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ABSTRACT
Stay area detection is one of the most important applications in
trajectory data mining, which is helpful to understand human’s
behavior intentions. Traditional stay area detection methods are
based on GPS data with relatively high sampling rate. However,
because of privacy issues, accessing GPS data can be difficult inmost
real-world applications. Fortunately, traffic surveillance cameras
have been widely deployed in urban area, and it provides us a novel
way of acquiring vehicles’ trajectories. All the vehicles that traverse
by can be recognized and recorded in a passive way. However, the
trajectory data collected in this way is extremely coarse, because
the surveillance cameras are only deployed in important locations,
such as crossroads. This coarse trajectory introduces two challenges
for the stay area detection problem, i.e., whether and where the stay
event occurs. In this paper, we design a two-stage method to solve
the stay area detection problem with coarse trajectories. It first
detects the stay event between a surveillance camera record pair,
then uses a layer-by-layer stay area identification algorithm to infer
the exact stay area. Extensive experiments based on real-world data
were used to evaluate the performance of the proposed framework.
Results demonstrate the proposed framework SAInf achieved a 58%
performance improvement compared with SOTA methods.
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1 INTRODUCTION
Stay area detection is a common problem in trajectory data mining.
Researchers use stay areas to understand the semantics of loca-
tion and human mobility. However, traditional stay area detection
algorithms are highly dependent on the GPS data with relatively
high sampling rates [15, 21, 29, 30, 39]. Although GPS devices have
been widely used to locate moving objects, it is still difficult for city
managers to collect GPS data from all vehicles due to privacy issues
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[7, 11, 12] and budget limitations [4, 9]. In fact, the government
only has access to GPS data for a small portion of vehicles which
are under restrictive management, such as police cars, ambulances,
and special trucks.

Fortunately, there are other types of sensors that can perceive
vehicles’ locations, such as traffic surveillance cameras, electronic
toll collection systems, base stations, and etc. These sensing devices
offer an alternative opportunity to solve the stay area detection
problem. Among them, surveillance cameras are the most widely
used, and more than one billion surveillance cameras have been de-
ployed worldwide by 2021 [5]. Generally, when a vehicle traverses
on the road, it can be captured by the surveillance cameras, and a
record is generated with object detection and license plate recog-
nition technology. Figure 1 shows a trajectory with a stay event,
where the green line indicates the real trajectory of the vehicle, and
the yellow dots indicate the camera positions. When the vehicle
passes the camera in order, a record is generated which is indicated
by the blue icons.

Figure 1: The Trajectory Recorded by the Surveillance Cam-
eras.

Inferring the stay area has rich applications in real-world scenar-
ios: 1) Discovering illegal activities of special vehicles. For special
vehicles, such as chemical transport vehicles and constructionwaste
vehicles, a stay event often indicates potential safety risks. The stay
area of these vehicles may be concealed chemical storages, and
the stay area of construction waste transfer vehicles relate to il-
legal dumping activities. 2) Discovering popular areas. Because
surveillance cameras passively recognize all types of vehicles, we
are able to discover popular areas of the city without sampling bias
compared to the traditional method using GPS data collected from
only one vehicle type, such as taxicabs [1, 2, 6]. 3) Mining vehicles’
mobility. The stay behavior can reflect the travel intention of the
vehicle. Although the semantic information of only one stay area
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is limited, the pre- and post-sequences are able to help us better
model the mobility of vehicles.

Compared to GPS devices, surveillance cameras have the follow-
ing three advantages:
• Wide coverage. All moving vehicles and major areas in the city
can be monitored by surveillance cameras. In a contrast, GPS
trajectories can only be collected from a small portion of vehicles.

• Privacy friendly. Surveillance cameras are able to perceive
mobility in the urban space without acquiring details of the
object’s trajectory.

• Reliable access. Compared to GPS devices, which are prone to
irregular operation, and equipment failure, surveillance cameras
are installed andmaintained by citymanagers in a unifiedmanner,
allowing a stable collection of objects’ visit records.
As shown in Figure 1, it is obvious that the sparse trajectory

recognized by surveillance cameras is a down-sampling of the real
trajectory of the vehicle, which presents a huge uncertainty for the
stay area detection task. The uncertainty is mainly reflected in two
aspects:
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Figure 2: Challenges to Infer the Stay Areas.

• Stay Event Uncertainty. According to [37], a stay event is
defined as the vehicle stay at a region beyond a certain temporal
threshold. Traditional stay event detection algorithms can only
extract cases which have a higher stay time than the sampling
interval of devices. However, as shown in Figure 2(a), it is difficult
to extract all available stay events (an available stay event is often
set to stay longer than 5,10,15 min) from the surveillance camera
records whose sampling interval is longer than 30min. Therefore,
it is a challenge to detect whether a available stay event occurrs
under a high record interval setting.

• Stay Area Uncertainty. Although the cameras have wide cov-
erage, most of them are only deployed at key nodes of the road
due to budget limitations. As a result, the stay event are usually
not captured directly by the camera, i.e., keep stationary within
the scene for a while. For example in Figure 2(b), We depict two
consecutive camera records with stay events and estimate the
potential stay areas. It is obvious that the further distance be-
tween two cameras, the larger candidate areas where the vehicle
may stay. In our observation, there are more than 75% records
whose potential stay areas exceed 10 square kilometers. Tradi-
tional stay area detection algorithms cannot be applied to such
sparse trajectories.
To overcome the aforementioned challenges, we propose a frame-

work for stay area detection, named SAInf (Stay Area Inference),
which is a two-stage approach that models stay events and stay ar-
eas. In the first stage, the algorithm detects whether the stay events

occur between two consecutive camera records, which is used to
reduce the stay event uncertainty. In the second stage, we propose a
layer-by-layer process combining coarse-grained and fine-grained
selection to tackle the stay area uncertainty. On the one hand, the
coarse-grained selection module uses the spatial distribution of
stay events to generate the candidate region set. On the other hand,
the fine-grained selection module infers the exact stay areas by
calculating the stay probability of each candidate region.

