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Abstract—Being able to predict the crowd flows in each and every part of a city, especially in irregular regions, is strategically
important for traffic control, risk assessment, and public safety. However, it is very challenging because of interactions and spatial
correlations between different regions. In addition, it is affected by many factors: i) multiple temporal correlations among different time
intervals: closeness, period, trend; ii) complex external influential factors: weather, events; iii) meta features: time of the day, day of the
week, and so on.
In this paper, we formulate crowd flow forecasting in irregular regions as a spatio-temporal graph (STG) prediction problem in which
each node represents a region with time-varying flows. By extending graph convolution to handle the spatial information, we propose
using spatial graph convolution to build a multi-view graph convolutional network (MVGCN) for the crowd flow forecasting problem,
where different views can capture different factors as mentioned above. We evaluate MVGCN using four real-world datasets (taxicabs
and bikes) and extensive experimental results show that our approach outperforms the adaptations of state-of-the-art methods. And we
have developed a crowd flow forecasting system for irregular regions that can now be used internally.

Index Terms—Multi-view learning, neural network, spatio-temporal prediction.
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1 INTRODUCTION

FORECASTING crowd flows in each and every part of a
city, especially in irregular regions, plays an important

role in traffic control, risk assessment, and public safety.
For example, when vast amounts of people streamed into
a strip region at the 2015 New Year’s Eve celebrations
in Shanghai, this resulted in a catastrophic stampede that
killed 36 people. Such tragedies can be mitigated or pre-
vented by utilizing emergency mechanisms, like sending
out warnings or evacuating people in advance, if we can
accurately forecast the crowd flow in a region ahead of time.

Prior works mainly focused on predicting the crowd
flows in regular gridded regions [37], [41], [43]. Although
partitioning a city into grids is more easily and effectively
handled by the subsequent data mining [46] and machine
learning approaches [43], the regions in a city are actu-
ally separated by road networks and therefore extremely
irregular. There are also some existing literature that models
the non-Euclidean correlation using graph techniques to in
the forecasting problems [9], [23], [42]. Different from these
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previous attempts, our work consists of three tasks: data
preprocessing, map segmentation and traffic forecasting. It
first takes the raw trajectories and road networks as inputs
ans then simultaneously considers multi-view temporal fea-
tures as well as external views. In this study, our goal
is to collectively predict inflow and outflow of crowds in
each and every irregular region of a city. Fig 1 shows an
illustration. Inflow is the total flow of crowds entering a
region from other regions during a given time interval and
outflow denotes the total flow of crowds leaving a region for
other regions during a given time interval, both of which
track the transition of crowds between regions. Knowing
them is very beneficial for traffic control.

Fig. 1. Crowd flows in an irregular region

We can measure crowd flows by the number of
cars/bikes running on the roads, the number of pedestrians,
the number of people traveling on public transportation
systems (e.g. metro, bus), or all of them together if the data
is available. We can use the GPS trajectories of vehicles
to measure the traffic flow, showing that the inflow and
outflow of v1 are (0, 2) respectively. Similarly, using mobile
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phone signals of pedestrians, the two types of flows are (3,
2) respectively.

We formulate the crowd flow forecasting problem as a
spatio-temporal graph (STG) prediction problem in which
an irregular region can be viewed as a node that is associated
with time-varying inflow and outflow, and transition flow
between regions can be used to construct the edges. How-
ever, forecasting these two kinds of flows in each and every
node of an STG is very challenging because of the following
three complex factors:
1) Interactions and spatial correlations between different
vertices of an STG. The inflow of the node v1 (Fig 1(b))
is affected by outflows of adjacent (1-hop) neighbors (v2

and v3) as well as multi-hop neighbors (other nodes, like
v4). Likewise, a node’s outflow would affect its neighbors’
inflows. Moreover, a node’s inflow and outflow interact
with each other.
2) Multiple types of temporal correlations among different
time intervals: closeness, period, and trend. i) Closeness: the
flows of a node are affected by recent time intervals. Taking
traffic flow as an example, a congestion occurring at 5pm
will affect traffic flow at 6pm. ii) Many types of Periods: daily,
weekly, etc. Traffic conditions during rush hours may be
similar on consecutive workdays (daily period) and consec-
utive weekends (weekly period). iii) Many types of Trends:
monthly, quarterly, etc. Morning peak hours may gradually
happen earlier as summer comes, with people getting up
earlier as the temperature gradually increases and the sun
rises earlier.
3) Complex external factors and meta features. Holidays
can influence the flow of crowds for consecutive days, and
extreme weather always changes the crowd flows tremen-
dously in different regions of a city. Besides, crowd flows
are also affected by meta data, like time of day, week-
end/weekday. For example, the flow patterns on rush hours
may differ from non-rush hours.

