
Dynamic Bike Reposition: A Spatio -Temporal Reinforcement
Learning Approach

Yexin Li1,2, Yu Zheng2, Qiang Yang1
1 e Hong Kong University of Science and Technology, Hong Kong

2 Urban Computing Business Unit, JD Finance, Beijing, China
yliby@connect.ust.hk, msyuzheng@outlook.com, qyang@cse.ust.hk

ABSTRACT
Bike-sharing systems are widely deployed in many major cities,
while the jammed and empty stations in them lead to severe
customer loss. Currently, operators try to constantly reposition
bikes among stations when the system is operating. However,
how to e ectively reposition to minimize the customer loss in a
long period remains unsolved. We propose a spatio-temporal
reinforcement learning based bike reposition model to deal with
this problem. Firstly, an inter-independent inner-balance
clustering algorithm is proposed to cluster stations into groups.
Clusters obtained have two properties, i.e. each cluster is inner-
balanced and independent from the others. As there are many
trikes repositioning in a very large system simultaneously,
clustering is necessary to reduce the problem complexity.
Secondly, we allocate multiple trikes to each cluster to conduct
inner-cluster bike reposition. A spatio-temporal reinforcement
learning model is designed for each cluster to learn a reposition
policy in it, targeting at minimizing its customer loss in a long
period. To learn each model, we design a deep neural network to
estimate its optimal long-term value function, from which the
optimal policy can be easily inferred. Besides formulating the
model in a multi-agent way, we further reduce its training
complexity by two spatio-temporal pruning rules. irdly, we
design a system simulator based on two predictors to train and
evaluate the reposition model. Experiments on real-world
datasets from Citi Bike are conducted to con rm the
e ectiveness of our model.

CCS CONCEPTS
Ự Applied computing ᾧ Transportation; Ự Information
systems ᾧ Spatio-temporal systems;

KEYWORDS
Bike-Sharing System, Dynamic Bike Reposition, Reinforcement
Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD '18, August 19ỡ23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08Ỵ$15.00
https://doi.org/10.1145/3219819.3220110

ACM Reference format:

Yexin Li, Yu Zheng, Qiang Yang. 2018. Dynamic Bike Reposition: A
Spatio-Temporal Reinforcement Learning Approach. In Proceedings of
KDDẻ18, August 19-23, 2018, London, United Kingdom, 10 pages.
DOI: https://doi.org/10.1145/3219819.3220110

1 INTRODUCTION
Bike-sharing systems are widely deployed in many major cities,
e.g. New York City, Paris and Beijing, providing a convenient
transportation mode to citizens. A user can rent or return a bike
at a random station via swiping her membership card,
generating a bike usage record. However, as the bike usage in a
city is very unbalanced, there are usually empty stations without
bikes and congested ones lacking available docks in a system,
causing severe customer loss. Currently, the system operators
are conducting dynamic bike reposition to deal with this problem,
i.e. adopt trikes to constantly reposition bikes among stations
when the system is operating. However, how to reposition to
minimize the customer loss in a long period remains an open
problem. Real-time monitoring is not a good solution as it is too
late to redistribute the bikes after an unbalance has been
observed. Repositioning bikes solely based on the bike usage
prediction for the coming period only results in a greedy and
myopic policy, which may not be optimal for a long period. We
summarize three challenges to solve this problem.

Fig 1. Rent demand and transition pattern in Citi Bike

A bike-sharing system is complex and dynamic. There are
usually tens of trikes repositioning among hundreds of stations
in a system simultaneously. Repositioning cooperatively in such
a large system is complicated, not to mention that the system is
very dynamic when operating. System dynamics is hard to
predict for three reasons. 1) Fig. 1 A) shows the rent demand at a
station in each hour in one month. As we can see, the daily rent
pattern fluctuates largely, being impacted by multiple complex
factors, e.g. weather, events and correlation between stations. 2)
Most transitions seem to be random trips. The first figure in Fig.
1 B) shows the historical commutes, i.e. the transitions averagely
happened at least once in the morning on each weekday in Apr.

40.675

40.700

40.725

40.750

40.775

-74.000 -73.975 -73.950

s[, 2]

s
[,
 1

]

40.675

40.700

40.725

40.750

40.775

-74.000 -73.975 -73.950

s[, 2]

s
[,
 1

]

0 5 10 15 20 25 30

0
1

2
3

4
5

6

1:num

O_
1[r

_1
[1:

nu
m]

, id
]

0 5 10 15 20 25 30

0
50

10
0

15
0

1:num

de
ma

nd
_1

[1:
nu

m]

A) Rent pattern B) Transition pattern C) Transitions

s2 s1

s3

s4

s6

A

s5
s7

hour

re
n
t

d
e

m
a

n
d

mailto:yliby@connect.ust.hk
mailto:msyuzheng@jd.com
mailto:qyang@cse.ust.hk

ỡ Oct. 2016, which only account for 18 percentages. We explain
this with an example shown in Fig. 1 C): there are ρς possible
inter-station transitions from ὃ to ὄ, among which a customer
usually chooses a random one to take based on which stations
have available bikes and docks, making one possible frequent
transition from ὃ to ὄ into 12 infrequent inter-station ones. 3)
The external factors impacting bike usage are highly unbalanced
observed, e.g. the sunny hours are much more than the rainy
hours. Therefore, separately training a predictor under each
condition cannot guarantee the accuracy under the minor ones.