Specifically, the proposed framework contains three main com-
ponents: 1) data pre-processing, which detects the stay events from
the GPS trajectories, and assigns the stay events to the correspond-
ing camera record pairs. This component is only used in the offline
learning phase for dataset build-up. 2) Stay event detection, which
detects stay events within camera record pairs by testing travel
speed. and 3) Stay area identification, which generates a candidate
region set through modeling spatial distribution of stay events and
selects the most likely stay area in its candidate region set.

The main contributions of the paper are summarized as follows:
• Our work is the first research to tackle the stay area detection
problem with surveillance camera records. We analyze the stay
area detection problem under a sparse trajectory setting and
present the problem formulation and challenges in this paper.

• A novel stay area inference framework SAInf is proposed. SAInf
provides a standard pipeline to address the uncertainties from
camera records. In the mean time, we also design a model called
StayNet for fine-grained stay area identification. StayNet takes
in various factors, and models the complex relationship between
candidate regions and stay events, .

• We evaluated the proposed method using a real-world dataset
from Nantong, China. The results show that our method is effi-
cient, with a performance improvement of about 58% compared
to the current state-of-art baselines.
The rest of the paper is organized as follows: Section 2 describes

the problem and the framework overview. Stay event detection is
discussed in Section 3. Section 4 describes the detail of the stay area
identification. Experiments and case study are given in Section 5.
Related works are summarized in Section 6. Finally, we conclude in
Section 7.

2 OVERVIEW
In this section, we first provide the preliminaries and used notations,
then we define the stay area detection problem and outline our
solution framework.

2.1 PRELIMINARY
Definition 1 (City Region). A city is divided into disjointed𝑀 ×𝑁
grids based on latitude and longitude, where a grid denotes a region.
All the grids form a region set 𝑅 = {𝑟11, . . . , 𝑟𝑖 𝑗 , . . . , 𝑟𝑀𝑁 }, where
𝑟𝑖 𝑗 is the cell region in the i-th row and j-th column of the grid map.

Definition 2 (Surveillance Camera Record). A surveillance camera
record is generated when a vehicle passes a camera. The record con-
tains themobility information, denoted as a 3-tuple 𝑟 =< 𝑣𝑖𝑑, 𝑐𝑖𝑑, 𝑡 >,
where 𝑣𝑖𝑑 denotes vehicle ID, 𝑐𝑖𝑑 indicates the visited camera ID
and 𝑡 is the visit time. A camera is bounded to a fixed location
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑖𝑑) =< 𝑙𝑎𝑡𝑐𝑖𝑑 , 𝑙𝑛𝑔𝑐𝑖𝑑 >.
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Definition 3 (Surveillance Camera Record Pair). A Surveillance
Camera Record (SCR) pair consists of two consecutive surveillance
camera records. The pair is represented as 𝑝𝑟 =< 𝑟𝑖 , 𝑟𝑖+1 >, where
𝑟𝑖 denotes a camera record.
Definition 4 (GPS Trajectory). A trajectory is a sequence of GPS
points, denoted as 𝑡𝑟 =< 𝑝1, 𝑝2, . . . , 𝑝𝑛 >, where each point 𝑝𝑖 =<
𝑙𝑛𝑔𝑖 , 𝑙𝑎𝑡𝑖 , 𝑡𝑖 > indicates the longitude and latitude at a location time
𝑡𝑖 . The points in the trajectory are organized chronologically.
Definition 5 (Stay Event). A stay event 𝑠𝑒 occurs when a moving
object stays within a geographic region for a while, which is a
triplet 𝑠𝑒 =< 𝑡𝑠 , 𝑡𝑒 , 𝑟𝑖 𝑗 >. 𝑡𝑠 and 𝑡𝑒 are the start and end timestamps
of the stay event, and 𝑟𝑖 𝑗 is a spatial grid.
Problem Statement. Given the surveillance camera record (SCR)
pairs 𝑃𝑅 = {𝑝𝑟𝑖 |𝑖 ∈ [1, . . . , 𝑞]} of vehicles, the stay area inference
problem is to infer whether stay events occurred, and at which
regions the vehicle stayed 𝑅 = {𝑟𝑖 𝑗 |𝑖, 𝑗 ∈ stay region index}.

2.2 Framework Overview
The framework of SAInf is elaborated in Figure 3, consisting of
offline leanring and online inference phases. In the offline learning
phase, the SAInf first constructs the dataset from collected surveil-
lance camera records and GPS trajectories. Then, SAInf learns the
relationship between SCR pairs and their corresponding stay events.
In the online inference phase, the SAInf receives SCR pairs and uses
the trained stay event detection module and stay area identification
module to infer the stay event.
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Figure 3: System Framework.

