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& Oct. 2016, whichonly account for 18 perntagesWe explain
this with an exampleshown in Fig. 1 C) there arep qossible
inter-station transitions from 0 to 6, among whicha customer
usually choosesa randomone to take based orwhich stations
have available bikes andocks making one possiblefrequent
transition from 0 to 6 into 1 Infrequent interstation ones.3)
The externalfactors impacting bik usage are highly unbalanced
observed, e.gthe sunny hours are much more thae rainy
hours. Therefore, separaly training a predictor under each
condition cannot guarantee the accuracy undbe minor ones.

A single bike reposition has long-term effect. Whether a
single reposition is good or not cannot be told immedigt We
elaborate thiswith two examplesin Fig. 2 where a red circle
denotes astation without available dockswhile a geen one
denotes an empty statigra solid arow labelled with anumber
and a time denotes how many bikes will be rented from the
origin and returned tothe destination in that period; alashed
arrow describeshow a trike repositionso0 0 0. Frstly, a
single reposition impacs the bike usage in a systeffor a long
period As shown inFig. 2 A), if @rike goes tothe emptystation
i to unload5 bikes there ind , the number ofavailable bikesat
i 1 becomew), thus thev comingrenters carbe served at ino;
as these renters rice toi to return their bikes ing, < &, the4
comingrenters who want to renati, in & canalsobe served by
those returnedbikes and so on so forthTherefore, how many
extracustomers can a single reposition serve is hard to egtiim
Secondly, thecurrent reposition impacts thdollowing ones As
shownin Fig. 2 B), if d@rike goes tostationi to pick upwbikes
in 0, the number of available docks there becomgshus the9
coming userscan return their bikes td 1 in &,. However, as is
too far fromi , after completing picking upthere, this trike
cannotdeliveru bikes tothe empty station beforeo for the5
coming rentersOn the contrary, if the trike goes tb to pick up
bikesin 0, after picking up there, it still has enough time to
deliver bikes td  for the 5 coming renters ind.

A) Impact bike usage

B) Impact next repositio

Fig 2. A reposition action has a long -term effect

Uncertainties in practical reposition. There are uncertain
factors inpractical resition process Although we canpredid
the system dynamicswe cannot guarantethey are totally the
same withthe actual observationdbecause ofmodel error and
random noise Besidesthe time spentto complete areposition
fluctuates e.g. deliveringu bikes fromi toi may takep T
minutes today while it tookp uminutesyesterday althoughhey
are conducted between the same pair of gtas. This may be
caused byariableexternal factorse.g. severe weather condition
or traffic congestionand random nose As dynamic reposition
is conduted when the system is operatingime matters, which
can also beconcluded from thetwo examplesabove These
uncertainties, as well as the lortgrm effect makeoptimization
modelsvery conplicated or even not work

We propose a spatibemporal reinforcement learnindpased
dynamic reposition model to tackle thes¢hree challenges Our
contributions can be summarized infour -fold .

We propose a twsestep clustering algorithm, namebhter-
Independent Inner-Balance algorithm, i.e. IlIB. The
algorithm first iteratively clusters individual stations to
generate small function regions in a sgst, ensuring more
stablerent demandand transition patterrs at each region.
Secondly, the algattim clusters these regionsto groups
based on theinter-region transitons guaranteeingthat
each cluster isnner-balanced ad independent fromthe
others Dividing the entire system intalusters, we largely
reduce the problem complexity.

We generatea systemsimulator based on two predicts.
One is an GModel to predict the rent dmand at each
region bya similarity-based KNN method, considering the
compleximpacted factors and addressing the unbalanced
observation issue. The other one is aMbdel to predict
the return demandat each rgion by a transition-based
inference method.

We propose aSpatio-Temporal Reinforcement Learning
model, i.e. a STRL, for each cluster to learn an optimal
inner-cluger reposition policy The state of aSTRL is
carelilly designed to capture the system dynms and
reaktime uncertainties As the state and action spacage
very large, we design a deepeural network to estnate
the optimal longterm value functio for each STRL, from
which its optimal reposition policy can be easily inferred.
Besides formuldng the model in a multagent way, we
further reduce itstraining complexity by two spatio
temporal pruning rules.

We conduct expements on realworld datasets from Citi
Bike in Apr. - Oct.2016, to confirm the effectiverss of our
model compared wittbaselines.

