < 𝑡1 < 𝑡2. Firstly, a 
single reposition impacts the bike usage in a system for a long 
period. As shown in Fig. 2 A), if a trike goes to the empty station 
𝑠1 to unload 5 bikes there in 𝑡0, the number of available bikes at 
𝑠1 becomes 5, thus the 5 coming renters can be served at 𝑠1 in 𝑡1; 
as these 5 renters ride to 𝑠2 to return their bikes in 𝑡1 < 𝑡2, the 4 
coming renters who want to rent at 𝑠2 in 𝑡2 can also be served by 
those returned bikes, and so on so forth. Therefore, how many 
extra customers can a single reposition serve is hard to estimate. 
Secondly, the current reposition impacts the following ones. As 
shown in Fig. 2 B), if a trike goes to station 𝑠1 to pick up 9 bikes 
in 𝑡0, the number of available docks there becomes 9, thus the 9 
coming users can return their bikes to 𝑠1 in 𝑡1. However, as 𝑠1 is 
too far from 𝑠3, after completing picking up there, this trike 
cannot deliver 5 bikes to the empty station 𝑠3 before 𝑡2 for the 5 
coming renters. On the contrary, if the trike goes to 𝑠2 to pick up 
bikes in 𝑡0, after picking up there, it still has enough time to 
deliver bikes to 𝑠3 for the 5 coming renters in 𝑡2. 

 
Fig 2. A reposition action has a long-term effect 

Uncertainties in practical reposition. There are uncertain 
factors in practical reposition process. Although we can predict 
the system dynamics, we cannot guarantee they are totally the 
same with the actual observations because of model error and 
random noise. Besides, the time spent to complete a reposition 
fluctuates, e.g. delivering 5  bikes from 𝑠1  to 𝑠2  may take 10 
minutes today while it took 15 minutes yesterday although they 
are conducted between the same pair of stations. This may be 
caused by variable external factors, e.g. severe weather condition 
or traffic congestion, and random noise. As dynamic reposition 
is conducted when the system is operating, time matters, which 
can also be concluded from the two examples above. These 
uncertainties, as well as the long-term effect, make optimization 
models very complicated or even not work. 

We propose a spatio-temporal reinforcement learning based 
dynamic reposition model to tackle these three challenges. Our 
contributions can be summarized into four-fold. 

 We propose a two-step clustering algorithm, named Inter-
Independent Inner-Balance algorithm, i.e. IIIB. The 
algorithm first iteratively clusters individual stations to 
generate small function regions in a system, ensuring more 
stable rent demand and transition patterns at each region. 
Secondly, the algorithm clusters these regions into groups 
based on the inter-region transitions, guaranteeing that 
each cluster is inner-balanced and independent from the 
others. Dividing the entire system into clusters, we largely 
reduce the problem complexity. 

 We generate a system simulator based on two predictors. 
One is an O-Model to predict the rent demand at each 
region by a similarity-based KNN method, considering the 
complex impacted factors and addressing the unbalanced 
observation issue. The other one is an I-Model to predict 
the return demand at each region by a transition-based 
inference method. 

 We propose a Spatio-Temporal Reinforcement Learning 
model, i.e. a STRL, for each cluster to learn an optimal 
inner-cluster reposition policy. The state of a STRL is 
carefully designed to capture the system dynamics and 
real-time uncertainties. As the state and action spaces are 
very large, we design a deep neural network to estimate 
the optimal long-term value function for each STRL, from 
which its optimal reposition policy can be easily inferred. 
Besides formulating the model in a multi-agent way, we 
further reduce its training complexity by two spatio-
temporal pruning rules. 

 We conduct experiments on real-world datasets from Citi 
Bike in Apr. - Oct. 2016, to confirm the effectiveness of our 
model compared with baselines. 

2 OVERVIEW 
This section defines the notations and terminologies used 
thorough this paper and overviews the framework of our model. 

Table 1. Notations 

Notation Description 

𝑠𝑖 A station or a region 

𝐸𝑖 An episode 

𝑣𝑖 A trike to conduct reposition 

𝐶𝑖,𝑗  The 𝑗-th cluster in episode 𝐸𝑖 

𝑜𝑖,𝑡 / 𝑟𝑖,𝑡 Rent / return demand at 𝑠𝑖 in 𝑡  

2.1 Preliminary 
Definition 1 Transition. A transition 𝑓𝑖𝑗 = (𝑠𝑖 , 𝑠𝑗 , 𝜏𝑖 , 𝜏𝑗) is a bike 
usage record describing that a bike is rented from location 𝑠𝑖 at 
timestamp 𝜏𝑖 and returned to location 𝑠𝑗  at timestamp 𝜏𝑗 . 

Definition 2 Demand. Rent demand 𝑜𝑖,𝑡  at a location 𝑠𝑖  in 
period 𝑡 is the number of customers who want to rent a bike at 
𝑠𝑖 in 𝑡, including the ones succeed or not. The return demand 𝑟𝑖,𝑡 
at location 𝑠𝑖 in 𝑡 has a similar definition. 

Definition 3 Episode. An episode 𝐸 is a long period in a day, 
in which the total customer loss we want to minimize. Episodes 
in our problem are carefully defined in 3.1.2 to guarantee some 
constraints, instead of randomly chosen. 
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2.2 Framework 
As shown in Fig. 3, our model includes an offline learning 
process and an online reposition process. The learning process 
has three components, i.e. an IIIB clustering algorithm, system 
simulator generation and a STRL model for each cluster. 

IIIB Clustering Algorithm. To deal with the first issue, i.e. a 
system is very large and complex, we propose a two-step IIIB 
clustering algorithm. We firstly cluster stations which are close 
to each other and have similar transitions to generate small 
function regions in a system. We then cluster these regions into 
groups based on their inter-region transition patterns. Multiple 
trikes are allocated to each cluster to conduct inner-cluster 
reposition among its regions without inter-cluster bike delivery. 