A single bike reposition has long-term effect. Whether a
single reposition is good or not cannot be told immediately. We
elaborate this with two examples in Fig. 2, where a red circle
denotes a station without available docks while a green one
denotes an empty station; a solid arrow labelled with a number
and a time denotes how many bikes will be rented from the
origin and returned to the destination in that period; a dashed
arrow describes how a trike repositions; ὸ ὸ ὸ. Firstly, a
single reposition impacts the bike usage in a system for a long
period. As shown in Fig. 2 A), if a trike goes to the empty station
ί to unload 5 bikes there in ὸ, the number of available bikes at
ί1 becomes υ, thus the υ coming renters can be served at ί in ὸ;
as these υ renters ride to ί to return their bikes in ὸ1<ὸ2, the 4
coming renters who want to rent at ί2 in ὸ2 can also be served by
those returned bikes, and so on so forth. Therefore, how many
extra customers can a single reposition serve is hard to estimate.
Secondly, the current reposition impacts the following ones. As
shown in Fig. 2 B), if a trike goes to station ί to pick up ω bikes
in ὸ, the number of available docks there becomes ω, thus the 9
coming users can return their bikes to ί1 in ὸ1. However, as ί is
too far from ί, after completing picking up there, this trike
cannot deliver υ bikes to the empty station ί before ὸ for the 5
coming renters. On the contrary, if the trike goes to ί to pick up
bikes in ὸ, after picking up there, it still has enough time to
deliver bikes to ί for the 5 coming renters in ὸ2.

Fig 2. A reposition action has a long -term effect

Uncertainties in practical reposition. There are uncertain
factors in practical reposition process. Although we can predict
the system dynamics, we cannot guarantee they are totally the
same with the actual observations because of model error and
random noise. Besides, the time spent to complete a reposition
fluctuates, e.g. delivering υ bikes from ί to ί may take ρπ
minutes today while it took ρυ minutes yesterday although they
are conducted between the same pair of stations. This may be
caused by variable external factors, e.g. severe weather condition
or traffic congestion, and random noise. As dynamic reposition
is conducted when the system is operating, time matters, which
can also be concluded from the two examples above. These
uncertainties, as well as the long-term effect, make optimization
models very complicated or even not work.

We propose a spatio-temporal reinforcement learning based
dynamic reposition model to tackle these three challenges. Our
contributions can be summarized into four -fold .

· We propose a two-step clustering algorithm, named Inter-
Independent Inner-Balance algorithm, i.e. IIIB. The
algorithm first iteratively clusters individual stations to
generate small function regions in a system, ensuring more
stable rent demand and transition patterns at each region.
Secondly, the algorithm clusters these regions into groups
based on the inter-region transitions, guaranteeing that
each cluster is inner-balanced and independent from the
others. Dividing the entire system into clusters, we largely
reduce the problem complexity.

· We generate a system simulator based on two predictors.
One is an O-Model to predict the rent demand at each
region by a similarity-based KNN method, considering the
complex impacted factors and addressing the unbalanced
observation issue. The other one is an I-Model to predict
the return demand at each region by a transition-based
inference method.

· We propose a Spatio-Temporal Reinforcement Learning
model, i.e. a STRL, for each cluster to learn an optimal
inner-cluster reposition policy. The state of a STRL is
carefully designed to capture the system dynamics and
real-time uncertainties. As the state and action spaces are
very large, we design a deep neural network to estimate
the optimal long-term value function for each STRL, from
which its optimal reposition policy can be easily inferred.
Besides formulating the model in a multi-agent way, we
further reduce its training complexity by two spatio-
temporal pruning rules.

· We conduct experiments on real-world datasets from Citi
Bike in Apr. - Oct. 2016, to confirm the effectiveness of our
model compared with baselines.

2 OVERVIEW
This section defines the notations and terminologies used
thorough this paper and overviews the framework of our model.

Table 1. Notations

Notation Description

ί A station or a region

Ὁ An episode

ὺ A trike to conduct reposition

ὅȟ The Ὦ-th cluster in episode Ὁ

έȟ / ὶȟ Rent / return demand at ί in ὸ

2.1 Preliminary
Definition 1 Transition. A transition Ὢ ίȟίȟ†ȟ† is a bike
usage record describing that a bike is rented from location ί at
timestamp † and returned to location ί at timestamp †.

Definition 2 Demand. Rent demand έȟ at a location ί in
period ὸ is the number of customers who want to rent a bike at
ί in ὸ, including the ones succeed or not. The return demand ὶȟ
at location ί in ὸ has a similar definition.

Definition 3 Episode. An episode Ὁ is a long period in a day,
in which the total customer loss we want to minimize. Episodes
in our problem are carefully defined in 3.1.2 to guarantee some
constraints, instead of randomly chosen.

s4

s1

s3s2
5, t1

4, t2

7, t1
5, t0

s1

s3
5, t2

9, t1

s2

6, t1

9, t0

A) Impact bike usage B) Impact next reposition

6, t0

s4

2.2 Framework
As shown in Fig. 3, our model includes an offline learning
process and an online reposition process. The learning process
has three components, i.e. an IIIB clustering algorithm, system
simulator generation and a STRL model for each cluster.