2 OVERVIEW

This section defines thenotations and terminologies used
thorough this paper and overviews the framework of our model.

Table 1. Notations

Notation Description
i A station or a region
(o] An episode

0 A trike to conduct reposition
6r The @h clusterin episodeO

Erlip Rent/ return demand af in o
2.1 Preliminary
Definition 1 Transition. A transition'Q i f fAf At is a bike

usage recordlescribing that a bike is rented from locationat
timestampt and returned tdocationi at timestampt .

Definition 2 Demand. Rent demandy at a locationi in
periodois the number of customers who wai rent abike at
i in g including theones succeed or noThe return demand
at locationi in 0has a similar definition

Definition 3Episode. An episod®is a long periodn a day,
in which the total customer loss we want to minimiz&pisodes
in our problem are carefully defineth 3.1.2to guarantee some
constraints, instead of randomly chosen



2.2 Framework

As shown in Fig. 3, our model includean offline learning
process and aronline reposition process. The learning process
hasthree components, i.ean llIB clustering algorithmsystem
simulator generation ané STRLmodelfor each cluster

111B Clustering Algorithm . To deal with the firsissue, i.e. a
system is very large and complewe propose a twstep 11IB
clustering algoithm. We firstly cluster stationswhich are close
to each other and have similar transitiort® generate smal
function regions in a system. We then cluster these regions into
groups based on their interegion transition patterns. Multiple
trikes are albcated to each cluster toonduct innercluster
reposition among its regions without intecluster bike delivery.

Simulator Generation . To train and evaluate theeposition
model, we generata system simulator based omo predictors
i.e. an GModel andan FModel to respectively pmict the rent
and return demandit each region. To apecificperiod, e.g. 7:00
& 7:30am on Saturdaywe firstly generate a possible weather
condition according to the historical weather statistics, e.g.
sunny, then GModel pedicts the rent demand at el region in
7:00& 7:30am onSaturday when it is sunny. Based ohese
predictions,rent events at eachegion are simulated by Poisson
processEach time a bike has been rentedyibdel estimates its
destination region and aival time and keeps trackg it. The
return events ateach regionare generated bycontinually
checking whether some kés arrivethere

Online Reposition Offline Learning
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Fig 3. Dynamic bike reposition framework

STRL Model A STRL modeis proposedfor each cluster to
learn an optimal imer-cluster repositim policy. Our model
based on reinforcement learning is formulated in a magjent
way. Each time a trike completes its last reposition, it continues
to conduct a new reposition generated by the policy immediately
without waiting for the completion of others. The new
repostion is generated based on itsurrent state which is
carefully defined tocapture the system dynaits and reatime
uncertainties A state includes multiple factors, e.ghe current
bike and dock availability at eh region; the reatime predicted
rent and retrn demandsthe status of trikes, includingself and
the others the current time etc We design a deep neural
network to estimate the opthal longterm value function for
each STRL, from which its optimakeposition policy can be
easily inferrel. Thenetwork is trained on thesystemsimulator
iteratively, whichis highlighted with grey in Fig3.

Online Reposition. After the learning processwe obtain a
neural netwok for each clusterin online processwhen a trike
requiresfor a new repositionwefirstly identify in which duster

it is andgeneratdts current state byO-Model and {Model Then
the corresponding network is adopted testimate theoptimal
long-term value ofeach possible repition underthis state. he
reposition with largest value iselected andeturned.

3 METHODOLOGY

3.1 1lIB Clustering Algorithm

3.1.1 Region Generation

As shown bythe example inFig 1 C), the randominter-station
transition issue makes bike reposition amongstations less
meaningful as we only need to guarantee that there are
available likes ati ori ori andavailable docks dt ori or

i ori . Customers frond to 6 can clbose where to rent and
return themselvesconsidering the bike and dock availability at
each station Motivated by this observationwe respectively
cluster the several stations around the origamd those around
the destinationto generate two small regions, iie. i andi
make up one region while ,i ,i andi make upthe other
one Consequentlywe only need to guarantee the bike and dock
availablity at each region We claim that the rent demand at a
region is more stable and regular than that at #dividual
station; besidesthe transition between two regions is more
frequent than thatbetweena pair ofstations

To formally formulatethis idea we generate regionin a
system based on two constraints. 1) Stations in one region
should be close teeach other, ensuringhe convenience for
customers in it 2) Stations in one region should havendar
origin and destination regions, making the inteegion
transitionsmore concentratedand frequent The methodologyto
generate these regions & iterative approach, namehipartite
clustering algorithm [2], which altematively clustersstations
based on theitocations and transitiorpatterns.