Simulator Generation. To train and evaluate the reposition 
model, we generate a system simulator based on two predictors, 
i.e. an O-Model and an I-Model to respectively predict the rent 
and return demand at each region. To a specific period, e.g. 7:00 
– 7:30am on Saturday, we firstly generate a possible weather 
condition according to the historical weather statistics, e.g. 
sunny, then O-Model predicts the rent demand at each region in 
7:00 – 7:30am on Saturday when it is sunny. Based on these 
predictions, rent events at each region are simulated by Poisson 
process. Each time a bike has been rented, I-Model estimates its 
destination region and arrival time and keeps tracking it. The 
return events at each region are generated by continually 
checking whether some bikes arrive there. 

 

Fig 3. Dynamic bike reposition framework 

STRL Model. A STRL model is proposed for each cluster to 
learn an optimal inner-cluster reposition policy. Our model 
based on reinforcement learning is formulated in a multi-agent 
way. Each time a trike completes its last reposition, it continues 
to conduct a new reposition generated by the policy immediately 
without waiting for the completion of others. The new 
reposition is generated based on its current state, which is 
carefully defined to capture the system dynamics and real-time 
uncertainties. A state includes multiple factors, e.g. the current 
bike and dock availability at each region; the real-time predicted 
rent and return demands; the status of trikes, including itself and 
the others; the current time, etc. We design a deep neural 
network to estimate the optimal long-term value function for 
each STRL, from which its optimal reposition policy can be 
easily inferred. The network is trained on the system simulator 
iteratively, which is highlighted with grey in Fig. 3. 

Online Reposition. After the learning process, we obtain a 
neural network for each cluster. In online process, when a trike 
requires for a new reposition, we firstly identify in which cluster 

it is and generate its current state by O-Model and I-Model. Then 
the corresponding network is adopted to estimate the optimal 
long-term value of each possible reposition under this state. The 
reposition with largest value is selected and returned. 

3 METHODOLOGY 

3.1 IIIB Clustering Algorithm 

3.1.1 Region Generation 
As shown by the example in Fig. 1 C), the random inter-station 
transition issue makes bike reposition among stations less 
meaningful, as we only need to guarantee that there are 
available bikes at 𝑠1 or 𝑠2 or 𝑠3 and available docks at 𝑠4 or 𝑠5 or 
𝑠6 or 𝑠7. Customers from 𝐴 to 𝐵 can choose where to rent and 
return themselves considering the bike and dock availability at 
each station. Motivated by this observation, we respectively 
cluster the several stations around the origin and those around 
the destination to generate two small regions, i.e. 𝑠1, 𝑠2 and 𝑠3 
make up one region while 𝑠4, 𝑠5, 𝑠6 and 𝑠7 make up the other 
one. Consequently, we only need to guarantee the bike and dock 
availability at each region. We claim that the rent demand at a 
region is more stable and regular than that at an individual 
station; besides, the transition between two regions is more 
frequent than that between a pair of stations.  

To formally formulate this idea, we generate regions in a 
system based on two constraints. 1) Stations in one region 
should be close to each other, ensuring the convenience for 
customers in it. 2) Stations in one region should have similar 
origin and destination regions, making the inter-region 
transitions more concentrated and frequent. The methodology to 
generate these regions is an iterative approach, named bipartite 
clustering algorithm [2], which alternatively clusters stations 
based on their locations and transition patterns. 

Based on the obtained regions, we analyze the historical bike 
usage data in Citi Bike to confirm the two advantages claimed 
above. As shown in the bottom in Fig. 1 A), the rent demand at a 
region is much more stable and regular, thus easier to predict 
accurately. The random transition issue can also be addressed. 
The right figure in Fig. 1 B) shows the inter-region commutes in 
the morning on weekday in Apr. – Oct. 2016, which take up 56 
percentages. As we can see, the obtained inter-region transition 
pattern is much simpler, making the return demand prediction 
easier and more accurate. Regions obtained here can be 
considered as small function regions in a city, e.g. stations 
around a resident area are very possible to make up one region 
while those around an employment area make up another one. 
Instead of repositioning among regions in the entire system 
directly, we further cluster these regions into groups and only 
conduct inner-cluster reposition for two reasons. 1) Clustering 
can further reduce the problem complexity. 2) A driver usually 
gets familiar with an area instead of the whole city. 

3.1.2 IIIB Clustering Insight 
Clusters obtained should have two properties, i.e. inner-balance 
in each cluster and inter-independence between clusters. 

Inner-Balance. The inner-balance property of a cluster 𝐶𝑖 in 
a period 𝑡 is defined as Eq. 1, meaning that the total bike rent 
and return demands in the cluster in 𝑡 should be almost equal. 

∑ (𝑜𝑗,𝑡 − 𝑟𝑗,𝑡)𝑠𝑗∈𝐶𝑖
≈ 0                                 (1) 
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Therefore, an inner-balanced cluster in period 𝑡  should 
include both jammed and starved regions1. Otherwise, imagine 
that a cluster has only starved regions requiring for more bikes 
to serve the coming bike renters, as there are not jammed 
regions in this cluster nor inter-cluster bike delivery, no 
available bikes can be delivered to those starved regions. 

Inter-Independence. The inter-independence property of two 
clusters 𝐶𝑖 and 𝐶𝑗 in a period 𝑡 is defined as Eq. 2, meaning that 
there are not frequent transitions between them in 𝑡. 

|𝐹𝑖𝑗,𝑡| ≈ 0                                           (2) 

𝐹𝑖𝑗,𝑡 = {𝑓𝑤𝑣|𝑠𝑤 ∈ 𝐶𝑖/𝐶𝑗 , 𝑠𝑣 ∈ 𝐶𝑗/𝐶𝑖, 𝜏𝑤 ∈ 𝑡}               (3) 

Here, 𝑓𝑤𝑣 = (𝑠𝑤, 𝑠𝑣, 𝜏𝑤 , 𝜏𝑣) is a transition defined in section 2.1; 
| ∙ | denotes the set cardinality. 

To reduce the problem complexity, inter-independence 
between clusters is necessary, thus to generate a reposition 
policy for each cluster, we only need to consider the regions and 
trikes in it without the ones outside. Otherwise, the bike and 
dock availability in a cluster may be largely impacted by the 
repositions in other clusters, thus impact its own repositions.  

 

Fig 4. Net demand in the morning rush hours 

Episode Selection. As we can see, the inner-balance and 
inter-independence properties of clusters vary from time to time, 
leading to different clustering results. We divide the time in the 
day into five episodes as shown in Table 2, in each of which we 
assume the inner-balance and inter-independence properties of 
clusters do not change. Consequently, five clustering results 
corresponding to the five episodes are obtained. 