To tackle all aforementioned challenges, we propose
a general multi-view learning framework for crowd flow
prediction in all the irregular regions of a city, as shown
in Fig 2. The framework is composed of two stages: data
preparation and model learning. The data preparation stage

involves fetching global information based on the target
time and selecting the dependent crowd flow matrices from
key timesteps according to different temporal properties.
Based on the collected multiple view data, we present a
new model for learning, which we refer to as a multi-
view graph convolutional network (MVGCN), consisting of
several GCNs and fully-connected neural networks (FNNs).
The contributions of this research lie in the following four
aspects:

• We propose a variant of GCN, which can capture spa-
tial correlations between different nodes. We design
a multi-view fusion module, to fuse multiple latent
representations from different views.The module is
designed based on two fusion methods: gating and
sum fusion, which are used to capture sudden and
slight changes, respectively.

• We propose a comprehensive framework that con-
sists of data preprocessing, map segmentation and
map clustering by road networks, graph construction
via transition flows, crowd flow prediction using
graph convolutional networks. Besides, we also de-
sign a demo system to visualize the crowd flow
forecasting results in citywide irregular regions.

• We evaluate our MVGCN using four real-world mo-
bility datasets, including taxicab data in Beijing and
New York City (NYC), and bike data in NYC and
Washington D.C. The extensive results demonstrate
advantages of our MVGCN beyond the adaptations
of several state-of-the-art approaches, like diffusion
convolutional recurrent neural networks [22] and
Gaussian Markov random field based model [13].

2 PROBLEM DEFINITION

2.1 Irregular Regions

Urban areas are naturally divided into different irregular
regions by road network. These regions may have different
functions, such as education and business function [39].
Different functional areas usually have different traffic flow
patterns. For example, most people usually commute from

Fig. 2. Multi-view deep learning framework. (1) Data preparation stage: fetching global information based on the predicted target time and selecting
key timesteps based on temporal dependencies. (2) Model learning stage: a) Graph convolutional net (GCN) is used to learn the spatial correlations
and interactions using the structural information of the STG; b) Fully-connected nueral net (FNN) is employed to capture global information, like
external factors and meta features (time of the day). c) Multi-view fusion can effectively integrate the outputs of GCNs and FNNs. d) Post-net,
namely a FNN here, is used to project the latent representation to the output using an activation function (e.g. tanh).
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residential areas to work places in the morning and return
home after work. So it is actually more rational and insight-
ful to perform the task of traffic flow prediction on these
irregular regions.
Region Partition. The task of region partition consists of two
main operations: map segmentation and map clustering.
For example, the road network in Beijing is composed of
multi-level roads, such as level 0, 1, 2, etc., which represent
different functional road categories. As shown in Figure
4 (a), the red segments denote highways and city express
ways, and the blue segments represent urban arterial roads
in Beijing.

Fig. 3. (a) Before Dilation; (b) After Dilation; (c) After Thinning.

Fig. 4. (a) Road network in Beijing; (b) Regions after map segmentation;
(c) Regions after map clustering.

Referring to [40], we utilize morphological image pro-
cessing techniques to tackle the region partition task. Specif-
ically, we partition the map into 2400×2400 small grid-cells,
and map each road point to its corresponding grid-cells,
thereby obtaining a binary image, in which 1 and 0 stand
for road segments and blank areas respectively. Then we
apply the dilation operation and thinning operation to get
the skeleton of the road network. The dilation operation can
help thicken the roads, fill the small holes and smooth out
unnecessary details. Then the thinning operation is used to
recover the size of a region while keeping the connectivity
between region, as shown in Figure 3. Finally, we can obtain
all labeled irregular regions’ locations using the connected
component labeling algorithm (CCL) that finds individual
regions by clustering ”1”-labeled grids.