Based orthe obtained regions, we analyze thnéstorical bike
usage data irCiti Bike to confirm thetwo advantages claimed
above As shown in the bottom irFig. 1 A), the rent denandat a
region is much morestable andregular, thus easier to predict
accurately. The randontransition issue caralso be addressed
The right figure in Fig 1B) shows the interegion commutes in
the morning onweekday in Apr.& Oct. 2016, whichatke up 56
percentages. As we can seke obtained intesregion transition
pattern is much simpler, makingthe return demand pediction
easier ad more accurate. €yions obtained here can be
considered as small function regions in a citg,g. stations
arounda resident areare very possible to make up omegion
while those around an empjonent areamake up another one.
Instead of repositioning among regions in the mat system
directly, we further clusterthese regions into groups andnly
conduct innercluster reposition for two reasons. Llustering
can further reduce the problem complexit@) A driver usually
gets familiar withan area instad of the whole city

3.1.2 llIB Clustering Insight

Clustersobtainedshould have two properties, i.e. inndalarce
in each cluster and inteindependence between clusters.

Inner-Balance. The innerbalance property of a clustér in
a periodois defined as Eq. 1, meaning that the total bike rent
and return demands in the cluster dnshould bealmostequal.

B. € ip ™
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Therefore, an innebalanced cluster in period should
include both jammed and starved regidn®therwise, imagine
that a cluster has only starvedtgionsrequiring for more bikes
to serve the coming bike renters,sathere are not jammed
regions in this cluster nor intecluster bike delivery, no
availéble bikes can be deliverad those starved regions

Inter -Independence Theinter-independence property divo
clustersd and0 in a periodois defined as Eg. 2, meaning that
there are not frequent transitions between themdn

§0rs ™ @
O Qd NOTOH NOTORE Mo ®)
Here,"Q i A At At is atransition defined in section 2.1;

| 3 denotes theset cardinality

To reduce the problemcomplexity, inter-independence
between clusters is necessary, thus to gete a reposition
policy for each cluster, we only need to consider the regiand
trikes in it without the onesoutside. Otherwise, the bike and
dock availability in a cluster may be largely irapted by the
repositions in other clusterghus impact itsown repositions.
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Fig 4. Net demand in the morning rush hours

Episode Selection As we can see, the inndralance and
inter-independence properties of clusters vary from time to time,
leadingto different clusteiing results.We dvide thetime in the
day into five episodes as shown inable 2, in each of which we
assume the innebalance and inteindependence properties of
clusters do not change. Consequently,five clustering results
corresponding to thdive episodesare obtained

Table 2. Episodes

Duration
7:00 any11:00 &n
12:00 pny 1600 pm
17:00 pm& 22:00 pm
9:00 an®*17:00 pm
18:00 pn&y 23:00 pm

Episode

Morning rush hours
Day time

Evening rush hours

Travel hours

Evening hours

The assumptiorthat the two properties of clusterin each of
the above episodedo not change muclis reasonableaccording
to prior knowledgeand confirmed by the historical bike usage
data. 1) The net bike demaid; i  at each regiorin each of
the five epsodesshould havea pattern similar witheither one in

1To formally define, gammed region has a negative tngike demand and a
starved one has a positive net bike demand in a specific period.

Fig 4 A), i.e.the netdemand at each regioshould always be
positive or negative in an episod#éus a cluster always includes
both starved and jammed regionghis claim is reasonable, e.g.
in the morning rush hours, the regionslose toa resident area
are always starved while they aralwaysjammed in the evening
rush hours. We analyze thbike usagedata in Citi Bike and
showthe practical netdemands at four regions in tHemorning
rush hourswith Fig. 4B) to confirm our claim2) Thetransition
pattern of a region does nothange much in an episode neither
e.g. in the morning rush hours, most rented bikes from a resident
region head for theemployment one.

Stepl
%f@ % ey

Step3

Fig 5. llIB cluster s the regions into 2 groups

3.1.3 llIB Clustering Methodiogy

Our region clustering algorithm hathreesteps as shown in Fig
5, where each node denotes a region; the nodes with same color
pertain to a same cluster.