More specifically, there are three components:
Data Preparation. This component takes the SCR pairs and

GPS trajectories to construct a dataset that is used in offline learn-
ing and contains two main tasks. 1) Stay Event Extraction,which
performs trajectory noise filtering and stay area detection algo-
rithms [37] to construct ground truth with GPS trajectory data. 2)
Stay Pair Matching, which matches SCR pairs with stay events in
chronological order.

Stay Event Detection. It provides a pipeline for detecting stay
events from SCR pairs. Two main tasks are performed: 1) SCR pair
Modeling , which characterizes the SCR pairs by modeling the travel
speed. 2) Stay Query Pair Detection, which builds a statistical model
to determine whether the stay event occurred within SCR pairs.

Stay Area Identification. This component takes in SCR pairs
with stay events as input, and outputs the inferred stay area. Two

steps are designed in this component: 1) Candidate Regions Gen-
eration, which generates a candidate region set of stay events by
modeling the spatial properties of the SCR. 2) Stay Area Selection,
which builds a deep learning model to estimate stay probability
of each candidate region, and outputs the top-k regions with the
highest probability.

The data preparation process is an essential but straight-forward
component, we will not elaborate more details in this paper. In the
following sections, we will describe the stay event detection and
stay area identification processes, respectively.

3 STAY EVENT DETECTION
In this module, we detect whether a stay event occurs in the SCR
pair, which acts as inputs of the stay area identification.

Motivation. Common sense tells us tha the stay events are
highly related to the travel time, since the vehicles spend more
time in passing through the SCR pair with stay events. Ideally,
we could learn a model for each camera pair if enough data is
collected. However, the trips are distributed unevenly, in other
words, most camera pairs are visited by very limited times. As
shown in Figure 4(a), 95% camera pairs are visited by less than
100 times, and most of the camera pairs are visited less than 10
times. This indicates that most camera pairs do not have enough
observations to build a separate detection model. In order to tackle
this challenge, we aggregate the data and build a unified model.

For stay event detection, the premise of aggregation is to find
a statistic to determine whether stay events occurred within an
SCR pair. In general, the travel time between SCR pairs cannot be
directly compared because the travel distances between SCR pairs
are different. In order to eliminate the effect of route distance on
travel time in individual SCR pairs, we adopt travel velocity instead
of travel time to detect stay events, in order to build a unified
statistic among different SCR pairs. However, travel velocity cannot
be calculated directly because we only have information about the
starting and ending records without the routes. In fact, the direct
distance between the two cameras in the SCR pair is a lower bound
of the route distance. Figure 4(b) also demonstrates the fact that
the direct distance in the SCR pair shows the positive correlation
with the travel time similar to route distance. Finally, we replace
route distance by direct distance to estimate travel velocity of each
SCR pairs.
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Figure 4: Insights of Stay Event Detection.

Inspired by the above insights, we first aggregate all SCR pairs
to reduce the effect of skewed data distribution. Then, we use the
estimated travel velocity as statistic 𝑣 to determine the decision
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boundary. The equation is shown as eq. (1), which describes the
statistic 𝑣 for the SCR pair 𝑝𝑟 with two camera records 𝑟𝑖 and 𝑟𝑖+1.

𝑣 =
𝑑𝑖𝑟𝑒𝑐𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑟𝑖 , 𝑟𝑖+1)

𝑟𝑖+1 .𝑡 − 𝑟𝑖 .𝑡
(1)

Main Idea. We visualize the SCR pairs with stay events and
those without stay events, and the result is shown in Figure 5(a). It
indicates that stay events can be well separated from those without
stay events using the estimated travel speed statistics 𝑣 . Therefore,
the key is to find a suitable threshold 𝑣 . Referring to the idea of KS
test [10], we choose the position where the empirical cumulative
probability function of the two statistics diviates the most. The
formula is shown in eq. (2):

𝑣 = argmax |𝐶𝐷𝐹 (𝑉𝑠𝑡𝑎𝑦) −𝐶𝐷𝐹 (𝑉𝑢𝑛𝑠𝑡𝑎𝑦) | (2)

where 𝑉𝑠𝑡𝑎𝑦 and 𝑉𝑢𝑛𝑠𝑡𝑎𝑦 are the population of travel speeds esti-
mated from SCR pairs with stay events and SCR pairs without stay
events, respectively. 𝐶𝐷𝐹 (·) denotes the empirical CDF of the two
population.
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Figure 5: Main Ideas of Stay Event Detection.

During the offline learning phase, the module takes SCR pairs
with stay event 𝐷𝑠𝑡𝑎𝑦 and without stay event 𝐷𝑢𝑛𝑠𝑎𝑡𝑦 , and returns
the velocity threshold 𝑣 . In the online inference phase, the module
detects travel event based on travel speed 𝑣 estimated from the SCR
pair and threshold 𝑣 . Specifically, when the travel speed 𝑣 is less
than the threshold 𝑣 , the algorithm detects that stay events have
occurred in the SCR pair, and pass the SCR pair as stay query pair
to the following stay area detection task.

4 STAY AREA IDENTIFICATION
Considering the high uncertainty of the stay area identification
problem, the proposed method needs to ensure both performance
and computational efficiency. Inspired by the recommender system
[23], we adopt coarse-grained and fine-grained selection in each
SCR pair with potential stay events. This method balances the recall
of candidate regions and the precision of stay area identification.
More specifically, in the coarse-grained selection process, the algo-
rithm determines the candidate region sets from the SCR pairs by
modeling the reachable area. In the fine-grained selection stage, the
algorithm selects the regions with high probability of stay event
from the candidate region sets.