Table 2. Episodes 

Episode Duration 

Morning rush hours 7:00 am – 11:00 am 

Day time 12:00 pm – 16:00 pm 

Evening rush hours 17:00 pm – 22:00 pm 

Travel hours 9:00 am – 17:00 pm 

Evening hours 18:00 pm – 23:00 pm 

The assumption that the two properties of clusters in each of 
the above episodes do not change much is reasonable according 
to prior knowledge and confirmed by the historical bike usage 
data. 1) The net bike demand 𝑜𝑗,𝑡 − 𝑟𝑗,𝑡 at each region in each of 
the five episodes should have a pattern similar with either one in 

                                                                 
1 To formally define, a jammed region has a negative net bike demand and a 
starved one has a positive net bike demand in a specific period. 

Fig. 4 A), i.e. the net demand at each region should always be 
positive or negative in an episode, thus a cluster always includes 
both starved and jammed regions. This claim is reasonable, e.g. 
in the morning rush hours, the regions close to a resident area 
are always starved while they are always jammed in the evening 
rush hours. We analyze the bike usage data in Citi Bike and 
show the practical net demands at four regions in the 5 morning 
rush hours with Fig. 4 B) to confirm our claim. 2) The transition 
pattern of a region does not change much in an episode neither, 
e.g. in the morning rush hours, most rented bikes from a resident 
region head for the employment ones. 

 

Fig 5. IIIB clusters the regions into 2 groups 

3.1.3 IIIB Clustering Methodology 
Our region clustering algorithm has three steps as shown in Fig. 
5, where each node denotes a region; the nodes with same color 
pertain to a same cluster. 

1) Construct an inter-region transition graph. To a specific 
episode, when the transition between two regions in this episode 
has a frequency larger than a support 𝜌1, we add an edge 
between these two regions. Consequently, an inter-region 
transition graph for commutes is obtained. 

2) Detect community structures. We adopt a betweenness-
based community detection algorithm [9] to detect the 
community structures in the obtained inter-region transition 
graph. A community, made up by multiple regions, should have 
dense inner edges while very few inter-ones. 

3) Cluster communities and regions. Obtaining some 
communities and the remaining regions that are not in any 
community, we adopt the agglomerative clustering algorithm [18] 
to cluster them into groups, based on the similarity defined by 
Eq. 4 and Eq. 5. 

𝑠𝑖𝑚𝑖𝑗 =
𝜆

𝐺𝑖𝑗
+ (|𝐷𝑖,𝑡| + |𝐷𝑗,𝑡| − |𝐷𝑖,𝑡 + 𝐷𝑗,𝑡|)                      (4) 

𝐷∗,𝑡 = (𝑜∗,𝑡 − 𝑟∗,𝑡)                                     (5) 

Here, 𝜆 is a tradeoff between the geographical distance and 
inner-balance increase; 𝑜∗,𝑡 and 𝑟∗,𝑡 stand for the rent and return 
demand at a region or in a community in 𝑡 ; 𝐺𝑖𝑗  is the 
geographical distance between two regions or communities or a 
region and a community, where the geographical location of a 
community is the center of the regions in it. Initially, we define 
each community and each region not in any community to be a 
cluster. Then, the pair of clusters which has the largest similarity 
calculated by Eq. 4 is chosen and combined to formulate a new 
one. Iterate until there are only 𝑚𝑖 clusters left, where 𝑚𝑖 is the 
number of clusters in this episode 𝐸𝑖 . 

Our IIIB clustering algorithm can guarantee the two required 
properties for three reasons. 1) Each community obtained in the 
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second step is almost inner-balanced and inter-independent with 
others according to the community definition. 2) Agglomerative 
clustering algorithm in the third step has considered the inner-
balance increase when defining the similarity metric, thus 
guarantees the final clusters to be nearly inner-balanced. 3) 
Those regions which are not in any community may add inter-
cluster transitions, however, as these transitions are minor 
compared with those in each community, we ignore them. 

3.2 System Simulator 
In dynamic reposition process, there are interactions between 
reposition, rent and return. How many bikes are rented and 
returned at each region determines which regions to be jammed 
and starved, thus impacts how to reposition; bike repositions 
impact how many available bikes and docks are at each region, 
thus impact the rent and return. Therefore, to train and evaluate 
a dynamic reposition model, a system simulator is required to 
simulate the system dynamics under repositions. Our simulator 
is based on an O-Model, an I-Model and two assumptions. 

O-Model. The rent demand at each region in period 𝑡 is 
predicted by a similarity-based KNN method including two steps 
[2]. Firstly, select the top-𝑘 most similar historical periods with 𝑡. 
The similarity is calculated based on the impacted factors, i.e. 
time and weather. Secondly, calculate the weighted average of 
the historical bike demands in those similar periods at each 
region as its predicted demand in 𝑡. Here the weights are the 
similarities. O-Model considers the external impacted factors and 
can address the observation unbalance issue. 

I-Model. The return demand at each region in period 𝑡 is 
inferred by tracking the rented bikes via two steps [2]. Firstly, 
each time a bike is rented, I-Model estimates its destination 
region and arrival time based on the learned inter-region 
transition probability and inter-region ride duration distributions; 
then keeps tracking it. Secondly, to period 𝑡, I-Model checks the 
tracked bikes and selects those that can arrive at their 
destinations in 𝑡 to infer the return demand at each region. 

Assumption 1. A bike renter arrived at an empty station 
leaves the system immediately without waiting. 

Assumption 2. A customer who wants to return her bike but 
arrived at a region without available docks chooses the nearest 
neighborhood region to return. 