1) Construct an intaegion transition graphTo a specific
episode, when the transition betwedwo regions in this episode
has a frequency larger tham support” , we add an edge
between these two regions. Consequently, an imtegion
transition graph for commutess obtained.

2) Detect community structure¥/e adopt a betweenness
based commuity detection algorithm [9] to detect the
community structures in the obtained interegion transition
graph. A community, made up by multiple regions, should have
dense inner edges while very fewter-ones.

3) Cluster communties and regions Obtaining some
communities and the remaining regions that are not in any
community, we adopt the agglomerative clustering algoritfid]
to cluster them into group, basd on the similarity defined by
Eq. 4 ad Eq. 5.

i Qa — Oj, Oy, O O 4
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Here,_is a tradeoff between the geographical distance and
inner-balance increasé;y andi.; stand for the rent and return
demand at a region or in acommunity ino; O is the
geographical distance between two regions or communities or a
region and a communitywhere the geographical locat of a
community is the center of the ggons in it Initially, we define
each community and each region not in any community to be a
cluster. Then, the pair of clusters which has the largest similarity
calculated by Eg4 is chosen and cohined to formuate a new
one lterate until there are only clusters left, whereéx is the
number of clustersn this episodeO.

O

Our lIIB clusteing algorithm can guarantee thievo required
properties for threereasons. 1) Each community obtained in the



second step is almost inndralanced and imr-independent with

others according to the community definition. 2) Agglomerative

clustering algorithmin the third stephas considered the inner
balance increase wine defining the similarity metric, thus
guarantees the final clusters to beearly inner-balanced. 3)
Those regions which are not in any community may add inter
cluster transitions, however, as these transitions are minor
compared with those irrach community, we ignore them

3.2 System Simulator

In dynamic reposition processhere areinteractions between
reposition, rent and return. bw many bikes arerented and
returned at each regiodetermines which regions to be jammed
and starved, thus impacts how teoeposition; bike repositons
impact how many available bés and docks are at each regjon
thus impact the rent and returnTherefore, ¢ train and evaluate
a dynamic reposition model, asystemsimulator is requiredto
simulate the system dynamiasnder repositionsOur simulator
is based oran O-Model,an FModeland two assumptions

O-Model. The rent demand at each region iperiodois
predicted by a similarithased KNN method including two steps
[2]. Firstly, ®lect the top'Qmost similar historical periodsvith 0.
The dmilarity is calculated based on thienpacted factorsi.e.
time and weather Seondly, calculate the weighted average of
the historical bike demands in those similaenods ateach
region as itspredicted demand i. Here the weights are the
similarities O-Modelconsiders tle external impacted factors and
canaddress the obsenian unbalance issa

I-Model. The return demandat each regionin periodois
inferred by tracking the rented bikesia two steps[2]. Firstly,
each time a bike igented, I-Model estimates its destination
region and arrival ime based on the learned inteegion
transition probability and intefregion ride duration distributions;
then keeps trackig it. Secondly, @ period o, I-Model checkghe
tracked bikes and selects thosethat can arrive at their
destinations inoto infer the return demand at each region

Assumption 1. A bike renter arrivedat an empty station
leaves the system immediately without waiting.

Assumption 2. A customerwho wants to returnher bike but
arrived at aregion without available dockshooseghe nearest
neighborhoodregionto return.

Period? ...

Periodl «——————]
time window1 ‘ time window2 ‘ e e
1 1
rent return reposition rent e é

Fig 6. System simulation process in an episode

System Bnulation process in an episodé At is shown in
Fig. 6. We firstly divide the episodeinto several periods, i.e.
th o1 .t 1T RF ¢ 1Y, t 1 RE, wherg s
a time length, e.gl hour. A weather comlition for each periods
generatedbased orthe historical weather statitics. O-Model is
then adopted to preitt the rent demand at each region in each
period under the specific weather conditieni.e.0 . We then
divide each period into tiny time windowse.g. T At 1 ,Y,
t 1 1 A 1 , wherd is a tiny time length, . 1
minute. The rent demand in each tiny time windovn period0is

calculated by ; | —. We repeatdy simulate the rent,

return and repositionprocessin eachtiny time window tht
until the episode ensl

1) Rent process sequence of rent events at each region is
generated via a Poisson process whose parameter is its rent
demand in this time windowAccording toAssumption lwhen a
renter arrives at a region with available bikes, she succeeds to
rent; aherwise, she leaves.