IIIB Clustering Algorithm . To deal with the first issue, i.e. a
system is very large and complex, we propose a two-step IIIB
clustering algorithm. We firstly cluster stations which are close
to each other and have similar transitions to generate small
function regions in a system. We then cluster these regions into
groups based on their inter-region transition patterns. Multiple
trikes are allocated to each cluster to conduct inner-cluster
reposition among its regions without inter-cluster bike delivery.

Simulator Generation . To train and evaluate the reposition
model, we generate a system simulator based on two predictors,
i.e. an O-Model and an I-Model to respectively predict the rent
and return demand at each region. To a specific period, e.g. 7:00
ỡ 7:30am on Saturday, we firstly generate a possible weather
condition according to the historical weather statistics, e.g.
sunny, then O-Model predicts the rent demand at each region in
7:00 ỡ 7:30am on Saturday when it is sunny. Based on these
predictions, rent events at each region are simulated by Poisson
process. Each time a bike has been rented, I-Model estimates its
destination region and arrival time and keeps tracking it. The
return events at each region are generated by continually
checking whether some bikes arrive there.

Fig 3. Dynamic bike reposition framework

STRL Model. A STRL model is proposed for each cluster to
learn an optimal inner-cluster reposition policy. Our model
based on reinforcement learning is formulated in a multi-agent
way. Each time a trike completes its last reposition, it continues
to conduct a new reposition generated by the policy immediately
without waiting for the completion of others. The new
reposition is generated based on its current state, which is
carefully defined to capture the system dynamics and real-time
uncertainties. A state includes multiple factors, e.g. the current
bike and dock availability at each region; the real-time predicted
rent and return demands; the status of trikes, including itself and
the others; the current time, etc. We design a deep neural
network to estimate the optimal long-term value function for
each STRL, from which its optimal reposition policy can be
easily inferred. The network is trained on the system simulator
iteratively, which is highlighted with grey in Fig. 3.

Online Reposition. After the learning process, we obtain a
neural network for each cluster. In online process, when a trike
requires for a new reposition, we firstly identify in which cluster

it is and generate its current state by O-Model and I-Model. Then
the corresponding network is adopted to estimate the optimal
long-term value of each possible reposition under this state. The
reposition with largest value is selected and returned.

3 METHODOLOGY

3.1 IIIB Clustering Algorithm

3.1.1 Region Generation
As shown by the example in Fig. 1 C), the random inter-station
transition issue makes bike reposition among stations less
meaningful, as we only need to guarantee that there are
available bikes at ί or ί or ί and available docks at ί or ί or
ί or ί. Customers from ὃ to ὄ can choose where to rent and
return themselves considering the bike and dock availability at
each station. Motivated by this observation, we respectively
cluster the several stations around the origin and those around
the destination to generate two small regions, i.e. ί, ί and ί
make up one region while ί, ί, ί and ί make up the other
one. Consequently, we only need to guarantee the bike and dock
availability at each region. We claim that the rent demand at a
region is more stable and regular than that at an individual
station; besides, the transition between two regions is more
frequent than that between a pair of stations.

To formally formulate this idea, we generate regions in a
system based on two constraints. 1) Stations in one region
should be close to each other, ensuring the convenience for
customers in it. 2) Stations in one region should have similar
origin and destination regions, making the inter-region
transitions more concentrated and frequent. The methodology to
generate these regions is an iterative approach, named bipartite
clustering algorithm [2], which alternatively clusters stations
based on their locations and transition patterns.

Based on the obtained regions, we analyze the historical bike
usage data in Citi Bike to confirm the two advantages claimed
above. As shown in the bottom in Fig. 1 A), the rent demand at a
region is much more stable and regular, thus easier to predict
accurately. The random transition issue can also be addressed.
The right figure in Fig. 1 B) shows the inter-region commutes in
the morning on weekday in Apr. ỡ Oct. 2016, which take up 56
percentages. As we can see, the obtained inter-region transition
pattern is much simpler, making the return demand prediction
easier and more accurate. Regions obtained here can be
considered as small function regions in a city, e.g. stations
around a resident area are very possible to make up one region
while those around an employment area make up another one.
Instead of repositioning among regions in the entire system
directly, we further cluster these regions into groups and only
conduct inner-cluster reposition for two reasons. 1) Clustering
can further reduce the problem complexity. 2) A driver usually
gets familiar with an area instead of the whole city.

3.1.2 IIIB Clustering Insight
Clusters obtained should have two properties, i.e. inner-balance
in each cluster and inter-independence between clusters.

Inner -Balance. The inner-balance property of a cluster ὅ in
a period ὸ is defined as Eq. 1, meaning that the total bike rent
and return demands in the cluster in ὸ should be almost equal.

В έȟ ὶȟᶰ π (1)

Bike

Weather

Station

G-

Clustering

T-

Clustering

IIIB

Clustering

Region Clusters

Train Bike and Dock

Demand Prediction

Models

Predict

Bike and

Dock

Demands

I-ModelO-Model

Learn

Long-term

Value

Networks

Value

Network
Simulation

Online Bike

Reposition

Online Reposition Offline Learning

Bike

Demand

Dock

Demand

s1

s3

s2 Regions

Sample

Pool

Therefore, an inner-balanced cluster in period ὸ should
include both jammed and starved regions1. Otherwise, imagine
that a cluster has only starved regions requiring for more bikes
to serve the coming bike renters, as there are not jammed
regions in this cluster nor inter-cluster bike delivery, no
available bikes can be delivered to those starved regions.