4.1 Candidate Regions Generation
Motivation. In this section, we model the spatial distribution of
stay events using ellipse and design a statistic to generate candi-
date region set with respect to each SCR pair dynamically. This is
inspired by two intuitions:
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Figure 6: Visualization at Stay Eventswithin StayQuery Pairs.
1) Given a starting point, an end point, and a travel time, the

activity range of the vehicle is an ellipse with the starting and end
points as focal points. We normalize the camera positions of stay
query pairs (SCR pairs with stay events, returned by the last module)
by rotation and transformation. As shown in Figure 6(a), red dots
are normalized camera locations of SCR pair, and blue dots are
ground truth stay events. It is obvious that the stay events are two-
dimensional Gaussian distribution around the camera locations.
As a result, we model the candidate area of a stay query pair as
an ellipse. We denote the distance a vehicle traverses within each
stay query pair as 2𝑎, and denote the direct distance between two
cameras in the stay query pair as 2𝑐 . Therefore, if a suitable distance
2𝑎 is found, we can generate the candidate region set of the stay
query pairs based on conic section and predefined grids.

2) The candidate regions need to be adjusted dynamically ac-
cording to specific SCR pairs. As the green line shown in Figure
6(b), distance between SCR pairs ranges from meters to several kilo-
meters. In other words, we should have less candidate stay regions
when SCR distance is short, and have more candidate stay regions
when SCR distance is long. Based on the properties of ellipses, we
devise a new statistic, distance ratio 𝜏 , which refers to 𝑎

𝑐 and dy-
namically adjusts the candidate regions by 2𝑐 . The yellow line in
Figure 6(b) shows that distance ratio 𝜏 has the similar statistical
properties as distance and can vary with the direct distance within
each stay query pair.

Main Idea. Based on the previous discussion, we choose to
use the distance rate as the statistic to estimate dynamically the
parameters of the elliptic equation and generate a region set based
on ellipses and predefined grids. The threshold 𝜏 was calculated
based on the distance rate of the 95th percentile. Because Figure 6(a)
shows some outliers, and they aremostly noise generated by camera
false alerts andmissed detection. A threshold 𝜏 with outliers will put
more grids in the candidate region set and affect the performance
of stay region selection.

4.2 Stay Area Selection
According to the previous process, the candidate region generation
module estimates thresholds to generate the candidate region set
for each stay query pair. In the stay area selection module, our task
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is to select 𝑘 regions from the candidate region set. However, due
to the complexity of the stay pattern, three challenges arise. The
first challenge is how to extract the relationship between regions
and stay events. Second, encoding the spatio-temporal context of
the stay query pair is another challenge considering the various
spatio-temporal correlations. Finally, how to effectively fuse these
information to calculate the stay probability of each region from
the candidate region set is another challenge.
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Figure 7: Insight of Stay Area Selection.

Main Idea. To solve these problems, we design a model StayNet,
which outputs the stay probability of each region in the candidate
region set. It is designed based on the following three insights: 1)
Stay events are affected by spatio-temporal context. Figure 7(a)
presents the heat map of the vehicle stayed at various POIs and
periods. It is obvious that vehicles tend to stay in similar types of lo-
cations at similar periods. For example, hazardous chemical vehicles
need to transport chemicals, they often stay near companies, stores,
medical and other facilities centrally. And taxis inclines to visit hot
urban areas frequently. We propose to capture the spatio-temporal
information of the stay query pairs through time periods, visited
surveillance camera, weather, and etc. 2) Furthermore, stay behavior
is intentional and is relevant to the region semantically. Relying on
the fact that semantic information of the region is described by the
contained POI, we use POI to model regions to further capture the
relationship between stay events and regions. 3) Figure 7(b) shows
the average cosine similarity within the set for each candidate re-
gion set. It reveals that the differentiation of the regions in the set
is very low because the average cosine similarity in more than half
of the sets exceeds 0.5. Therefore, it is very challenging to select
the region containing the stay events from the candidate region
set. Here we use the powerful information interaction capabilities
in the transformer to help extract the differences between regions.
Overall, the model calculates the stay probability of each region in
the candidate region set and returns the k region with the highest
probability.

Model Overview. In practice, we designed a stay area selec-
tion model, called StayNet. It selects the top-k stay regions with
maximum probability for each stay query pair. Figure 8 depicts the
structure of StayNet, which consists of three components:
• Candidate Region Representation, which models all regions
in the candidate region set uniformly using TF-IDF vector of
POIs, and output variable representation of each region;

• Spatio-temporal Context Encoding, which extracts and em-
beds spatio-temporal information of each stay query pair, and

combines the embeddings to generate a hidden representation
that indicates context of stay;

• Knowledge Fusion, which fuses and further enhances each
region representation with the spatio-temporal context represen-
tation in an adaptive manner so that an ideal prediction result
can be achieved.

The pipeline of our proposedmodel StayNet is as follows: StayNet
takes stay query pairs and their corresponding candidate regions
as input. Firstly, the candidate region representation component
takes the candidate region set and produces a representation of
each region as the key. Then, the spatio-temporal context encoding
component encodes the time, location, and other information of
the stay query pairs to the spatio-temporal context vectors. The
spatio-temporal context vectors are used as the queries and val-
ues. Finally, the queries, keys, and values are fed to the knowledge
fusion component. For each region, the knowledge fusion compo-
nent fuses this information based on the attention mechanism and
returns stay probability.