 

Fig 6. System simulation process in an episode 

System simulation process in an episode (𝜏𝑜 , 𝜏𝑒] is shown in 
Fig. 6. We firstly divide the episode into several periods, i.e. 
(𝜏𝑜 , 𝜏𝑜 + 𝛿1], (𝜏𝑜 + 𝛿1, 𝜏𝑜 + 2 × 𝛿1], …, (𝜏𝑒 − 𝛿1, 𝜏𝑒], where 𝛿1 is 
a time length, e.g. 1 hour. A weather condition for each period is 
generated based on the historical weather statistics. O-Model is 
then adopted to predict the rent demand at each region in each 
period under the specific weather conditions, i.e. 𝑂𝑗,𝑡 . We then 
divide each period into tiny time windows, e.g. (𝜏𝑜 , 𝜏𝑜 + 𝛿2], …, 
(𝜏𝑜 + 𝛿1 − 𝛿2, 𝜏𝑜 + 𝛿1], where 𝛿2 is a tiny time length, e.g. 1 
minute. The rent demand in each tiny time window in period 𝑡 is 

calculated by 𝑂𝑗,𝑡 × 𝛿2 ×
1

𝛿1
. We repeatedly simulate the rent, 

return and reposition process in each tiny time window (𝜏, 𝜏 +
𝛿2] until the episode ends. 

1) Rent process. A sequence of rent events at each region is 
generated via a Poisson process whose parameter is its rent 
demand in this time window. According to Assumption 1, when a 
renter arrives at a region with available bikes, she succeeds to 
rent; otherwise, she leaves. 

2) Return process. I-Model checks whether any tracked bike 
can arrive at their destinations in this time window to generate 
return events at those destinations. According to Assumption 2, 
when a destination region has available docks, I-Model generates 
a return event there and stops tracking the bike; otherwise, the 
bike heads for the nearest neighborhood and keeps being tracked. 

3) Reposition Process. Check if any trike can arrive at their 
target regions in this time window. To each of these trikes, we 
firstly complete its loading there; then we generate a new 
reposition to it and estimate its completion time by Eq. 6, where 
𝐺𝑥 is the geographical distance from the current region to the 
target one; 𝜇𝑟  is a constant speed; 𝑡𝑟  is a constant time for 
loading; 𝜀𝑟 is a reposition noise; we keep tracking it until it 
completes the new reposition, and so on so forth. 

 𝑡𝑥 ∈ (𝜏 +
𝐺𝑥

𝜇𝑟
+ 𝑡𝑟 + 𝜀𝑟 ,  𝜏 + 𝛿2 +

𝐺𝑥

𝜇𝑟
+ 𝑡𝑟 + 𝜀𝑟]              (6) 

3.3 STRL Model 
Obtaining a system simulator, whose regions are clustered into 
groups in each specific episode, a STRL model is proposed for 
each cluster to learn an inner-cluster bike reposition policy, 
minimizing its total customer loss in the episode. 

3.3.1 Model Insight and Multi-Agent Formulation 
As discussed previously, each single reposition has long-term 
influence and there are uncertain factors in practical reposition 
process. Therefore, we want a model which not only minimizes 
the total customer loss in a long period, but also generates 
repositions online based on the real-time observations instead of 
generating a sequence of decisions in advance and conducting 
them one by one. Traditional optimization methods cannot 
satisfy these requirements while our STRL model does. 

Long-term Optimization. A Reinforcement Learning model, 
i.e. a RL model, which maximizes the long-term reward of a 
sequence of decisions, fits our problem formulation very well, 
when we set the reward as the negative customer loss. 

Real-time Reposition Generation. Instead of generating a 
sequence of actions in advance for the trikes to conduct one by 
one, we generate and assign the next reposition to each trike 
until it has completed its last one. Therefore, a new reposition is 
determined based on the real-time observations, e.g. the time 
when the last reposition is completed, the real-time predicted 
bike and dock demands at each region, etc., better capturing the 
uncertainties in practical implementation. 

Our STRL model is formulated in a multi-agent way. When a 
trike completes its last reposition, a new reposition is generated 
to it immediately based on its current state without waiting for 
the completion of others. This formulation has two advantages. 
Firstly, as reposition duration varies from trike to trike largely, 
always waiting for the others to complete before conducting a 
new reposition is very inefficient. Secondly, generating an action 
for each trike one by one can largely reduce the action space 
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rent return reposition
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Period 2 ...

rent     



 

compared with that to generate actions for all trikes at one time. 
The action space of the former is 𝑂(𝑛𝑖 × 𝑐) while that of the 
latter is 𝑂((𝑛𝑖 × 𝑐)𝑘𝑖), where 𝑐 is the trike capacity; 𝑘𝑖 and 𝑛𝑖 
are respectively the number of trikes and regions in the cluster. 
Each time a trike requires for a new reposition, the status of the 
other trikes is contained in its current state. Therefore, trikes in 
one cluster can still reposition cooperatively instead of working 
without considering others in our multi-agent formulation. 

3.3.2 STRL Model Methodology 
To elaborate the methodology of a STRL, we firstly introduce the 
traditional RL model [15] briefly, then naturally extend to our 
STRL model. A RL model consists of six components, i.e. 
(𝑆, 𝐴, 𝑇, 𝑅, 𝜋, 𝛾), where 𝑆 denotes the state set; 𝐴 is an action set; 
𝑇 describes the transition probability that an agent took action 
𝑎𝑡  under state 𝑆𝑡  will transit to the next state 𝑆𝑡+1 , i.e. 
𝑆 × 𝐴 × 𝑆 → 𝑇; 𝑅 stands for the immediate reward received after 
taking an action under a specific state and transiting to a next 
state, i.e. 𝑆 × 𝐴 × 𝑆 → 𝑅; 𝜋 is a policy 𝑆 × 𝐴 → 𝜋, describing the 
probability to take an action under a specific state; 𝛾 is a time 
discount parameter. At each time 𝑡, an agent in state 𝑆𝑡 takes an 
action 𝑎𝑡 according to the policy 𝜋, then transits to the next state 
𝑆𝑡+1, receiving an immediate reward 𝑟𝑡. An action has a long-
term return defined as Eq. 7 where 𝑡𝑒 is the episode end. 

𝑈𝑡 = 𝑟𝑡 + 𝛾 × 𝑟𝑡+1 + 𝛾2 × 𝑟𝑡+2 + ⋯ + 𝛾𝑡𝑒−𝑡 × 𝑟𝑡𝑒
        (7) 

We define the optimal long-term value function as Eq. 8, 
describing the maximum expected return of an action 𝑎𝑡 under a 
specific state 𝑆𝑡 by following any policy after 𝑡. 