Inter -Independence. The inter-independence property of two
clusters ὅ and ὅ in a period ὸ is defined as Eq. 2, meaning that
there are not frequent transitions between them in ὸ.

ȿὊȟȿ π (2)

Ὂȟ Ὢ ȿί ᶰὅȾὅȟίᶰὅȾὅȟ† ᶰὸ (3)

Here, Ὢ ίȟίȟ†ȟ† is a transition defined in section 2.1;
|Ͻ| denotes the set cardinality.

To reduce the problem complexity, inter-independence
between clusters is necessary, thus to generate a reposition
policy for each cluster, we only need to consider the regions and
trikes in it without the ones outside. Otherwise, the bike and
dock availability in a cluster may be largely impacted by the
repositions in other clusters, thus impact its own repositions.

Fig 4. Net demand in the morning rush hours

Episode Selection. As we can see, the inner-balance and
inter-independence properties of clusters vary from time to time,
leading to different clustering results. We divide the time in the
day into five episodes as shown in Table 2, in each of which we
assume the inner-balance and inter-independence properties of
clusters do not change. Consequently, five clustering results
corresponding to the five episodes are obtained.

Table 2. Episodes

Episode Duration

Morning rush hours 7:00 am ỡ 11:00 am

Day time 12:00 pm ỡ 16:00 pm

Evening rush hours 17:00 pm ỡ 22:00 pm

Travel hours 9:00 am ỡ 17:00 pm

Evening hours 18:00 pm ỡ 23:00 pm

The assumption that the two properties of clusters in each of
the above episodes do not change much is reasonable according
to prior knowledge and confirmed by the historical bike usage
data. 1) The net bike demand έȟ ὶȟ at each region in each of
the five episodes should have a pattern similar with either one in

1 To formally define, a jammed region has a negative net bike demand and a
starved one has a positive net bike demand in a specific period.

Fig. 4 A), i.e. the net demand at each region should always be
positive or negative in an episode, thus a cluster always includes
both starved and jammed regions. This claim is reasonable, e.g.
in the morning rush hours, the regions close to a resident area
are always starved while they are always jammed in the evening
rush hours. We analyze the bike usage data in Citi Bike and
show the practical net demands at four regions in the 5 morning
rush hours with Fig. 4 B) to confirm our claim. 2) The transition
pattern of a region does not change much in an episode neither,
e.g. in the morning rush hours, most rented bikes from a resident
region head for the employment ones.

Fig 5. IIIB cluster s the regions into 2 groups

3.1.3 IIIB Clustering Methodology
Our region clustering algorithm has three steps as shown in Fig.
5, where each node denotes a region; the nodes with same color
pertain to a same cluster.

1) Construct an inter-region transition graph. To a specific
episode, when the transition between two regions in this episode
has a frequency larger than a support ”, we add an edge
between these two regions. Consequently, an inter-region
transition graph for commutes is obtained.

2) Detect community structures. We adopt a betweenness-
based community detection algorithm [9] to detect the
community structures in the obtained inter-region transition
graph. A community, made up by multiple regions, should have
dense inner edges while very few inter-ones.

3) Cluster communities and regions. Obtaining some
communities and the remaining regions that are not in any
community, we adopt the agglomerative clustering algorithm [18]
to cluster them into groups, based on the similarity defined by
Eq. 4 and Eq. 5.

ίὭά Ὀȟ Ὀȟ Ὀȟ Ὀȟ (4)

Ὀzȟ έzȟ ὶzȟ (5)

Here, ‗ is a tradeoff between the geographical distance and
inner-balance increase; έzȟ and ὶzȟ stand for the rent and return
demand at a region or in a community in ὸ; Ὃ is the
geographical distance between two regions or communities or a
region and a community, where the geographical location of a
community is the center of the regions in it. Initially, we define
each community and each region not in any community to be a
cluster. Then, the pair of clusters which has the largest similarity
calculated by Eq. 4 is chosen and combined to formulate a new
one. Iterate until there are only ά clusters left, where ά is the
number of clusters in this episode Ὁ.

Our IIIB clustering algorithm can guarantee the two required
properties for three reasons. 1) Each community obtained in the

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

Index

a

0 100 200 300 400 500

-4
0

-2
0

0
2

0
4

0
6

0

Index

a

0 100 200 300 400 500

-2
0

0
2

0
4

0

Index

a

0 100 200 300 400 500

0
1

0
2

0
3

0

Index

a

y = 0

y = 0

A) Net demand pattern

B) Practical net rent pattern at each region

n
e

t
d

e
m

a
n
d

n
e

t
d

e
m

a
n
d

hour hour

n
e

t
d

e
m

a
n
d

3

1 2 3

3

Step 1
Step 2

Step 3

second step is almost inner-balanced and inter-independent with
others according to the community definition. 2) Agglomerative
clustering algorithm in the third step has considered the inner-
balance increase when defining the similarity metric, thus
guarantees the final clusters to be nearly inner-balanced. 3)
Those regions which are not in any community may add inter-
cluster transitions, however, as these transitions are minor
compared with those in each community, we ignore them.

3.2 System Simulator
In dynamic reposition process, there are interactions between
reposition, rent and return. How many bikes are rented and
returned at each region determines which regions to be jammed
and starved, thus impacts how to reposition; bike repositions
impact how many available bikes and docks are at each region,
thus impact the rent and return. Therefore, to train and evaluate
a dynamic reposition model, a system simulator is required to
simulate the system dynamics under repositions. Our simulator
is based on an O-Model, an I-Model and two assumptions.