F
FN

T
ra

n
sfo

rm
e
r E

n
co

d
e
r

T
ra

n
sfo

rm
e
r E

n
co

d
e
r

M
u

lti-h
e
a
d

 a
tte

n
tio

n

Embed TimeOfDay

F
FN

S
ta

y P
ro

b
a
b

ility

WorkdayOrNot

Weather

C

Embed

Camera location Feature

P
O

Is o
f C

an
d

id
a
te

 
re

g
io

n
 

+

 Candidate Region Representation

Spatio-temporal Context Encoding

Knowledge Fusion

FFN

F
FN

Figure 8: The Structure of StayNet.

Candidate Region Representation. The functional properties
of the location is very helpful to infer the stay event. A better
distinguish between expressive features and inexpressive features
can help us detect stay events more accurately. As a result, we
choose a transformer to model the variable-length candidate region
set.

Transformer [27] has been widely used in natural language pro-
cessing, computer vision, and sequence modeling, which follows
the architecture of the encoder-decoder structure. Both the encoder
and decoder are composed of stack identical Transformer Block
(TB) layers. Each transformer block has two sub-layers, including a
multi-head self-attention mechanism (MultiHead(·)), and a simple
position-wise fully connected feed-forward network (FFN(·)). The
residual connection [13] is used around each of the two sub-layers,
followed by a layer normalization [3].

The MultiHead(·) is an ensemble of ℎ single-head attention,
which concate all head computed in parallel and project them once
again. A single-head attention mechanism is described in formula
eq. (3), which calculates the weighted sum of the values, where the
weights are obtained by interacting with the corresponding query
and key using the softmax function:
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Attention(Q,K,V) = softmax
(
QK𝑇√︁
𝑑𝑘

)
V (3)

where 1√
𝑑𝑘

is the scaling factor, 𝑄,𝐾 ∈ R𝐿×𝑑𝑚𝑜𝑑𝑒𝑙 is the query

matrix and the key matrix,𝑉 ∈ R𝐿×𝑑𝑚𝑜𝑑𝑒𝑙 is the key matrix which
frommultiple queries, keys and values packed together, respectively.
𝐿 is the collection length of queries, keys, and values. Further, the
MultiHead(·) is as follows:

MultiHead(Q,K,V) = [head1; . . . ; headℎ]W𝑂

where head𝑖 = Attention(QW𝑄

𝑖
,KW𝐾

𝑖 ,VW
𝑉
𝑖 )

(4)

where𝑊𝑄

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑊𝐾

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑊𝑉

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 ,

𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 are the learnable parameter matrices.
The FFN(·) layer contains a fully connected feed-forward net-

work, which is applied to each position separately and identically.
It consists of two direct transformations with a ReLU activation
with learnable parametersW1,W2, b1, and b2:

FFN(X) = max(0,XW1 + b1)W2 + b2, (5)
Consider a set𝑋 ∈ R𝐿×𝑑 with L elements and each element with

d-dimensional features, the process of passing through Transformer
Encoder with multiple Transformer Block layers is as follows:

X0 = X

X̃𝑗+1 = LayerNorm(MultiHead(X𝑗 ,X𝑗 ,X𝑗 ) + X𝑗 )
X𝑗+1 = LayerNorm(FFN(X̃𝑗+1) + X̃𝑗+1), 𝑗 = 1, . . . ,𝑚 − 1

(6)

where𝑚 is the number of transformer block layers. The 𝑋𝑚 is the
final output of the transformer block. Note that elements in the set
are disordered so that positional encoding layer is removed.

In this component, we use the vector composed of TF-IDF values
for 15 types of POI and the distance from region to two cameras to
model each region, and combine all regions in a candidate region
set as the input 𝑋𝑟 , 𝑋𝑟 ∈ R𝐿×15. It is expected that the differen-
tial representations between regions are captured through double
transformer block layers as encoders after processing with a feed-
forward network:

�̃�𝑟 = TransEnc(FFN(𝑋𝑟 ))
𝐸𝑟 = TransEnc(�̃�𝑟 )

(7)

Spatio-temporal Context Encoding. Because the stay event
is also related to its own spatio-temporal context, we extract three
types of features in the stay query pair to represent the context infor-
mation, including spatial features, temporal features, and weather
features. The spatial features 𝑥𝑠 are composed of the latitude, lon-
gitude and location embedding of the two camera positions visited,
and the corresponding grid coordinates. Camera position embed-
ding is pre-trained on camera check-in trajectory by DeepWalk
[22]. There are two features that belong to the temporal type. One
is the index of the discrete-time bin 𝑥𝑏 corresponding to the start
and end time of the stay query pair, the other is the binary value 𝑥𝑑

indicating whether the time slot is on workdays or weekends. Fi-
nally, feature 𝑥𝑤 is the weather type during the occurrence in each
stay query pair. During processing, the 𝑥𝑑 and 𝑥𝑤 are fed firstly
into an embedding layer to obtain the dense representation. Then,
we concatenate them together and send them to a feed-forward
network to obtain the stay condition representation 𝑒𝑠𝑡 . Details are
shown in eq. (8):

𝑒𝑤 = Embed(𝑥𝑤)
𝑒𝑏 = Embed(𝑥𝑏 )
𝑒𝑠𝑡 = FFN( [𝑥𝑠 ; 𝑒𝑤 ; 𝑒𝑏 ;𝑥𝑑 ])

(8)