After the map segmentation, we obtain a large number of
low-level irregular regions, and many of them are too small
to collect or predict traffic flows at the city scale. There-
fore, we apply a clustering operation [16] on these regions.
Specifically, we define the edge weight between two low-
level regions as the Spearman’s rank correlation coefficient
between the average crowd flows within a time period (e.g.
one day). After this operation, the small intractable regions
are clustered into some high-level regions, as shown in
Figure 4 (b) and (c).
Graph Construction. To capture the spatial dependency of
traffic flow between different irregular regions, we construct

a topological graph using historical region-wise transition
flow. The intuition is that adjacent regions in geo-space
are usually closely correlated, besides that, regions that are
distant can also influence each other due to the convenient
transportation such as subway, taxi and so on. Transition
flow can reflect the traffic interaction between close or dis-
tant regions. Specifically, we select a period of time from the
traffic data, such as one or two months. Then we can statistic
the valid time slices between pair-wise regions. Valid time
slice means when the region-wise transition flow is greater
than a threshold α considering the noise of trajectories
data. When the ratio of valid time slices for region-wise
transition is greater than a threshold β, we place an binary
value undirected edge to connect them. In our paper, the
thresholds α is set as 3, β is set as 0.1.

2.2 Prediction Problem on Spatio-Temporal Graphs
The goal in this research is to collectively predict the future
inflows/outflows in each and every node of an STG based
on historical observations. Table 1 lists the mathematical
notation used in the paper.
Definition 1 (STG). A spatio-temporal graph (STG), denoted

as G = (V, E ,A), where V and E respectively denote the
set of |V| = N vertices and edges, A ∈ RN×N is a binary
unweighted adjacency matrix. Specifically, each vertex
vi ∈ V has a geospatial position pi and time-varying
attributes. These attributes over an STG at time t can
be viewed as a graph signal Xt ∈ RN×C , where Xt[i, :
] ∈ RC represents C attributes in the node vi, e.g., the
inflow and outflow [43] (C = 2). The edges between
two regions are constructed from region-wise transition
flows and the binary entry value in A indicates whether
two regions are correlated in traffic flow.

Problem 1. Given a graph G = (V, E ,A) and observed
attributes of nodes {Xt|t = 1, 2, · · · , T}, predict the
attributes at the next time step, i.e., XT+1.

3 METHODOLOGY

In this section, we present our new model for crowd flow
forecasting. We first present a multi-view deep learning
framework [35], [45], then we review the graph convolu-
tional network and present our new spatial graph convo-
lutional network. Finally, we present the multi-view fusion
method and loss function used in our model.

TABLE 1
Notation

Symbol Description
G = (V, E) spatio-temporal graph
V = {vi} a set of N nodes, i = 1, · · · , N
A ∈ RN×N an adjacency matrix
S ∈ RN×N a modified adjacency matrix
P = {pi} geospatial position of node vi
T available time interval set
Xt ∈ RN×C a matrix of node feature vectors at t ∈ T
Xt[i, :] vector of node ni

Xt[:, c] vector of c-th channel in all nodes
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3.1 Multi-view Deep Learning Framework

Fig 2 provides an overview of our proposed deep learning
framework to predict the crowd flows in an STG. We adopt
the multi-view framework that is an effective mechanism to
learn latent representations from cross domain data [32]. The
framework proposed is composed of two stages: data prepa-
ration and model learning/predicting. The first stage is used
to fetch global information and select the key timesteps,
then we feed all of them to the second stage to perform
model training. We provide concrete details in the following
sections.