2) Return procestModel checks whether any tracked bike
can arrive at their destinations in this timeimdow to generate
return events at thoselestinations. According téAssumption 2
when a destination region has availatdecks,|-Model generates
a return event there andtgps tracking thebike; otherwise,the
bike heads fothe nearest neighborhoodnd keeps being tracked.

3) Reposition Processheck ifany trike can arrive at their
target regions in this time window. To eacH these trikes, we
firstly complete its loading there; therwe generate a new
reposition to it and estimate its completion time by Eq. 6, where
"0 is the geographicaldistance fromthe current region to the
target one‘ is a constantspeedp is a constat time for
loading - is a reposition noise; wekeep tracking ituntil it
completes thenew reposition, and so on so forth

oN T — o -,71 7 — 0 -

(6)

3.3 STRL Model

Obtaining asystemsimulator, whose regions are clustered into
groups in eachspecific episode, 8TRLmodel is proposed for
ead cluster to karn a inner-cluster bike reposition policy,
minimizing its total cugomer lossin the episode

3.3.1Model Insightand Multi-Agent Formulation

As discussedoreviously, eachsingle reposition has long-term
influence and there are undain factorsin practical reposition
process Therefore, we want a model which not only minimizes
the total customerloss in a long period, but alsgenerdes
repositiors online based on the regime observations instead of
generatinga sequence of decisions advance and conducting
them one by one. fRditional optimization methods cannot
satisfy these reguements whileour STRL model does

Long-term Optimization . A ReinforcementLearning model,
i.e. a RL model,which maximizes the longerm reward of a
sequeme of decisions, fitswr problem formulation very well,
whenwe set the reward athe negative customer loss

Real-time Reposition Generation. Instead of generating a
sequence of actions in advance for the trikes to conduwt by
one, we generate and aga the next repositionto eachtrike
until it has completed itdast one. Therefore, a newepositionis
determined based on theeattime observatns, e.g.the time
when the last reposition is completedhe reaitime predicted
bike and dockdemand at each region, etcbetter capturing the
uncertainties in practical implementation.

Our STRLmodelis formulatedin a multi-agent way When a
trike completes its last reposition, aew reposition is generated
to it immediately based on itsurrent state without waiting for
the completion of others. Thiformulation has two advantages.
Firstly, a reposition durgion varies from trike to trikelargely,
always waiting for the othersto complete before conducting a
new repositionis very inefficient. Secondlygenerating an action
for each trike one by one can largely reduce the action space



compared withthat to generate actions faall trikes atone time.
The action space ofhe former isb ¢ & while that of the
latter isO & @ , whereQis the trike capacity;Q andé
are respectivelythe numberof trikes andregions in thecluster.
Each timea trike requires for a new repositignthe statusof the
other trikes iscontained inits current state Therefore,trikes in
one cluster carstill reposition cooperatively instead aforking
without considering othersn our multi-agentformulation.

3.3.2STRL Model Methodology

To elaborate the methodology of@TRL we firstly introducethe
traditional RL model [15] briefly, then naturally extend to our
STRL model.A RL model consists of six components,
"YORYAYH Fi , where"Ydenotes thestate setp is anaction set;
“Ydescribes theransition probability that an agent took action
@ under state"Y will transit to the next state®y , i.e.

Y 0 "YO "Y'Ystands for the immedite rewardreceived after
taking an action under a specific state and transiting to a next
statg i.e."Y 0 YO 'Y;“ is a policy"'Y 0 © “, describing the
probability to take an action under a specific statds a time
discountparameter At each timed, an agent in statéY takesan
action® according to the policy , thentransits to thenext state

"Y , receiving an immediate reward . An action has a long
term returndefinedas Eq. Whered is the episode end

- z

Y i or 7 i E T i

i.e.

™

We define the optimal longterm valuefunction as Eq. 8
describingthe maximumexpected return of amction® under a
specific stat€Y by following anypolicy after o.
G TYSYROH

0* "Yhd (€S)]

Obtaining the optimallong-term valueof each action under
each state the optimal poicy for a RL modelcan be easily
inferred by Eqg. 9i.e. alwaystake the action with maxmum
optimal long-term value undethe current state

S hi "Qa G YR ©)]

Usudly, Bellman equation akq.10 is adopted to estimate the

optimal long-term value funcion via an iterative approach.