O-Model. The rent demand at each region in period ὸ is
predicted by a similarity-based KNN method including two steps
[2]. Firstly, select the top-Ὧ most similar historical periods with ὸ.
The similarity is calculated based on the impacted factors, i.e.
time and weather. Secondly, calculate the weighted average of
the historical bike demands in those similar periods at each
region as its predicted demand in ὸ. Here the weights are the
similarities. O-Model considers the external impacted factors and
can address the observation unbalance issue.

I-Model. The return demand at each region in period ὸ is
inferred by tracking the rented bikes via two steps [2]. Firstly,
each time a bike is rented, I-Model estimates its destination
region and arrival time based on the learned inter-region
transition probability and inter-region ride duration distributions;
then keeps tracking it. Secondly, to period ὸ, I-Model checks the
tracked bikes and selects those that can arrive at their
destinations in ὸ to infer the return demand at each region.

Assumption 1 . A bike renter arrived at an empty station
leaves the system immediately without waiting.

Assumption 2 . A customer who wants to return her bike but
arrived at a region without available docks chooses the nearest
neighborhood region to return.

Fig 6. System simulation process in an episode

System simulation process in an episode †ȟ† is shown in
Fig. 6. We firstly divide the episode into several periods, i.e.
†ȟ† , † †ȟ ς , Ỵ, † †ȟ , where is

a time length, e.g. 1 hour. A weather condition for each period is
generated based on the historical weather statistics. O-Model is
then adopted to predict the rent demand at each region in each
period under the specific weather conditions, i.e. ὕȟ. We then
divide each period into tiny time windows, e.g. †ȟ† , Ỵ,
† †ȟ , where is a tiny time length, e.g. 1

minute. The rent demand in each tiny time window in period ὸ is

calculated by ὕȟ . We repeatedly simulate the rent,

return and reposition process in each tiny time window †ȟ†
 until the episode ends.

1) Rent process. A sequence of rent events at each region is
generated via a Poisson process whose parameter is its rent
demand in this time window. According to Assumption 1, when a
renter arrives at a region with available bikes, she succeeds to
rent; otherwise, she leaves.

2) Return process. I-Model checks whether any tracked bike
can arrive at their destinations in this time window to generate
return events at those destinations. According to Assumption 2,
when a destination region has available docks, I-Model generates
a return event there and stops tracking the bike; otherwise, the
bike heads for the nearest neighborhood and keeps being tracked.

3) Reposition Process. Check if any trike can arrive at their
target regions in this time window. To each of these trikes, we
firstly complete its loading there; then we generate a new
reposition to it and estimate its completion time by Eq. 6, where
Ὃ is the geographical distance from the current region to the
target one; ‘ is a constant speed; ὸ is a constant time for
loading; ‐ is a reposition noise; we keep tracking it until it
completes the new reposition, and so on so forth.

 ὸᶰ † ὸ ‐, † ὸ ‐ (6)

3.3 STRL Model
Obtaining a system simulator, whose regions are clustered into
groups in each specific episode, a STRL model is proposed for
each cluster to learn an inner-cluster bike reposition policy,
minimizing its total customer loss in the episode.

3.3.1 Model Insight and Multi-Agent Formulation
As discussed previously, each single reposition has long-term
influence and there are uncertain factors in practical reposition
process. Therefore, we want a model which not only minimizes
the total customer loss in a long period, but also generates
repositions online based on the real-time observations instead of
generating a sequence of decisions in advance and conducting
them one by one. Traditional optimization methods cannot
satisfy these requirements while our STRL model does.

Long-term Optimization . A Reinforcement Learning model,
i.e. a RL model, which maximizes the long-term reward of a
sequence of decisions, fits our problem formulation very well,
when we set the reward as the negative customer loss.

Real-time Reposition Generation. Instead of generating a
sequence of actions in advance for the trikes to conduct one by
one, we generate and assign the next reposition to each trike
until it has completed its last one. Therefore, a new reposition is
determined based on the real-time observations, e.g. the time
when the last reposition is completed, the real-time predicted
bike and dock demands at each region, etc., better capturing the
uncertainties in practical implementation.

Our STRL model is formulated in a multi-agent way. When a
trike completes its last reposition, a new reposition is generated
to it immediately based on its current state without waiting for
the completion of others. This formulation has two advantages.
Firstly, as reposition duration varies from trike to trike largely,
always waiting for the others to complete before conducting a
new reposition is very inefficient. Secondly, generating an action
for each trike one by one can largely reduce the action space

time window 1

Period 1

é é

rent return reposition

time window 2

Period 2 ...

rent é é

compared with that to generate actions for all trikes at one time.
The action space of the former is ὕὲ ὧ while that of the
latter is ὕ ὲ ὧ , where ὧ is the trike capacity; Ὧ and ὲ
are respectively the number of trikes and regions in the cluster.
Each time a trike requires for a new reposition, the status of the
other trikes is contained in its current state. Therefore, trikes in
one cluster can still reposition cooperatively instead of working
without considering others in our multi-agent formulation.