Data preparation stage. “What factors should be considered
when forecasting the crowd flow in a region?” a) weather,
b) time of the day, c) period, etc. Different people may have
different answers that highlights different views on this
problem. We summarize these views into two categories:
global view and temporal view. (1) the global view is com-
posed of external and meta views. According to the time
of the predicted target, we fetch different external data,
like meteorological data in previous timesteps and weather
forecasting. We can also construct the meta features: time
of the day, day of the week, and so on. The external and
meta features are represented as Iext and Imeta, respectively.
(2) the temporal view contains multiple views according
to the temporal closeness, period, trend. Considering two
types of periods (daily and weekly), and two types of trends
(monthly and quarterly)1, we select the corresponding re-
cent, daily, weekly, monthly, and quarterly timesteps as the
key timesteps, to construct five views. For each of the dif-
ferent temporal views, we fetch a list of key timesteps’ flow
matrices and concatenated them, to construct five inputs as
follows,

I1 = concat[Xt−1,Xt−2, · · · ,Xt−lr ] ∈ RN×C×lr

I2 = concat[Xt−pd ,Xt−2pd , · · · ,Xt−ld∗pd ] ∈ RN×C×ld

I3 = concat[Xt−pw ,Xt−2pw , · · · ,Xt−lw∗pw ] ∈ RN×C×lw

I4 = concat[Xt−pm ,Xt−2pm , · · · ,Xt−lm∗pm ] ∈ RN×C×lm

I5 = concat[Xt−pq ,Xt−2pq , · · · ,Xt−lq∗pq ] ∈ RN×C×lq

where lr, ld, lw, lm, and lq are input lengths of recent, daily,
weekly, monthly, and quarterly lists, respectively. pd and pw
are daily and weekly periods; pm and pq are monthly and
quarterly trend spans.

By selecting these key timesteps, our approach can cap-
ture multiple types of temporal properties. The complexity
of the input data of our approach is lr + ld + lw + lm + lq ,
and these views can be modeled in parallel. If one uses
a sequence neural network model (like recurrent neural
networks, RNNs) to capture all these temporal dependen-
cies automatically, the complexity would be O(max(lr, ld ∗
pd, lw ∗ pw, lm ∗ pm, lq ∗ pq)) = O(lq ∗ pq), while RNNs
maintain a hidden state of the entire past that prevents
parallel computation within a sequence. Assuming lengths
of recent, daily, weekly, monthly, and quarterly lists are all
equal 3, our architecture only needs 3× 5 = 15 key frames.
In contrast, RNNs needs 3 quarters of data, approximately
24 frames/day × 30 days/month × 3 months/quarter ×

1. One can set different periods and trends in practice, like yearly
period, based on the characteristics of the data.

3 quarters = 6480 frames. Such a long-range sequence
tremendously raises the training complexity for RNNs,
making them infeasible in real-world applications.
Model learning/predicting stage. We employ graph con-
volutional networks (GCNs, see Section 3.2) and fully-
connected neural networks (FNNs) to model the temporal
and global views, respectively. For each temporal view,
GCN is used to learn the time-varying spatial correlations
and interactions using the structural information of the STG,
and The corresponding outputs of five GCNs are denoted
O1, · · · ,O5 ∈ RN×C . Two FNNs are employed to capture
the influences from external and meta data, respectively,
and the outputs are Oext and Ometa. All these outputs are
then fed into the multi-view fusion module (see Section 3.3)
followed by a post-net (e.g. FNN), to obtain the final pre-
diction X̂t. The multi-view fusion can effectively employ
the outputs of different views based on their characteristics.
Finally, we apply the Huber loss [15] for robust regression.

3.2 Graph Convolutional Network for STG
Convolutional networks over graphs. Recently, generaliz-
ing convolutional networks to graphs have become an area
of interest. In this paper, we mainly consider spectral convo-
lutions [3], [7] on arbitrary graphs. As it is difficult to express
a meaningful translation operator in the node domain [3],
[7] presented a spectral formulation for the convolution
operator on the graph, denoted as ∗G . By this definition,
the graph signal X ∈ RN×C with a filter gw = diag(w)
parameterized by w ∈ RN in the Fourier domain,

gw ∗G X = gw(L)X = gw(UΛU>)X (1)

where U ∈ RN×N is the matrix of eigenvectors, and
Λ ∈ RN×N is the diagonal matrix of eigenvalues of the nor-
malized graph Laplacian L = IN −D−

1
2 AD−

1
2 = UΛU> ∈

RN×N , where IN is the identity matrix and D ∈ RN×N
is the diagonal degree matrix with Dii =