0" YR M 1 7 ade 0°Y R YR (10
Our model, formulated in a mukagent way, is bsed on the
traditional reinforcementlearning theory. The multiple agents,
i.e. the tikesin a cluster,share onecommonreposition policy
Ead time a trike completes its last reposition, the policy

generates a new one to it immediately based on its current state.

Completing this reposition, the trike tresits to the next state
and receives an immediate rewardihe state in our model is
carefully designed to capture the system dynamics and-tieaé
uncertainties. We firstlyintroduce the reatime observation ok
trike before stpping to its action, stateand reward definitiors.

An Observation. Each time a trike requires for a new
reposition, it has a redime observation of the current
environment. We define the observation of a trike to include
three factors, i.e. the system status, the status of ottikes and
its own status. The system status includes the current bike and
dock availability at each region and theieaktime predictedrent
and return demands in the next period. The status of other trikes
describes how many bikes they are to pick upumoad at which
regions. More information about the other trikes can be

considered, e.g. theurrent number of bikes on each trikéheir
expected arrival timesetc., although we do not considethem
here for simplicity. The status of the trike itself dludes its
current locaton and how many bikes it has

An example of an observation to trike is shown in Fig 7A).
As we can see, the first large rectangle corresponds to the system
status, which has four vectod,Q,®,Q N 'Y , wheret is
the number of regions in this cluste) and'Q respectivéy
stand for thecurrent bike and dock availability at each regiod;
and’Q respectively denotethe reakttime predicted rent and
return demandat each region The second mangle describes
the status ofother trikes, whera) denotes how may bikesv
will pick up or unload at which region e.g0 will pick up 4
bikes ati ; 0 will unload 8 bikes at . We combine the system
status and the status of othertrikesBy ® Q A/ 0
n T tfp B o ko v 'Y |, to predict the bike availability
at each region in the coming period. As the capacity of each
region is onstant, considering either thévike or the dock
availability is enough. The third rectangle corresponding to the
status of the current trikg describes thab is at regioni with 5
bikes on it.We transformriy to a onehot vector which shows
the current location of0 , i.e. Tiphrt8 i, and a scalar
denotingthe numberof bikes on it.Concatenatinghe predicted
availability vector, the onéhot vector and the scalar, we obtain
the current observatiomf0 ,a¢ €& p dimension vector.
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Fig 7. Generate an observation and an action

An Action . An action is defined as a vector describing where

a trike should go to pick up or unloachow many biles. An
example is shown in F|g7 B), where the action for trike is
8 h ofit, i.e.0 unload 9 bikes at regior . We
transformr to a onehot vector and a scalar respectively
showing thetarget region andthe number of bikes tdoad or
unload there. Concatenating the orbot vector and the scalar,
we obtaina& p dimensionactionfor U .

-

A State. The state of a trike can be simply defined as its
current observation vector extended by the current time.
However, as the system dynamids too complicated to be
captured by a single observation, we define the state to be a
sequence of interleaved observations and actions combined with
the current time, ie’Y O R MR K R P.
Therefore, a state is a8 € ¢ O ¢ &€ p p
dimension vectorwhered denotesthe time lag An exanple of
a state is shown inFig. 8, where we set p, i.e."Y
0 hd R ;8 denotesthe predicted bike availability at
each region im;i is a one hot vector denotinghe current



region of the trike; describes how manbikes are on the trike
in&i and® make upthe action ind, respectively denotinghe
one-hot vector for thetarget repostion region and how many
bikes toload or unloadhere.

O =C0CC03 a =10
A 8¢ b s b

S =1 [ 1 O | Eml 1 OO
Ot-l at-l Ot t

Fig 8. Generate a state]

An immediate reward . We set the immediate reward afte
taking @ under Y and transitng to Y as the negative
customer loss ind® p], thus to maximize the longerm
reward can mmimize thetotal customer lossn an episode

3.3.30ptimal Longterm Value Network

After formally defining the model, we want to estimate its
optimal longterm value function by Eq. 10As the stateand
action spacs are large, we design a dpeneural network to
estimate thisfunction, ie.0” "Y¥dh—dY 6 © 0§, where—are
the network parameters.