Knowledge Fusion. Knowledge fusion component takes can-
didate region representation 𝐸𝑟 and stay condition representation
𝑒𝑠𝑡 as the input, enhances 𝐸𝑟 using cross attention based on 𝑒𝑠𝑡
and returns stay probability of each candidate region. Moreover,
residual connections are used to ensure the stability of the training.
Knowledge fusion is defined as follows:

𝐸𝑠𝑡 = MultiHead(𝑒𝑠𝑡 , 𝐸𝑟 , 𝑒𝑠𝑡 ) + 𝐸𝑟
𝑦 = FFN(𝐸𝑠𝑡 )

(9)

In the training phase, we use BCEloss to optimize the StayNet:

𝑙𝑜𝑠𝑠 = − 1
𝑛

𝑛∑︁
𝑖

𝑤𝑖 [𝑦𝑖 log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 )] (10)

where 𝑦 is predicted result, 𝑦 is corresponding ground truth.
It should be noted that the imbalance of positive and negative
samples in the candidate region set. So, we use the negative to
positive sample ratio𝑤 to weight the positive samples in BCEloss
[35].

5 EXPERIMENTS
5.1 Experimental Settings
We use a real world dataset which contains surveillance camera
records and GPS trajectory data for 2,182 vehicles that were col-
lected from Nantong, China from March 1, 2021 to March 18, 2022.
• Surveillance Camera Record. A total of 14,058 smart surveil-
lance cameras are deployed at intersections in Nantong. When a
vehicle passes them, a log record containing timestamp, longitude,
latitude, license plate number and the corresponding camera ID
is generated. The dataset contains 1.22 million records generated
by 2182 vehicles in 175 days.

• GPS Trajectory. They are raw GPS logs generated by the vehi-
cle’s navigation device, each record contains license plate number,
longitude, latitude and timestamp. In the paper, 230 million data
for 265 days from 2182 vehicles were used. These data are pre-
processed and produce stay events as ground truth.

• POI. We collected 15 categories of POI data from Nantong for
characterizing the area using services.

• Weather. Weather data is collected from open API services to
model the context of stay event.
In practice, after the GPS trajectory and camera check-in records

are processed by the data pre-processing module, the stay events
detected from the GPS trajectory and the camera check-in records
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are combined in chronological order to obtain two types of SCRs.
The POI data is projected onto the predefind grids and the tf-idf
vectors of regions are calculated. Last, a total of 329.3 thousand SCR
pairs are generated, of which first 60% are used for training, middle
20% for validation, and finally 20% for testing in chronological order.

Evaluation Metrics. We choose hit ratio, which measures how
many real stay regions can recall successfully from its k query
results. It is formulated as

ℎ𝑖𝑡@𝑘 =
#hits of topK
#stay region (11)

Hyperparameters. The stay area detection algorithm uses the
two thresholds are 50 meters and 300 seconds. The region size is set
to 1km × 1km. The 2-layer Transfomer Encoder is used in StayNet.
4 and 8 headers are used in the transformer and knowledge fusion,
respectively. The hidden size of FC layer are all set to 128. Weather
type and time of day index is embedded to R2. In training phase,
we adopt Adam optimizer with 𝛽1= 0.9 and 𝛽2= 0.999 and use an
initial learning rate 7e-3. The training epoch is set to 100 rounds.

5.2 Comparison of Frameworks
To the best of our knowledge, there is no solution that can be used
to solve the problem well. Therefore, we designed four baselines
based on the enforcement experience of city managers.
• Random Infer (RInf). For each SCR pair, we do not detect stay
events, and randomly select k regions in the 5km circles centered
at the midpoint of the each SCR pair.

• Spatial Heuristic Infer (SHInf).Without detecting stay events,
the pipeline determines the candidate range based on the em-
pirical distance (5km) and performs spatial heuristic selection
in regions within the range. Spatial heuristic selection sorts the
regions in descending order by frequency of stay events, and
returns the top-k regions.

• VelocityHeuristic Infer (VHInf).The empirical velocity (3m/s)
is used as the threshold for detecting stay events. We use the
empirical velocity and the interval of the SCR pair to calculate
the candidate range and perform spatial heuristic selection on
the regions within the range.

• Spatial-Velocity Heuristic Infer (SVHInf). A hybrid of SHInf
and VHInf. Pipeline first uses empirical velocity (3m/s) to detect
stay events, then uses empirical distance (5km) to determine
candidate ranges.
We also compare SAInf with its three variants:

• SAInf-nD. This variant uses the empirical velocity as a threshold
to detect stay events. Settings of stay area inference are consistent
with SAInf.

• SAInf-nS. This variant uses fixed empirical spatial threshold to
determine the range of candidate region set instead of adaptive
stay region generation.

• SAInf-nC. Instead of using StayNet as the selection model, this
variant uses spatial heuristic selection.
Evaluation. Table 1 shows the performance of the proposed

framework as compared to all other competing framework. Our
proposed SAInf significantly outperforms all competing baselines
by achieving the highest all metric. Overall 58.03% performance
improvement in SAInf compared to the current best method. And,

Table 1: Stay Area Infer Evaluation.