𝑄∗(𝑆𝑡, 𝑎𝑡) = 𝑚𝑎𝑥𝜋𝔼𝜋[𝑈𝑡|𝑆𝑡, 𝑎𝑡, 𝜋]                     (8) 

Obtaining the optimal long-term value of each action under 
each state, the optimal policy for a RL model can be easily 
inferred by Eq. 9, i.e. always take the action with maximum 
optimal long-term value under the current state. 

𝑎𝑡
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡

𝑄∗(𝑆𝑡, 𝑎𝑡)                            (9) 

Usually, Bellman equation as Eq. 10 is adopted to estimate the 
optimal long-term value function via an iterative approach. 

𝑄∗(𝑆𝑡, 𝑎𝑡) = 𝔼𝑆𝑡+1
[𝑟𝑡 + 𝛾 × 𝑚𝑎𝑥𝑎𝑡+1

𝑄∗(𝑆𝑡+1, 𝑎𝑡+1)|𝑆𝑡, 𝑎𝑡]  (10) 

Our model, formulated in a multi-agent way, is based on the 
traditional reinforcement learning theory. The multiple agents, 
i.e. the trikes in a cluster, share one common reposition policy. 
Each time a trike completes its last reposition, the policy 
generates a new one to it immediately based on its current state. 
Completing this reposition, the trike transits to the next state 
and receives an immediate reward. The state in our model is 
carefully designed to capture the system dynamics and real-time 
uncertainties. We firstly introduce the real-time observation of a 
trike before stepping to its action, state and reward definitions. 

An Observation. Each time a trike requires for a new 
reposition, it has a real-time observation of the current 
environment. We define the observation of a trike to include 
three factors, i.e. the system status, the status of other trikes and 
its own status. The system status includes the current bike and 
dock availability at each region and their real-time predicted rent 
and return demands in the next period. The status of other trikes 
describes how many bikes they are to pick up or unload at which 
regions. More information about the other trikes can be 

considered, e.g. the current number of bikes on each trike, their 
expected arrival times, etc., although we do not consider them 
here for simplicity. The status of the trike itself includes its 
current location and how many bikes it has.  

An example of an observation to trike 𝑣1 is shown in Fig. 7 A). 
As we can see, the first large rectangle corresponds to the system 
status, which has four vectors 𝑏1, 𝑑1, 𝑏2, 𝑑2 ∈ 𝑅𝑛𝑖 , where 𝑛𝑖 is 
the number of regions in this cluster; 𝑏1  and 𝑑1  respectively 
stand for the current bike and dock availability at each region; 𝑏2 
and 𝑑2  respectively denote the real-time predicted rent and 
return demand at each region. The second rectangle describes 
the status of other trikes, where 𝑝𝑖 denotes how many bikes 𝑣𝑖 
will pick up or unload at which region, e.g. 𝑣2 will pick up 4 
bikes at 𝑠1; 𝑣3 will unload 8 bikes at 𝑠𝑛𝑖

. We combine the system 
status and the status of other trikes by 𝑏1 − 𝑏2 + 𝑑2 − 𝑝2 − 𝑝3 −
𝑝4 = (44, 18, … , 37, 35)𝑇 ∈ 𝑅𝑛𝑖 , to predict the bike availability 
at each region in the coming period. As the capacity of each 
region is constant, considering either the bike or the dock 
availability is enough. The third rectangle corresponding to the 
status of the current trike, describes that 𝑣1 is at region 𝑠2 with 5 
bikes on it. We transform 𝑞1 to a one-hot vector which shows 
the current location of 𝑣1 , i.e. (0, 1, 0, … , 0) , and a scalar 
denoting the number of bikes on it. Concatenating the predicted 
availability vector, the one-hot vector and the scalar, we obtain 
the current observation of 𝑣1, a 2 × 𝑛𝑖 + 1 − dimension vector. 

 

Fig 7. Generate an observation and an action 

An Action. An action is defined as a vector describing where 
a trike should go to pick up or unload how many bikes. An 
example is shown in Fig. 7 B), where the action for trike 𝑣1 is 
𝑝1 = (0, 0, … , −9, 0), i.e. 𝑣1 unload 9 bikes at region 𝑠𝑛𝑖−1. We 
transform 𝑝1  to a one-hot vector and a scalar, respectively 
showing the target region and the number of bikes to load or 
unload there. Concatenating the one-hot vector and the scalar, 
we obtain a 𝑛𝑖 + 1 − dimension action for 𝑣1. 

A State. The state of a trike can be simply defined as its 
current observation vector extended by the current time. 
However, as the system dynamics is too complicated to be 
captured by a single observation, we define the state to be a 
sequence of interleaved observations and actions combined with 
the current time, i.e. 𝑆𝑡 = (𝑂𝑡−𝐿1

, 𝑎𝑡−𝐿1
, … , 𝑂𝑡−1, 𝑎𝑡−1, 𝑂𝑡, 𝑡) . 

Therefore, a state is a (3 × 𝑛𝑖 + 2) × 𝐿1 + (2 × 𝑛𝑖 + 1) + 1 − 
dimension vector, where 𝐿1 denotes the time lag. An example of 
a state is shown in Fig. 8, where we set 𝐿1 = 1 , i.e. 𝑆𝑡 =
(𝑂𝑡−1, 𝑎𝑡−1, 𝑂𝑡, 𝑡); 𝐴𝑡 denotes the predicted bike availability at 
each region in 𝑡; 𝑠𝑡

𝑐 is a one hot vector denoting the current 
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region of the trike; 𝑏𝑡
𝑐 describes how many bikes are on the trike 

in 𝑡; 𝑠𝑡
𝑟 and 𝑏𝑡

𝑟 make up the action in 𝑡, respectively denoting the 
one-hot vector for the target reposition region and how many 
bikes to load or unload there. 

 

Fig 8. Generate a state 𝑺𝒕 

An immediate reward. We set the immediate reward after 
taking 𝑎𝑡  under 𝑆𝑡  and transiting to 𝑆𝑡+1  as the negative 
customer loss in (𝑡, 𝑡 + 1], thus to maximize the long-term 
reward can minimize the total customer loss in an episode. 