The input to our deep neural network is a state vector
concatenated with an action vector, Vdh contains multimodal
data thus the network structure needs to be carefully idesd
instead of a simple fulhconnected oneWe design the network
as Fig9, wherethe state and actioshown inFig. 8 are adopted
for illustration, i.e. the grey rectanglesnake up a site while the
orange onesnake upthe action. Onehot vectors in the input,
corresponding to regionsare firstly connected to a shared
embediing layer. The obtained embeddings arehen
concatenated with the remainingentries in the input and
connectedo fully-connected layers (FC). Lastly, the output from
FC is combined with the timéto obtain the final longterm
value, such thatwhend " , the output from FC is reirned,
otherwise, return zero; heré is a parametewery close to the
episode end .

Optimallong-term valug OR

Osfitla
Fully connected layers
|£ |£ |£ @Embedding
ﬁm - ﬁm - oy
Embedding Iayer | connected
F’*"""’ﬂ"”""""r’""’"*'""} ], OR
O O i

Fig 9. Optimal long -term value network

We train this networkvia an iterative approach based &y.
10 on the simulato There areseversteps[13][14].

_ 1) Random initialize the optimal lonterm value network as
0° "YOh— and set the sample potd bean empty set

2) Begin anew episode.

3) When a tike requiresfor a new repositiond” "¥dh—
generates an actiot under its current statéY, such that®d
W1 "Qa @ "YAdh— . With a probability - , & may be
replaced by a random chosen &mt from 0; here- N [0,1] is a
parameterfor exploration.

4) The tike takes the repositiomd and transits to the next
state”Y , receiving an immediate reward. Generate a new
sample "YRORY R and addt to the sample pool.

5) Update the network based on a mini battom the sample
pool by Eqg. 1. Set— — for the next repositiongeneration

0 "Yhoh— i YOy R~ (1))
6) Jump to step Bintil an episode ends

7) When the number of episodebeensimulated reaches a
threshold, terminate the trainingprocess and output the
obtainedneural network; otherwise, jump to step 2

[ aoo 0°

3.3.4SpaticTemporal Pruning Rules

As the large saite and action spaces leadwvery slowtraining
convergence we further design two spatio-tempaal pruning
rules to prune someactions under each specific state, thtts
improve the trainingefficiency. Before elaborating thoseules,
we formally defne smeregion statugsby a parametet .

Definition 4 (Predicted)Severely Deficient / Congested
region is severelydeficient when its current bikevailability is
less than” . A region is predictedseverely deficient when its
predicted bikeavalability is less than” ; here the predicted
bike availability can be obtained frond in Fig. 8, whose
calculation is elaborated i8.3.2(Predcted) Severely congested
is defined similarly.

Our pruning rules argwo heuristic ones, to prunehe most
possiblebad actionsl) Always unloadat a predicted severely
deficient region and pick up at a predictestverelycongested
one 2) The repositiontarget region should be chosen frothe
top Onearest neighborhood®f the current region besides
how many bikes tdoad or unload is generated with a step size.

4 EVALUATION

We evaluate our model on real datasets from Citi Bike system
and discuss the experiment ressiiin the morning rush hours
Results inthe other episodes are similar.

4.1 Data and Baselines
4.1.1Real Datasets

We adopt two realworld datasets in our experiments, i.e. the
Citi Bike data and the weather data in New York City. We only
conduct experiments on the principle system, which only covers
the urban center as shown in FigB), as the station status data,
which are necessary to estimate the bike anstkl demand at
each location, arenly available to these station®ata details
are summarized in Table 3.

As the potentialbike demandis unknown, we estimate the
rent demandat each stationin each period fronthe bike usage
data, as well as thstation status datdby Eq.12[1], where'Qy;
is the number of bikes been rentediatin ¢, 0 j; is the time
lengthin periodowhenstaion i is not empty.

. . $s
Er T =

h
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2We thank Abe Stanway and Chris Heydt for sharing the station status data.
https://github.com/astanway/citibikelata
https://groups.google.com/forum/#!forum/citibikkackers



https://github.com/astanway/citibike-data
https://groups.google.com/forum/#!forum/citibike-hackers

Table 3. Citi Bike data and weather data

Bike Data Weather Data
# Stations | 389 # Drizzle | 220
# Regios 98 # Rainy 75
# Clusters | 4 # Foggy 328
#Records | 9,846,248 | # Sunny 4,513

4.1.2Baselines and Metric
No RepositionWe run the simulator withoutany bike reposition.