Methods hit@1 hit@3 hit@5 Total
RInf 0.0202 0.0627 0.1019 0.1848
SHInf 0.1966 0.4023 0.5055 1.1044
VHInf 0.2141∗ 0.4155∗ 0.5218∗ 1.1514∗
VSHInf 0.1960 0.3856 0.4828 1.0644
SAInf-nD 0.4170 0.6430 0.7263 1.7863
SAInf-nC 0.4084 0.6224 0.7140 1.7448
SAInf-nS 0.2785 0.4839 0.5806 1.3430
SAInf(Ours) 0.4373 0.6659 0.7477 1.8509

SAInf in hit@1hit@3 and hit@5 improved by 95.56%, 57.06% and
43.41% respectively. RInf and SHInf do not detect stay events, but
perform stay region selection for all input SCR pairs. This rough
processing results in part stay SCR pairs being lost, which greatly
affects the subsequent stay region inference. And even worse , the
large and invalid results generated a waste of computational and
storage resources. VHInf and VSHInf perform stay event detection
on SCR pairs by empirical speed to avoid losting SCR pair with
stay events. In contrast, the candidate region set for VHInf depends
on the empirical velocity and the duration of the SCR pair, while
the candidate region set for VSHInf is specified by the empirical
distance. It suggests that candidate region set that vary dynamically
with the SCR pair are more helpful in the stay region selection.
Among all other baselines and variants, VHInf obtains the best
performance.

For the three variants of SAInf, the performance improvement of
SAInf-nS is the most significant, which demonstrates the effective-
ness of StayNet. Moreover, it can be found that the performance of
both SAInf-nC and SAInf-nV using empirical parameters is lower
than our framework, which indicates the superiority of our pro-
posed stay event detection algorithm and candidate region gener-
ation algorithm. Specifically, in the candidate region generation,
the recall of the algorithm and the number of candidate region
are trade-off. In general, to recall all possible stay regions would
increase the number of candidate regions, resulting in a poor selec-
tion phase. When the sides of the region are 1000m, our candidate
region generation algorithm can guarantee the average number of
candidate regions to be 32 under the condition that 95% of the re-
sults are recalled, but the algorithm based on empirical parameters
makes the average number of candidate regions rise to 101 under
the condition that 95% of the results are recalled. The experimental
results prove that we have reached a better balance.

Parameter Sensitivity. We conducted experiments in a square
region with side lengths of 500m, 1000m and 1500m respectively,
and the results of the experiments are presented in Figure 9 which
shows the best baseline and our method and its variants. Overall,
all variants showed improvement compared to the baseline method,
and themost significant improvement was seen at the 1500m setting.
The performance improvement becomes larger as the side length
of the region becomes larger. This is similar to our intuition that
the larger the granularity of the region the better the performance
of the model, but the more difficult it is to apply in practice because
of the large scope of the region. To balance the performance and
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Figure 9: Experimental Results of Different Framework.

management, we choose a region with a side length of 1000m as
the minimum unit when it is deployed.

5.3 Comparison of Selection Model
The baselines for selection model falls into three categories, which
are heuristics, instance modeling, and joint modeling. The heuristic
method contains both spatial heuristic selection (SHS) and spatio-
temporal heuristic selection (STHS). The spatial heuristic selection
returns the k regions with the highest frequency in the candidate
region set. The spatio-temporal heuristic selection takes into ac-
count the temporal dimension which is start time of the SCR pair.
The instance modeling approach models each region in the candi-
date region set individually as a binary classification problem, and
returns the k regions with the highest stay probability. Such meth-
ods include logistic regression (LR), eXtreme Gradient Boosting
(XGBOOST) and multilayer perceptron (MLP). The joint modeling
combines all regions from the candidate region set together into the
model, and return the stay probabilities in each region to increase
the information interaction among regions. RNN and Transformer
both belong to the this type.

Two variants are listed as follows:
• SatyNet-nFus. Attention mechanism is replaced by addition in
SatyNet-nFus.

• SatyNet-nGlo.We remove the spatio-temporal context encod-
ing and use only the output of the vehicle representation for
knowledge fusion.

Table 2: Area Selection Evaluation.

Methods hit@1 hit@3 hit@5 Total
Random 0.1063 0.2520 0.3426 0.7009
SHS 0.3303 0.5740 0.6887 1.5930
STHS 0.3394 0.5614 0.6596 1.5604
LR 0.2977 0.5999 0.7526 1.6502
XGBOOST 0.4737∗ 0.7191 0.8314 2.0242
MLP 0.4182 0.7107 0.8232 1.9521
RNN 0.3285 0.6124 0.7536 1.6945
Transformer 0.4663 0.7434∗ 0.8487∗ 2.0584∗

StayNet-nGlo 0.4777 0.7559 0.8598 2.0935
StayNet-nFus 0.5149 0.7839 0.8856 2.1843
StayNet (Ours) 0.5187 0.7899 0.8869 2.1954

Evaluation. The results of area selection are presented in Table 2.
It can be seen that compared to the current best algorithm, proposed
StayNet has an overall improvement of 6.7% and in hit@1,hit@3 and
hit@5 improved by 11.2%, 6.3% and 4.5%, respectively. Specifically,
with the exception of StayNet and its variants, XGBOOST achieved
the highest hit@1, demonstrating the superiority of instance mod-
eling. While transformer achieved the highest hit@3,hit@5 and
Total result. This may be related to the fact that the joint model-
ing approach is able to better capture the functional differences
among regions within the candidate region set, and such differ-
ences describe more essentially the interaction of the functionality
of regions on the stay behavior.