3.3.3 Optimal Long-term Value Network 
After formally defining the model, we want to estimate its 
optimal long-term value function by Eq. 10. As the state and 
action spaces are large, we design a deep neural network to 
estimate this function, i.e. 𝑄∗(𝑆, 𝐴, 𝜃): 𝑆 × 𝐴 → 𝑄∗, where 𝜃 are 
the network parameters. 

The input to our deep neural network is a state vector 
concatenated with an action vector, which contains multi-modal 
data, thus the network structure needs to be carefully designed 
instead of a simple fully-connected one. We design the network 
as Fig. 9, where the state and action shown in Fig. 8 are adopted 
for illustration, i.e. the grey rectangles make up a state while the 
orange ones make up the action. One-hot vectors in the input, 
corresponding to regions, are firstly connected to a shared 
embedding layer. The obtained embeddings are then 
concatenated with the remaining entries in the input and 
connected to fully-connected layers (FC). Lastly, the output from 
FC is combined with the time 𝑡 to obtain the final long-term 
value, such that when 𝑡 < 𝜌2, the output from FC is returned, 
otherwise, return zero; here 𝜌2 is a parameter very close to the 
episode end 𝑡𝑒.  

 

Fig 9. Optimal long-term value network 

We train this network via an iterative approach based on Eq. 
10 on the simulator. There are seven steps [13][14]. 

1) Random initialize the optimal long-term value network as 
𝑄∗(𝑆, 𝐴, 𝜃−) and set the sample pool to be an empty set. 

2) Begin a new episode.  

3) When a trike requires for a new reposition, 𝑄∗(𝑆, 𝐴, 𝜃−) 
generates an action 𝑎𝑡 under its current state 𝑆𝑡, such that 𝑎𝑡 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑄∗(𝑆𝑡, 𝑎, 𝜃−) . With a probability 𝜀 , 𝑎𝑡  may be 
replaced by a random chosen action from 𝐴; here 𝜀 ∈ [0, 1] is a 
parameter for exploration. 

4) The trike takes the reposition 𝑎𝑡 and transits to the next 
state 𝑆𝑡+1, receiving an immediate reward 𝑟𝑡. Generate a new 
sample (𝑆𝑡, 𝑎𝑡, 𝑆𝑡+1, 𝑟𝑡) and add it to the sample pool. 

5) Update the network based on a mini batch from the sample 
pool by Eq. 11. Set 𝜃− = 𝜃+ for the next reposition generation. 

𝑄∗(𝑆𝑡, 𝑎𝑡, 𝜃+) = 𝑟𝑡 + 𝛾 × 𝑚𝑎𝑥𝑎𝑡+1
𝑄∗(𝑆𝑡+1, 𝑎𝑡+1, 𝜃−)      (11) 

6) Jump to step 3 until an episode ends.  

7) When the number of episodes been simulated reaches a 
threshold, terminate the training process and output the 
obtained neural network; otherwise, jump to step 2. 

3.3.4 Spatio-Temporal Pruning Rules 
As the large state and action spaces lead to very slow training 

convergence, we further design two spatio-temporal pruning 
rules to prune some actions under each specific state, thus to 
improve the training efficiency. Before elaborating those rules, 
we formally define some region statuses by a parameter 𝜌3. 

Definition 4 (Predicted) Severely Deficient / Congested. A 
region is severely deficient when its current bike availability is 
less than  𝜌3. A region is predicted severely deficient when its 
predicted bike availability is less than  𝜌3; here the predicted 
bike availability can be obtained from 𝐴𝑡  in Fig. 8, whose 
calculation is elaborated in 3.3.2. (Predicted) Severely congested 
is defined similarly. 

Our pruning rules are two heuristic ones, to prune the most 
possible bad actions. 1) Always unload at a predicted severely 
deficient region and pick up at a predicted severely congested 
one. 2) The reposition target region should be chosen from the 
top−𝑘 nearest neighborhoods of the current region; besides, 
how many bikes to load or unload is generated with a step size. 

4 EVALUATION 
We evaluate our model on real datasets from Citi Bike system 
and discuss the experiment results in the morning rush hours. 
Results in the other episodes are similar. 

4.1 Data and Baselines 

4.1.1 Real Datasets 

We adopt two real-world datasets in our experiments, i.e. the 
Citi Bike data and the weather data in New York City. We only 
conduct experiments on the principle system, which only covers 
the urban center as shown in Fig. 1 B), as the station status data, 
which are necessary to estimate the bike and dock demand at 
each location, are only available to these stations. Data details 
are summarized in Table 3. 

As the potential bike demand is unknown, we estimate the 
rent demand at each station in each period from the bike usage 
data, as well as the station status data2 by Eq. 12 [1], where 𝑔𝑖,𝑡 
is the number of bikes been rented at 𝑠𝑖 in 𝑡; 𝐿𝑖,𝑡 is the time 
length in period 𝑡 when station 𝑠𝑖 is not empty. 

𝑜𝑖,𝑡 = 𝑔𝑖,𝑡 ×
|𝑡|

𝐿𝑖,𝑡
                                   (12) 

                                                                 
2 We thank Abe Stanway and Chris Heydt for sharing the station status data. 
https://github.com/astanway/citibike-data  
https://groups.google.com/forum/#!forum/citibike-hackers  
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Table 3. Citi Bike data and weather data 

Bike Data Weather Data 

# Stations 389 # Drizzle 220 

# Regions 98 # Rainy 75 

# Clusters 4 # Foggy 328 

# Records 9,846,248 # Sunny 4,513 

4.1.2 Baselines and Metric 
No Reposition. We run the simulator without any bike reposition. 

Greedy Reposition. Greedy algorithm generates a reposition 
based on three rules. 1) An empty trike always goes to the 
nearest severely congested region to pick up the most possible 
bikes, considering the trike capacity and how many bikes are at 
the target region. 2) A full trike always goes to the nearest 
severely deficient region to unload the most possible bikes, 
considering how many bikes it has and the dock availability 
there. 3) A trike which is neither full nor empty goes to the 
nearest severely unbalanced region, which is either severely 
congested or deficient, to load or unload the most possible bikes 
depending on the status of the target region. 

Prediction based Random Reposition. This reposition strategy 
means that a trike always randomly chooses a region, which is 
predicted severely deficient, to unload some bikes or a region 
which is predicted severely congested to pick up some bikes. 