∑
j Aij . We

can understand gw as a function of the eigenvalues of L.
However, evaluating Eq. 1 is computationally expensive,
as the multiplication with U is O(N2). To circumvent this
problem, the Chebyshev polynomial expansion (up to Kth

order) [7] was applied to obtain an efficient approximation,
as

gw(L)X ≈
K−1∑
k=0

wk(Lk)X =
K−1∑
k=0

w′kTk(L̃)X (2)

where Tk(L̃) is the Chebyshev polynomial of order k evalu-
ated at the scaled Laplacian L̃ = 2

λmax
L − IN , λmax denotes

the largest eigenvalue of L, w′ ∈ RK is now a vector of
Chebyshev coefficients. The details of this approximation
can be found in [7], [11].

Furthermore, [18] proposed a fast approximation of the
spectral filter by setting K = 1 and successfully used it for
semi-supervised classification of nodes, as

Y = D̃
− 1

2 ÃD̃
− 1

2XW (3)

where Y ∈ RN×F is the signal convolved matrix. Ã = A+IN
is the adjacency matrix of G with added self-connections,
D̃ii =

∑
j Ãij and W ∈ RC×F is a trainable matrix of

filter parameters in a graph convolutional layer. The filtering
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operation has complexity O(|E|FC) as ÃX [18] and can be
efficiently implemented as the product of a sparse matrix
with a dense matrix.
Spatial graph convolutional network. We present a variant
of fast approximate graph convolution (Eq. 3) that also
considers the geospatial positions of vectices in an STG.
Here we explore an approach to integrate such geospatial
positions based on the First Law of Geography [30], i.e.,
everything is related to everything else, but near things are
more related than distant things.

Given an adjacency matrix A, we assign spatial weights
for existing edges based on the spatial distance, as

S = A� ω (4)

where S ∈ RN×N is the modified adjacency matrix, � is
the Hadamard product (i.e. element-wise multiplication).
ω ∈ RN×N is the spatial weighted adjacency matrix that
is calculated via a thresholded Gaussian kernel weighting
function [24], as

ωij =

{
exp

(
− [dist(pi,pj)]2

2θ2

)
if dist(pi, pj) ≤ κ

0 otherwise
(5)

Here dist(pi, pj) means the geographical distance between
nodes vi and vj ; θ and κ are two parameters to control the
scale and sparsity of the adjacency matrix.

With the modified matrix S, we consider multiple graph
convolutional layers with the following layer-wise propaga-
tion rule:

H(l+1) = f
(

Q−
1
2 S̃Q−

1
2 H(l)W(l)

)
(6)

where H(l+1) ∈ RN×Fl+1 and H(l) ∈ RN×Fl are the output
and input of the lth layer. S̃ = S + IN is the modified
adjacency matrix with added self-connections, Qii =

∑
j S̃ij

and W(l) ∈ RFl×Fl+1 is a trainable matrix of filter parame-
ters in a graph convolutional layer, f denotes an activation
function, e.g. the rectifier f(z) := max(0, z) [19]. The filter-
ing operation has complexity O(|E|FlFl+1) as S̃H(l) can be
efficiently implemented as a product of a sparse matrix with
a dense matrix.
GCN-based Residual Unit. To capture M -hop spatial corre-
lations and interactions, we stack M spatial graph convolu-
tional layers, inspired by graph convolutions [18]. When M
is large, we need a very deep network. Residual learning
[12] allows neural networks to have a super deep struc-
ture of 100 layers. Here we propose a GCN-based residual
unit that integrates the graph convolutional layer into the
residual framework (Fig 5(a)). Formally, the residual unit is
defined as:

H(l+1) = H(l) + f
(

Q−
1
2 S̃Q−

1
2 H(l)W(l)

)
(7)

where f is an activation function.
By stacking multiple GCN-based residual units, we can

build very deep neural networks to capture multi-hop spa-
tial dependencies.

3.3 Multi-view Fusion
We propose a multi-view fusion (see Fig 5(b)) method to
fuse the latent representations of many flow views with
two global views (external and meta data). In our previous

Fig. 5. Main components of MVGCN

crowd flow prediction task [43], we show that different
regions have different temporal properties, but the degrees
of influence may be different. Inspired by this, we here also
employ the parametric-matrix-based fusion method [43] to
fuse the outputs of five GCNs for temporal views as below

O = W1 �O1 + W2 �O2 + · · ·+ W5 �O5 (8)

where W1, · · · ,W5 are the learnable parameters that adjust
the degrees affected by closeness, daily period, weekly
period, monthly trend, and quarterly trend, respectively.