From the different types of methods, all heuristics show a signif-
icant improvement compared to random selection, which indicates
that the functionality and spatio-temporal context of region has a
strong correlation with the stay behavior. It is worth noting that
although STHS has an improvement in hit@1 compared to SHS,
it then decreases in overall performance. Only STHS takes into
account the effect of temporal dimension, but due to the limita-
tion of observation data, STHS cannot accurately model the effect
of regions on stay behavior. The instance modeling approach can
make more efficient use of historical observation data, and achieves
better results than heuristics by modeling the nonlinear correlation
between regions and the stay behavior pattern. It is important that
in the instance modeling approach, each region contains a POI
tf-idf vector of the region and spatio-temporal context information.
However, due to the fact that the instance modeling uses individual
view of each region in the candidate region set, it cannot accurately
quantify the differences among regions and leads to a lower dif-
ferentiation in stay probabilities. MLP and XGBOOS have similar
results in hit@3 and hit@5, and XGBOOST achieves the best results
for hit@1 except for our method. It indicates that XGBOOST can
effectively attenuate the effect of useless features in the region on
the results, because of its powerful feature filtering ability. In fact,
this is similar in implication to the purpose of joint modeling, which
is to better differentiate features among regions. In contrast, the
joint modeling approach can uniformly observe all instances in
the candidate region set and effectively improve the accuracy of
ranking. Among them, transformer achieves competitive results in
most metrics. RNN degrades the performance because the sequen-
tial modeling approach cannot process the instances in the stay
region set in parallel.

Comparing with variants of our proposed method, we found
that the biggest improvement was achieved by encoding spatio-
temporal contextual information separately and then performing
knowledge fusion. From StayNet-nFus to StayNet, the knowledge
fusion component of StayNet using the attention mechanism is
able to better fuse spatial-temporal context encoding and region
representation.

Parameter Sensitivity. In addition, we also evaluated the per-
formance of different selection models under the three region set-
tings. The best baseline, our model and its variants are compared
in Figure 10. Our method and its variants achieve the maximum
boost on a region with a 500m side length, comparing to previous
discussions on frameworks which improves the most with 1500m
side length. This is related to the number of candidate regions and
the distribution of POIs; when the number of candidate regions
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Figure 10: Experimental Results of Different SelectionModel.

becomes larger, the task becomes more difficult and the model per-
formance decreases. Since POIs are spatially clustered, when the
size of the region becomes small, the POI loses its ability to charac-
terize the regions lacking significant POI. At the same time, as the
regions become larger, the number of candidate regions becomes
smaller, the difficulty of the task decreases, and the performance
improvement of our model diminishes.

5.4 Case Study
We further give a case study to test the effectiveness of SAInf in a
real world setting. We use SAInf to infer the potential stay areas
of the vehicle in real time and compare the results with the stay
events of the corresponding vehicle equipped with a GPS device. It
was found that 3 of the top 5 regions output by SAInf had vehicles
actually staying. Based on the results of the SAInf, government
managers can develop the order of inspection to discover illegal
construction waste dumping sites.

Figure 11: Case Study.

6 RELATEDWORK
Stay Event Mining. The stay of mobile objects is often accompa-
nied by rich semantics. Mining stay events can help us understand
the mobility of objects and the functionality of location. In the past
decades, with the popularity of GPS devices, a large number of
stay event mining research efforts have emerged. It is divided into
three main areas of work. 1) Event Discovery. [25, 33, 40] associated
clusters of stay events with specific behaviors to mine stay events

with semantics. 2) Location Discovery. [15, 21, 29] use clustering
algorithm based on stay events to discover semantic regions from
GPS trajectory data. [17, 39] further exploring the relations between
the regions to predict the next region and provide location-based
services. 3) Mobility Understanding. [14, 20] modeled the user’s
location history and analyzed their daily behavior pattern based on
the sequences of historical stay events. However, these works are
designed based on GPS trajectory data. Limited by the privacy and
coverage of GPS device, we can only observe with sampling bias.
In contrast to these works, we use surveillance camera records to
capture vehicles’ stay patterns and provides the underlying support
for subsequent semantic mining.

Surveillance Camera Records Mining. Surveillance camera
records mining refers to the use of camera-captured vehicle records
to discover various knowledge. Surveillance camera records are
widely used to capture the traffic status of the whole urban [8, 34].
And, some work has emerged to effectively improve the quality of
data to better support downstream applications [19, 26, 32]. Chen et
al. [8] used OD pairs which extracted from camera records to detect
potential community for each vehicle. However these works tend
to address the problem of unbalanced data distribution and missing
data due to the instability of the devices. In our work, we focus on
solving the stay uncertainty in surveillance camera record mining.
Although Chen [8] attempt to solve the problem, their approach
has strong assumptions and is not applicable to our scenario.

Urban Computing. Urban computing [38] is an interdisci-
plinary field that involves the research and application of com-
puting technologies in urban areas. urbanization, such as crowd
flows prediction [18, 36], air quality prediction [28, 31], and re-
source scheduling [16, 24]. In our work, we propose a framework
to infer stay areas of vehicles using surveillance camera records,
which can help city managers improve law enforcement efficiency

7 CONCLUSION
In this paper, we explore the stay area detection problem with
camera records for the first time and design a framework SAInf to
solve it. SAInf models the effect of specific spatio-temporal context
on stay behavior by learning the relationship between SCR pairs
and stay events. In practice, SAInf detects stay events through a
two-stage design. It first discovers the SCR pair containing stay
events through the stay event detection module, then infers the
locations of the stay events with the stay area identification module.
Experiments show SAInf outperforms baselines by 58% on a real-
world dataset. In the future, we will further explore the design of
other modules in the framework to achieve end-to-end framework.
One direction is obtaining a more robust potential stay candidate
set by predicting the stay interval time within SCR pairs to improve
the performance.
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