Prediction based Greedy Reposition. PGR is very similar with 
GR except that we consider the predicted status of each region 
when applying the three rules in GR. 

Optimization Reposition. A related work [1] proposed an 
optimization model to conduct bike reposition. However, it 
solves the static bike reposition problem. Besides, the number of 
trikes in each cluster is constrained to one and the optimization 
objective is to minimize the reposition distance, therefore, this 
model does not fit our problem settings. However, we slightly 
refine our formulation by assuming that each cluster is allocated 
with one trike with a speed 𝜇𝑟 × 𝑘  and a capacity 𝑐 × 𝑘  to 
approximate our previous settings, i.e. 𝑘 trikes with a speed 𝜇𝑟 
and a capacity 𝑐 . We can further refine the optimization 
objective to be the total customer loss while this leads to a too 
complex model to solve, where heuristic algorithms are required. 

Evaluation Metric. The reposition results obtained by different 
models are compared by the total customer loss in an episode, 
including the ones failed to rent and the ones failed to return. 

4.2 Evaluation Results 

4.2.1 IIIB Clustering Results 

 

Fig 10. IIIB clustering algorithm results 

We firstly generate the function regions in a system and show 
them in Fig. 10, where each region is denoted by the center of 
the stations in it. A blue point means a starved region while a 
red one denotes a jammed region in the morning rush hours. We 
further conduct IIIB to cluster these regions into four clusters. As 
we can see from Fig. 10, each cluster has both jammed and 
starved regions in this episode, which is necessary for each 
cluster to be inner-balanced. 

Table 4. Inner-balance property 

Cluster # Regions Unbalance Capacity Unbalance Ratio 

𝐶1 30 -47 5285 -0.009 

𝐶2 27 123 2123 0.058 

𝐶3 18 38 3635 0.01 

𝐶4 23 103 1906 0.054 

To further confirm the inner-balance property of each cluster, 
we calculate their net bike demands in the morning rush hours 
and show the statistics in Table 4, where #Regions means how 
many regions are in each cluster; Unbalance is the total net bike 
demand; Capacity denotes the total number of docks in each 
cluster and Unbalance Ratio is calculated by 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 / 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦. 
As we can see, the unbalance of each cluster is very small, 
especially compared with the capacity. 

Table 5. Inter-independence property 

Cluster 𝐶1 𝐶2 𝐶3 𝐶4 

𝐶1 315,137 0 31,882 0 

𝐶2 0 21,463 0 0 

𝐶3 46,174 0 226,723 0 

𝐶4 670 0 0 41,094 

Table 5 shows the statistics of the inner-cluster and inter-
cluster commutes. As we can see, there are only a few inter-
cluster commutes, i.e. about 10 percentages, which are minor 
that can be ignored. Therefore, we can consider that the 4 
obtained clusters are almost independent from each other, 
confirming the effectiveness of our clustering algorithm. 

4.2.2 STRL Reposition Results 

Table 6. Customer loss in the morning rush hours 

Customer 
Loss NR PR GR PGR OR STRL 

𝐶1 267 178 200 157 190 113 

𝐶3 286 229 256 238 237 178 

𝐶1 + 𝐶3 553 407 456 395 427 291 

Evaluation results in 𝐶1 and 𝐶3 in the morning rush hours under 
different reposition models are shown in Table 6. We also show 
the corresponding loss reduction ratio by Fig. 11, which is 

defined as 
𝐿−𝐿𝑋

𝐿
; here 𝐿  is the total customer loss without 

reposition and 𝐿𝑋 denotes the customer loss under a specific 
reposition strategy. To 𝐶2 and 𝐶4, these two areas in Citi Bike 
system are not as busy as the other two. According to our 
simulation results, the customer loss in these two clusters is even 
not larger than fifty. Therefore, a simple heuristic algorithm, e.g. 
the baseline PGR introduced previously, is good enough for them 
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to conduct bike reposition. In the following discussions, we do 
not consider 𝐶2 nor 𝐶4 but only 𝐶1 and 𝐶3. 

As we can see from Table 6 and Fig. 11, the customer loss is 
large when there is no bike reposition while a good reposition 
policy can reduce the customer loss effectively. GR performs the 
worst, even than PR reposition. This is reasonable as GR does 
not consider the predicted bike and dock demands while PR does. 
Besides, the PR algorithm here is not totally random but with 
some heuristic constraints, e.g. never pick up at a region which 
is not predicted severely congested. PGR can easily outperform 
GR because it considers the predicted bike and dock demands at 
each region while its other rules are totally the same with GR, 
making the reposition more hyperopic. However, as we can see, 
PGR and PR do not perform stably, i.e. PGR beats PR in 𝐶1 while 
it performs worse than PR in 𝐶3. As both PGR and PR are 
heuristic algorithms without any error bound, we think this is 
also reasonable.  OR performs very poorly as it is designed for a 
static bike reposition problem. Besides, when we formulate the 
optimization objective as the total customer loss in a long period, 
only approximate solutions can be obtained by some heuristic 
algorithms, making its performance even worse. 

 

Fig 11. Customer loss reduction ratio 

How the customer loss converges when training STRL for 𝐶1 
is shown in Fig. 12, where the x-axis denotes training epoch, 
each of which contains 500 episodes, i.e. simulating the system 
operation in the morning rush hours for 500 times; the y-axis 
stands for the average customer loss in each epoch; the 
exploration rate begins with 1 and keeps reducing to 0.1. As we 
can see, STRL outperforms the best baseline, i.e. PGR, after about 
30 epochs. After iterating for 45 epochs, our model can beat PGR 
significantly. Our model begins with an initial customer loss 
around 180, which is not too bad. This is because we have 
designed two spatio-temporal pruning rules to prune the actions 
which are very possible to be bad. Therefore, at the very 
beginning of our training process, the reposition policy is a 
heuristic algorithm3 defined by those pruning rules instead of a 
random one, making the initial customer loss not too large. By 
iteratively training, the initial heuristic algorithm keeps being 
continually improved.  

 

Fig 12. Customer loss in each epoch with pruning 

                                                                 
3 This initial heuristic algorithm is the same with the prediction based random 
reposition strategy. 

To confirm that the pruning rules are very important in 
model training, we also try to train a model without the rules 
and obtain a result shown in Fig. 13. As we can see, there is 
almost no reduction to the customer loss within 45 epochs, not 
to mention convergence. This is because the number of actions 
under each specific state is larger, thus the iteration times of 45 
epochs is far from enough. 