3.3.2 STRL Model Methodology
To elaborate the methodology of a STRL, we firstly introduce the
traditional RL model [15] briefly, then naturally extend to our
STRL model. A RL model consists of six components, i.e.
ὛȟὃȟὝȟὙȟ“ȟ, where Ὓ denotes the state set; ὃ is an action set;
Ὕ describes the transition probability that an agent took action
ὥ under state Ὓ will transit to the next state Ὓ , i.e.
Ὓ ὃ ὛO Ὕ; Ὑ stands for the immediate reward received after
taking an action under a specific state and transiting to a next
state, i.e. Ὓ ὃ ὛO Ὑ; “ is a policy Ὓ ὃᴼ“, describing the
probability to take an action under a specific state; is a time
discount parameter. At each time ὸ, an agent in state Ὓ takes an
action ὥ according to the policy “, then transits to the next state
Ὓ , receiving an immediate reward ὶ. An action has a long-
term return defined as Eq. 7 where ὸ is the episode end.

Ὗ ὶ ὶ ὶ Ễ ὶ (7)

We define the optimal long-term value function as Eq. 8,
describing the maximum expected return of an action ὥ under a
specific state Ὓ by following any policy after ὸ.

ὗz Ὓȟὥ άὥὼ ὟȿὛȟὥȟ“ (8)

Obtaining the optimal long-term value of each action under
each state, the optimal policy for a RL model can be easily
inferred by Eq. 9, i.e. always take the action with maximum
optimal long-term value under the current state.

ὥᶻ ὥὶὫάὥὼὗz Ὓȟὥ (9)

Usually, Bellman equation as Eq. 10 is adopted to estimate the
optimal long-term value function via an iterative approach.

ὗᶻὛȟὥ ὶ άὥὼ ὗᶻὛ ȟὥ ȿὛȟὥ (10)

Our model, formulated in a multi-agent way, is based on the
traditional reinforcement learning theory. The multiple agents,
i.e. the trikes in a cluster, share one common reposition policy.
Each time a trike completes its last reposition, the policy
generates a new one to it immediately based on its current state.
Completing this reposition, the trike transits to the next state
and receives an immediate reward. The state in our model is
carefully designed to capture the system dynamics and real-time
uncertainties. We firstly introduce the real-time observation of a
trike before stepping to its action, state and reward definitions.

An Observation. Each time a trike requires for a new
reposition, it has a real-time observation of the current
environment. We define the observation of a trike to include
three factors, i.e. the system status, the status of other trikes and
its own status. The system status includes the current bike and
dock availability at each region and their real-time predicted rent
and return demands in the next period. The status of other trikes
describes how many bikes they are to pick up or unload at which
regions. More information about the other trikes can be

considered, e.g. the current number of bikes on each trike, their
expected arrival times, etc., although we do not consider them
here for simplicity. The status of the trike itself includes its
current location and how many bikes it has.

An example of an observation to trike ὺ is shown in Fig. 7 A).
As we can see, the first large rectangle corresponds to the system
status, which has four vectors ὦ, Ὠ, ὦ, Ὠ ᶰὙ , where ὲ is
the number of regions in this cluster; ὦ and Ὠ respectively
stand for the current bike and dock availability at each region; ὦ
and Ὠ respectively denote the real-time predicted rent and
return demand at each region. The second rectangle describes
the status of other trikes, where ὴ denotes how many bikes ὺ
will pick up or unload at which region, e.g. ὺ will pick up 4
bikes at ί; ὺ will unload 8 bikes at ί . We combine the system
status and the status of other trikes by ὦ ὦ Ὠ ὴ ὴ
ὴ ττȟρψȟȣȟσχȟσυ ᶰὙ , to predict the bike availability
at each region in the coming period. As the capacity of each
region is constant, considering either the bike or the dock
availability is enough. The third rectangle corresponding to the
status of the current trike, describes that ὺ is at region ί with 5
bikes on it. We transform ή to a one-hot vector which shows
the current location of ὺ , i.e. πȟρȟπȟȣȟπ , and a scalar
denoting the number of bikes on it. Concatenating the predicted
availability vector, the one-hot vector and the scalar, we obtain
the current observation of ὺ, a ς ὲ ρ dimension vector.

Fig 7. Generate an observation and an action

An Action . An action is defined as a vector describing where
a trike should go to pick up or unload how many bikes. An
example is shown in Fig. 7 B), where the action for trike ὺ is
ὴ πȟπȟȣȟωȟπ, i.e. ὺ unload 9 bikes at region ί . We
transform ὴ to a one-hot vector and a scalar, respectively
showing the target region and the number of bikes to load or
unload there. Concatenating the one-hot vector and the scalar,
we obtain a ὲ ρ dimension action for ὺ.

A State. The state of a trike can be simply defined as its
current observation vector extended by the current time.
However, as the system dynamics is too complicated to be
captured by a single observation, we define the state to be a
sequence of interleaved observations and actions combined with
the current time, i.e. Ὓ ὕ ȟὥ ȟȣȟὕ ȟὥ ȟὕȟὸ.
Therefore, a state is a σ ὲ ς ὒ ς ὲ ρ ρ
dimension vector, where ὒ denotes the time lag. An example of
a state is shown in Fig. 8, where we set ὒ ρ, i.e. Ὓ
ὕ ȟὥ ȟὕȟὸ; ὃ denotes the predicted bike availability at

each region in ὸ; ί is a one hot vector denoting the current

1

b1 d1

Availability

System status

Ot =

2

ni

0

0

-9

b2 d2

4

-8

7

45

37

45

29

36

28

14

36

22

24

16

24

25

12

8

22

0

0

0

0

0

0

0

0

0

q1

0

5

0

0

44 18 37 35 0 1 0 5

Current station

p1

0

0 1 0 -9

Target station

at =

A) Observation generation B) Action generation

p2 p3 p4

v2, v3, v4 v1 v1

Bikes Load

region of the trike; ὦ describes how many bikes are on the trike
in ὸ; ί and ὦ make up the action in ὸ, respectively denoting the
one-hot vector for the target reposition region and how many
bikes to load or unload there.