For the external factor Iext (like weather and holiday)
and meta data Imeta (e.g. time of the day), we separately feed
them into different fully-connected (FC) layers to obtain
different latent representations Oext and Ometa. Then we
simply concatenate all the outputs of the embed module and
add a FC layer following by reshaping, thereby obtaining
Ocon ∈ RN×C .

Different factors may change the flows in different ways.
For example, holidays may moderate the crowd flows,
as shown in Fig 6(a), while rainstorms may sharply and
dramatically reduce the flows (Fig 6(b)). Specifically, the
latter is just like a switch, changing flows tremendously
change when it happens. On account of these insights,
we leverage two different fusion methods to deal with
these two types of situations. For the gradual changes, we
propose employing a sum-fusion method, e.g., Ocon + O.
For the sudden changes, we propose employing a gating-
mechanism-based fusion, e.g., σ(Ocon) � O, where σ is an
approximated gating function such as sigmoid. When the
concatenated representation of Ocon captures some special
external information such as rainstorm weather, the term
σ(Ocon) � O will suddenly increase and become a much
larger value due to the property of sigmoid function com-
pared with Ocon. And in most common cases, this term
should be close to zero without sudden changes.

Based on two fusion methods, the final output is calcu-
lated as

X̂t = fo (O + Ocon + σ(Ocon)�O) (9)

where fo is the activation function, e.g., tanh, sigmoid.

3.4 Loss and Algorithm

Let x and x̂ be the observed and predicted values. The ob-
jective function we employ here is the Huber loss, which is
an elegant compromise between squared-error loss (x− x̂)2

and absolute-error loss |x − x̂|, and has been verified as a
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Fig. 6. Different influences with external factors. (a) 2016 Chinese Spring
Festival. (b) A stormy day vs. sunny day. The data is collected from
TaxiBJ, as shown in Table 2.

robust loss function for regression [15].
The Huber loss, denoted L(x, x̂), is defined by

L(x, x̂) =


1

2
(x− x̂)2 for |x− x̂| ≤ δ,

δ|x− x̂| − 1

2
δ2, otherwise.

(10)

where δ is a threshold (1 by default). The Huber loss
combines the desirable properties of squared-error loss near
zero and absolute error loss when |x − x̂| is greater than δ
(Fig 12 shows the empirical comparison).

Let Θ be all the trainable parameters in MVGCN. For the
Huber loss it yields the following optimization problem,

arg min
Θ

∑
t∈T

N∑
i=1

C∑
c=1

L(Xt[i, c], X̂t[i, c]) (11)

where Xt[i, c] means the element of the ith row and cth

column of Xt.

4 EXPERIMENTS

4.1 Settings

Datasets. We use four different datasets as shown in Table 2.
The details are described as follows:

TaxiNYC2: The trajectory data is taxi GPS data for New
York City (NYC) from 1st Jan. 2011 to 30th Jun. 2016. We
partition NYC into 100 irregular regions based on the map
segmentation method (Section 2.1), and build the graph
according to transition flow and geographical distance be-
tween regions, then we calculate crowd flows like [13].

TaxiBJ: Trajectory data is the taxicab GPS data in Beijing
from four time intervals: 1st Jul. 2013-30th Oct. 2013, 1st Mar.
2014-30th Jun. 2014, 1st Mar. 2015-30th Jun. 2015, 1st Nov.
2015-10th Apr. 2016. The graph construction and crowd flow
calculation method in Beijing is the same as that of NYC.

BikeDC3: The data is taken from the Washington D.C.
Bike System. Trip data includes: trip duration, start and end
station IDs, start and end times. There are 472 stations in
total. For each station, we get two types of flows, where the
inflow is the number of checked-in bikes, and the outflow
is the number of checked-out bikes. Since many stations
have no data or very few records, we remove these stations

2. http://www.nyc.gov/html/tlc/html/about/trip record data.
shtml

3. https://www.capitalbikeshare.com/system-data

and apply a cluster operation [16] to the remaining stations
using the average flow of historical observations, to get 120
irregular regions. We construct the graph with transition
flow and geographical distance between these regions.