GreedyReposition Greedy algorithm generates reposition
basedon threerules. 1) An empty trike always goes to the
nearest sevaly congested regioro pick up the most possible
bikes, considering the trike capacity and how many bikes are at
the target region.2) A full trike always goes to the nearest
severely deficient region to unload the most possible bjkes
considering how man bikes it has and the dock availability
there. 3) A trike which is neither fullnor empty goes to the
nearest severely unbalanced region, which is either severely
congested or deficient, to load or unload the most possible bikes
depending on the status dhe target region.

Prediction baseBandomReposition This reposition strategy
means that a trike always randomly choosesegion, which is
predicted severely deficient, to unload some bikes oregion
which is predictedseverely congested to pick uprse bikes.

Prediction base@reedyReposition PGR isvery similar with
GR except that weonsider the predicted atus of each region
when applying the three rules in GR

Optimization Reposition A related work [1] proposed an
optimization model toconduct bike reposition. However, it
solves the static bike repositiorproblem. Besideghe numler of
trikes in eachclusteris constranedto oneand the optimization
objective is to mimize thereposition distancetherefore, this
model does not fit oumproblem settings. However, we slightly
refine our formulation by assuming thatach cluster igllocated
with one trike with a speed  "Qand a capacityd ™Qto
approximateour previous setting, i.e. Qtrikes with a speed
and a capacitycx We can further refine the optimization
objectiveto be the totalcustomer loss whilehis leads toa too
complex model to solyevhereheuristic algorithns are required

Evaluation MetricThe reposition results obtained by diféat
models are compared by the total customer loss in an episode,
including the ones failed to rent and the ones failed to return.

4.2 Evaluation Results
4.2.1 11IB Clustering Results

Fig 10. l1IB clustering algorithm results

We firstly generatethe function regionsin a system and show
them in Fig 10, where each region is denoted by the center of
the stations in it. A blue point means dasved region while a

red one denotes a jammed regiomthe morning rush hours. We
further conduct IlIB to cluster tese regions intdour clusters. As

we can see from Fig. 10, each cluster has both jammed and
starved regions in this episode, which is necessary for each
cluster to be innetbalanced.

Table 4. Inner -balance property

Cluster | # Regions| Unbalance| Capacity | UnbalanceRatio
o} 30 -47 5285 -0.009
o} 27 123 2123 0.058
o} 18 38 3635 0.01
6 23 103 1906 0.054

To further confirm the innerbalance property of each cluster,
we calculate their net bike demands in the morning rush hours
and show the stistics in Table 4, wheréRegionsnears how
many regions are in each clustdgnbalancaes the total net bike
demand; Capacity denotes the total number of docks in each
cluster andUnbalance Ratiis calculated byve & ¢ & #& G0 0 QO &
As we can see, the unbalance of each cluster is very small,
especially compared with the capacity.

Table 5. Inter -independence property

Cluster o} o} o} o}
o] 315137 0 31,882 0
o} 0 21463 0 0
o} 46174 0 226723 0
o} 670 0 0 41,094

Table 5 shows the statistics dfie innercluster and inter
cluster commutes. As we can see, there are only a few dnter
cluster commutes, i.e. abopttpercentages, which areninor
that can be ignored. Therefore, we can consider that the 4
obtained clusters are almost independent from each other,
confirming the effectiveness of our clustering algorithm.

4.2.2STRL Reposition Results

Table 6. Customer loss in the morning rush hours

C“Lsézg‘er NR PR GR | PGR| OR | STRL
8 267 | 178 | 200 | 157 | 1@ | 113
8 286 | 229 | 256 | 238 | 237 | 1®
8 & | 553| 407 | 456 | 395 | 427 | 24

Evaluation results id andd; in the morning rush hoursunder
different reposition moded are shown in Tables. We also show
the corresponding dss reduction atio by Fig 11, which is

defined as—; here0 is the total customer loss without

reposition andd denotes the customer loss under a specific
repostion strategy.Tod andd,, these two areas in Citi Bike
system are not as busy as the other two. According to our
simulation results, the customer loss in these two clusters is even
not larger than fifty. Therefore, a simple heuristic algorithm, e.g.
the baseline PGR introduced previously, is good enough for them