Fig 8. Generate a state ╢◄

An immediate reward . We set the immediate reward after
taking ὥ under Ὓ and transiting to Ὓ as the negative
customer loss in ὸȟὸ ρ], thus to maximize the long-term
reward can minimize the total customer loss in an episode.

3.3.3 Optimal Long-term Value Network
After formally defining the model, we want to estimate its
optimal long-term value function by Eq. 10. As the state and
action spaces are large, we design a deep neural network to
estimate this function, i.e. ὗᶻὛȟὃȟ—ȡὛ ὃᴼὗᶻ, where — are
the network parameters.

The input to our deep neural network is a state vector
concatenated with an action vector, which contains multi-modal
data, thus the network structure needs to be carefully designed
instead of a simple fully-connected one. We design the network
as Fig. 9, where the state and action shown in Fig. 8 are adopted
for illustration, i.e. the grey rectangles make up a state while the
orange ones make up the action. One-hot vectors in the input,
corresponding to regions, are firstly connected to a shared
embedding layer. The obtained embeddings are then
concatenated with the remaining entries in the input and
connected to fully-connected layers (FC). Lastly, the output from
FC is combined with the time ὸ to obtain the final long-term
value, such that when ὸ ”, the output from FC is returned,
otherwise, return zero; here ” is a parameter very close to the
episode end ὸ.

Fig 9. Optimal long -term value network

We train this network via an iterative approach based on Eq.
10 on the simulator. There are seven steps [13][14].

1) Random initialize the optimal long-term value network as
ὗz Ὓȟὃȟ— and set the sample pool to be an empty set.

2) Begin a new episode.

3) When a trike requires for a new reposition, ὗᶻὛȟὃȟ—
generates an action ὥ under its current state Ὓ, such that ὥ
ὥὶὫάὥὼᶰ ὗz Ὓȟὥȟ— . With a probability ‐, ὥ may be
replaced by a random chosen action from ὃ; here ‐ɴ [0,1] is a
parameter for exploration.

4) The trike takes the reposition ὥ and transits to the next
state Ὓ , receiving an immediate reward ὶ. Generate a new
sample ὛȟὥȟὛ ȟὶ and add it to the sample pool.

5) Update the network based on a mini batch from the sample
pool by Eq. 11. Set — — for the next reposition generation.

ὗz Ὓȟὥȟ— ὶ άὥὼ ὗz Ὓ ȟὥ ȟ— (11)

6) Jump to step 3 until an episode ends.

7) When the number of episodes been simulated reaches a
threshold, terminate the training process and output the
obtained neural network; otherwise, jump to step 2.

3.3.4 Spatio-Temporal Pruning Rules
As the large state and action spaces lead to very slow training

convergence, we further design two spatio-temporal pruning
rules to prune some actions under each specific state, thus to
improve the training efficiency. Before elaborating those rules,
we formally define some region statuses by a parameter ”.

Definition 4 (Predicted) Severely Deficient / Congested. A
region is severely deficient when its current bike availability is
less than ”. A region is predicted severely deficient when its
predicted bike availability is less than ”; here the predicted
bike availability can be obtained from ὃ in Fig. 8, whose
calculation is elaborated in 3.3.2. (Predicted) Severely congested
is defined similarly.

Our pruning rules are two heuristic ones, to prune the most
possible bad actions. 1) Always unload at a predicted severely
deficient region and pick up at a predicted severely congested
one. 2) The reposition target region should be chosen from the
top Ὧ nearest neighborhoods of the current region; besides,
how many bikes to load or unload is generated with a step size.

4 EVALUATION
We evaluate our model on real datasets from Citi Bike system
and discuss the experiment results in the morning rush hours.
Results in the other episodes are similar.

4.1 Data and Baselines

4.1.1 Real Datasets

We adopt two real-world datasets in our experiments, i.e. the
Citi Bike data and the weather data in New York City. We only
conduct experiments on the principle system, which only covers
the urban center as shown in Fig. 1 B), as the station status data,
which are necessary to estimate the bike and dock demand at
each location, are only available to these stations. Data details
are summarized in Table 3.

As the potential bike demand is unknown, we estimate the
rent demand at each station in each period from the bike usage
data, as well as the station status data2 by Eq. 12 [1], where Ὣȟ
is the number of bikes been rented at ί in ὸ; ὒȟ is the time
length in period ὸ when station ί is not empty.