BikeNYC4: The data is taken from the NYC Bike system
from 1st Jul. 2013 to 31th Dec. 2016. There are 416 stations
in total. We also remove unavailable bike stations, and
cluster the remaining stations into 120 regions. The graph
construction and the bike flow calculation method in NYC
is same as that of DC.

For all aforementioned four datasets, we choose data
from the last four weeks as the test set, all data before
that as the training set. We build the commuting network
(i.e. graph) via the geographical distance between stations
or regions, which can be viewed as nodes in the graph.
The stations each have geospatial positions. For the regions,
we approximate using the geospatial position of the central
location of the region.
Baselines. We compare MVGCN with the following 9 mod-
els:

• HA: Historical average, which models crowd flows as
a seasonal process, and uses the average of previous
seasons as the prediction with a period of one week.
For example, the prediction for this Tuesday is the
averaged crowd flows from all historical Tuesdays.

• VAR: Vector auto-regressive is a more advanced spatio-
temporal model, which is implemented using the
statsmodel python package5. The number of lags is
set as 3, 5, 10, or 30. The best result is reported.

• GBRT: Gradient boosting decision tree [8]. It uses the
same features as the input of ANN. The optimal
parameters are achieved by the grid search.

• FC-LSTM: Encoder-decoder framework using LSTM
[28]. Both encoder and decoder have two recurrent
layers with 128 or 64 LSTM units.

• GCN: We build a 3-layer supervised graph convolu-
tional network where the graph convolution [18] is
employed. The inputs are the previous 6 timesteps
and the output is the target timestep.

• DCRNN: We build a 2-layer supervised diffusion
convolutional recurrent neural network [22], which
achieves state-of-the-art results on predicting traf-
fic speed on roads. The inputs are the previous 6
timesteps and the output is the target timestep or
timesteps.

• FCCF: Forecasting Citywide Crowd Flow model
based on Gaussian Markov random fields [13], that
leverages flows in all individual regions and transi-
tions between regions as well as external factors. As
other baselines did not use the transition features, we
remove the transition to get a new baseline, named
FCCFnoTrans.

• ST-MGCN: Forecasting ride-hailing demand with
spatiotemporal multi-graph convolution network.
[9]. We reproduce the model referring the paper and
using the recommended model settings in the paper.

4. https://www.citibikenyc.com/system-data
5. http://www.statsmodels.org
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TABLE 2
Datasets. Holidays include adjacent weekends. WS: wind speed. Temp.: temperature.

Dataset TaxiNYC TaxiBJ BikeDC BikeNYC
Data type Taxi trip Taxi GPS Bike rent Bike rent
Location NYC Beijing D.C. NYC
Start time 1/1/2011 7/1/2013 1/1/2011 7/1/2013
End time 6/30/2016 4/10/2016 12/31/2016 12/31/2016
Time interval 1 hour 1 hour 1 hour 1 hour
# timesteps 48192 12336 52608 30720
# regions (stations) 100 100 120 (472) 120 (416)
# holidays 627 105 686 401
Weather \ 16 types \ \
Temp. / ◦C \ [-24.6,41] \ \
WS / mph \ [0,48.6] \ \

The neural network based models are implemented us-
ing TensorFlow and trained via backpropagation and Adam
[17] optimization.
Preprocessing. The Min-Max normalization method is used
to scale the data into the range [−1, 1] or [0, 1]. In the
evaluation, we re-scale the predicted value back to the
normal values, and compare them with ground truth data.
For external factors, we use one-hot encoding to transform
metadata (i.e., the day of the week, the time of the day),
holidays and weather conditions into binary vectors, and
use Min-Max normalization to scale the Temperature and
Wind speed into the range [0, 1].
Environmental settings & Hyperparameters. Our model as
well as most baselines are implemented using TensorFlow
and the model training process is performed on two Tesla
V100 GPUs with 64GB RAM and 16GB GPU memory. The
training time varies from 30 minutes to 3 hours on different
datasets. The detailed hyperparameter settings about our
model are as follows: (1) For lengths of the five dependent
sequences, we set them as: lr , ld, lw, lm, lq ∈ {0, · · · , 6}.
(2) The number of graph convolutional layers is set as
{3, · · · , 7}, no regularization is used. (3) The hidden unit
is set as 10 for each embed layer by default. (4) The training
data is split into three parts: the last four weeks’ data is used
as the test set, adjacent previous four weeks’ data is used as
validation set and the rest of the data is used to train the
models. The validation set is used to control the training
process by early stopping and choose our final model pa-