 

Fig 13. Customer loss in each epoch without pruning 

Case study 1. Fig. 14 A) shows a jammed and a starved 
region in 𝐶1, which we denote as 𝑠1 and 𝑠2 respectively. During 
8:30 – 9:00am on a day, the policy generates repositions for 
trikes to deliver bikes from 𝑠1 to 𝑠2 repeatedly. As 𝑠2 is a starved 
region, delivering bikes to it is reasonable. However, as we can 
see from Fig. 10, there are other jammed regions in 𝐶1, which are 
much closer to 𝑠2 than 𝑠1, but our policy does not choose to pick 
up bikes from them. According to data analysis, we think this is 
because the jammed condition at 𝑠1 is very severe, i.e. its average 
net dock demand is even larger than 300  in the morning. 
Therefore, mitigating the congestion at 𝑠1 is pressing. Actually, 
𝑠1 is frequently chosen as the target region to pick up bikes, not 
only for supplying 𝑠2 in this 30 minutes, but also other starved 
regions in the 5 morning rush hours. 

 

Fig 14. Case studies 

Case study 2. Fig. 14 B) shows a sequence of repositions by a 
trike in 9:00 – 11:00am on a day, where the left figure shows the 
locations to load and unload on a map; the right figure shows the 
reposition sequence. As we can see, the trike alternatively loads 
at jammed regions and unloads at starved regions. However, it 
usually does not choose the nearest region as the target. This 
confirms that reposition in a greedy way is usually myopic and 
may not be good in a long period. 

5 RELATED WORK 
Studies in bike-sharing systems can usually be categorized into 
two groups, i.e. prediction and system operation. 

Jon Froehlich et al. [4] experimentally compared four simple 
demand prediction models. Kaltenbrunner et al. [5] worked on 
Bicing system to predict the bike availability at each station. The 
hourly rent in the entire system in Lyon is predicted by Borgnat 
et al. [6] via a combination model, i.e. a non-stationary 

My Barchart

N
u
m

b
e
rs

0
.0

0
.2

0
.4

Loss Reduction Ratio PR

GR

PGR

OR

STRL

0.4

0.2

0

0 10 20 30 40

1
2

0
1

4
0

1
6

0
1

8
0

Index

lo
ss

$
r_

le
a

rn
in

g
[1

:4
7

]

PGR Loss = 157

120

140

160

180

0 10 20 30 40

260

264

268

0 10 20 30 400 10 20 30 40

26
0

26
4

26
8

Index

lo
ss

$r
_l

ea
rn

in
g[

1:
47

]

A) Case study 1

40.74

40.76

40.78

-74.00 -73.98 -73.96 -73.94

s_1[r_3, 2]

s_
1[

r_
3,

 1
]

1

2

3
4

5

6

7

40.675

40.700

40.725

40.750

40.775

-74.025 -74.000 -73.975 -73.950 -73.925

lon

la
t

40.675

40.700

40.725

40.750

40.775

-74.025 -74.000 -73.975 -73.950 -73.925

lon

la
t

B) Case study 2



 

amplitude for a given day added with a fluctuation in a specific 
hour. Vogel et al. [7] predicted the rent demand at each station, 
adopting a time series analysis method similar with [6], but also 
considering the impact from weather. Yoon et al. [8] presented a 
personal journey advisor application, considering the spatial 
interaction between stations and some temporal impacted factors, 
to predict the bike and dock availability at each station. The 
authors evaluated their model on a system in Dublin. Li et al. [2] 
proposed a hierarchical prediction model, considering multiple 
external impacted factors, e.g. time, meteorology, correlation 
between stations, etc., to predict the bike and dock demands at 
each location more accurately. Their work is further extended by 
Liu et al. [1] and Yang et al. [3] later. 

System operation works mainly focus on bike reposition, 
including static bike reposition, dynamic reposition, and user-
based bike reposition, among which the first two are conducted 
by the system operators while the third one is conducted by the 
users. Static bike reposition means that the operators redistribute 
bikes in a system when it does not operate or in the night. 
Works to solve this problem are mainly based on optimization 
models [1], to optimize some objectives, e.g. minimize the total 
travel distance. Optimization models are also adopted to deal 
with dynamic bike reposition problem [10][11][12], however, the 
models are usually too complicated to solve and cannot deal with 
the uncertainties in the practical operation process. User-based 
reposition means incentivizing the customers to rent or return a 
bike at specific stations with a reward [16][17][19]. However, 
how much reward to offer is a challenging problem. 

Recently, a new bike-sharing mode appears in many Chinese 
cities, i.e. the station-less bike systems which can collect bike 
trajectory data. Bao et al. [20] adopted these data to conduct 
some interesting works, e.g. planning bike lanes in a city. 

6 CONCLUSIONS 
In summary, we propose a spatio-temporal reinforcement 

learning based dynamic bike reposition model. We firstly 
propose an IIIB clustering algorithm to divide the entire system 
into several clusters, largely reducing the problem complexity. 
Secondly, a STRL model is proposed to learn an optimal inner-
cluster reposition policy for each cluster, targeting at minimizing 
its total customer loss in a long episode. Each STRL model is 
trained and evaluated on a system simulator, which is designed 
based on two predictors. We conduct experiment on real-world 
datasets from Citi Bike system to confirm the effectiveness of 
our model compared with baselines. 
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APPENDIX 

Parameters used to train the model for the first cluster are 
summarized in Table 7, including those for both the simulator 
and the STRL model. 

Table 6. Parameters in model training for 𝑪𝟏 

Parameters Values 

Trike Capacity 𝑐 10 

Trike Speed 𝜇𝑟 200m / min 

# Trikes 4 

𝛿1 1 hour 

𝛿2 1 min 

𝜌2 20 min 

𝜌3 24 

Exploration rate ε 1  0.1 

Embedding layer 30 

1st FC layer 64 

2nd FC layer 32 

Loading time 𝑡𝑟 3 min 

Reposition Noise 𝜀𝑟 𝑁(0, 3) 

Step size 5 

 