έȟ Ὣȟ
ȿȿ

ȟ
 (12)

2 We thank Abe Stanway and Chris Heydt for sharing the station status data.
https://github.com/astanway/citibike-data
https://groups.google.com/forum/#!forum/citibike-hackers

At

Ot = at =

St =

st
r

bt
rst

c
bt

c

Ot-1 at-1 Ot t

Fully connected layers

Optimal long-term value

Embedding layer

atSt t

Embedding

Fully

connected

OR

OR

https://github.com/astanway/citibike-data
https://groups.google.com/forum/#!forum/citibike-hackers

Table 3. Citi Bike data and weather data

Bike Data Weather Data

Stations 389 # Drizzle 220

Regions 98 # Rainy 75

Clusters 4 # Foggy 328

Records 9,846,248 # Sunny 4,513

4.1.2 Baselines and Metric
No Reposition. We run the simulator without any bike reposition.

Greedy Reposition. Greedy algorithm generates a reposition
based on three rules. 1) An empty trike always goes to the
nearest severely congested region to pick up the most possible
bikes, considering the trike capacity and how many bikes are at
the target region. 2) A full trike always goes to the nearest
severely deficient region to unload the most possible bikes,
considering how many bikes it has and the dock availability
there. 3) A trike which is neither full nor empty goes to the
nearest severely unbalanced region, which is either severely
congested or deficient, to load or unload the most possible bikes
depending on the status of the target region.

Prediction based Random Reposition. This reposition strategy
means that a trike always randomly chooses a region, which is
predicted severely deficient, to unload some bikes or a region
which is predicted severely congested to pick up some bikes.

Prediction based Greedy Reposition. PGR is very similar with
GR except that we consider the predicted status of each region
when applying the three rules in GR.

Optimization Reposition. A related work [1] proposed an
optimization model to conduct bike reposition. However, it
solves the static bike reposition problem. Besides, the number of
trikes in each cluster is constrained to one and the optimization
objective is to minimize the reposition distance, therefore, this
model does not fit our problem settings. However, we slightly
refine our formulation by assuming that each cluster is allocated
with one trike with a speed ‘ Ὧ and a capacity ὧ Ὧ to
approximate our previous settings, i.e. Ὧ trikes with a speed ‘
and a capacity ὧ. We can further refine the optimization
objective to be the total customer loss while this leads to a too
complex model to solve, where heuristic algorithms are required.

Evaluation Metric. The reposition results obtained by different
models are compared by the total customer loss in an episode,
including the ones failed to rent and the ones failed to return.

4.2 Evaluation Results

4.2.1 IIIB Clustering Results

Fig 10. IIIB clustering algorithm results

We firstly generate the function regions in a system and show
them in Fig. 10, where each region is denoted by the center of
the stations in it. A blue point means a starved region while a
red one denotes a jammed region in the morning rush hours. We
further conduct IIIB to cluster these regions into four clusters. As
we can see from Fig. 10, each cluster has both jammed and
starved regions in this episode, which is necessary for each
cluster to be inner-balanced.

Table 4. Inner -balance property

Cluster # Regions Unbalance Capacity Unbalance Ratio

ὅ 30 -47 5285 -0.009

ὅ 27 123 2123 0.058

ὅ 18 38 3635 0.01

ὅ 23 103 1906 0.054

To further confirm the inner-balance property of each cluster,
we calculate their net bike demands in the morning rush hours
and show the statistics in Table 4, where #Regions means how
many regions are in each cluster; Unbalance is the total net bike
demand; Capacity denotes the total number of docks in each
cluster and Unbalance Ratio is calculated by ὟὲὦὥὰὥὲὧὩ Ⱦ ὅὥὴὥὧὭὸώ.
As we can see, the unbalance of each cluster is very small,
especially compared with the capacity.

Table 5. Inter -independence property

Cluster ὅ ὅ ὅ ὅ

ὅ 315,137 0 31,882 0

ὅ 0 21,463 0 0

ὅ 46,174 0 226,723 0

ὅ 670 0 0 41,094

Table 5 shows the statistics of the inner-cluster and inter-
cluster commutes. As we can see, there are only a few inter-
cluster commutes, i.e. about ρπ percentages, which are minor
that can be ignored. Therefore, we can consider that the 4
obtained clusters are almost independent from each other,
confirming the effectiveness of our clustering algorithm.

4.2.2 STRL Reposition Results

Table 6. Customer loss in the morning rush hours

Customer
Loss NR PR GR PGR OR STRL

ὅ 267 178 200 157 190 113

ὅ 286 229 256 238 237 178

ὅ ὅ 553 407 456 395 427 291

Evaluation results in ὅ and ὅ3 in the morning rush hours under
different reposition models are shown in Table 6. We also show
the corresponding loss reduction ratio by Fig. 11, which is

defined as ; here ὒ is the total customer loss without

reposition and ὒ denotes the customer loss under a specific
reposition strategy. To ὅ and ὅ4, these two areas in Citi Bike
system are not as busy as the other two. According to our
simulation results, the customer loss in these two clusters is even
not larger than fifty. Therefore, a simple heuristic algorithm, e.g.
the baseline PGR introduced previously, is good enough for them

40.675

40.700

40.725

40.750

40.775

-74.025 -74.000 -73.975 -73.950 -73.925

lon

la
t

40.675

40.700

40.725

40.750

40.775

-74.025 -74.000 -73.975 -73.950 -73.925

lon

la
t

40.675

40.700

40.725

40.750

40.775

-74.025 -74.000 -73.975 -73.950 -73.925

lon

la
t

40.675

40.700

40.725

40.750

40.775

-74.025 -74.000 -73.975 -73.950 -73.925

lon

la
t

C1 C4C3C2