rameters for each model based on the best validation score.
(5) The batch size is set as 32. (6) The learning rate is set as
0.0003. (7) The training epoch is set as 1000, early stopping
patience is set as 50. For all trained models, we only select
the model which has the best score on the validation set,
and evaluate it on the test set.
Evaluation Metrics. For the evaluation of ST-prediction, we
employ two metrics: Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), both of which are widely used in the
regression tasks. Given predicted values {x̂i} and ground-
truth values {xi}, the RMSE and MAE are respectively
calculated as below

RMSE =

√
1

N

∑
i

(xi − x̂i)2, MAE =
1

N

∑
i

|xi − x̂i|

where N is the total number of all predicted values.

4.2 Comprehensive Results

Table 3 presents a comprehensive comparison with all 9
baselines. In general, it indicates that our MVGCN performs
best on all datasets based on two metrics except MAE on
TaxiNYC. Comparing our MVGCN with the state-of-the-
art model ST-MGCN, both exploit the graph convolution
technique. But our model aims to model different data views
using the same graph, but ST-MGCN attempts to build
multiple semantic graphs to make more accurate predic-
tions. Due to the lack of graph data for ST-MGCN for bike

TABLE 3
Comparisons with baselines on four datasets based two metrics: RMSE and MAE (the smaller the better). HA and VAR are time-series models;

GBRT use the spatial and temporal features; FC-LSTM/GCN/DCRNN/ST-MGCN are neural networks. FCCF/FCCFnoTran are based on Gaussian
Markov random fields

Dataset Metric HA VAR GBRT FC-LSTM GCN DCRNN FCCFnoTrans FCCF ST-MGCN MVGCN

TaxiNYC
RMSE 101.54 30.78 83.71 27.82 26.52 25.50 26.02 26.00 23.53 23.15
MAE 33.02 11.21 23.46 11.25 11.12 11.20 9.25 9.24 9.52 9.40

TaxiBJ
RMSE 38.77 18.79 33.89 19.04 17.38 16.44 18.70 18.42 16.30 14.37
MAE 22.89 11.38 20.34 11.86 10.60 9.68 10.74 10.44 10.18 9.11

BikeDC
RMSE 2.61 1.95 3.46 1.88 1.88 1.90 2.22 2.14 - 1.72
MAE 1.48 1.20 1.98 1.10 1.08 1.20 1.34 1.27 - 1.00

BikeNYC
RMSE 6.77 4.21 8.57 4.66 5.06 4.35 4.41 4.19 - 4.15
MAE 4.00 2.71 5.17 2.78 2.85 2.90 2.79 2.65 - 2.60
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datasets, we only report the performances of ST-MGCN on
taxi datasets. We can find that our model performs better
than ST-MGCN in two datasets on RMSE and MAE metrics.

Among four datasets, we can observe that our MVGCN
achieves the greatest improvement on the dataset TaxiBJ.
This is because the TaxiBJ dataset contains more external
information, like weather, temperature, and wind speed. We
find that FCCF performs very well because it also considers
the period and trend as well as external information, even
the transitions between regions. When transition features
are removed, FCCF is degraded into the model FCCFno-
Trans, resulting in a small increase in both RMSE and MAE,
which shows the effectiveness of transition features. FC-
LSTM and DCRNN perform worse than FCCF and MVGCN
because they are used to model sequences and do not
consider period and trend in the crowd flow data.

4.2.1 Results on sudden changes
Fig 7 presents the comparisons between MVGCN and the
five baselines on sudden changes cases, which may be
caused by anomalous weather or traffic events. For each
timeslot t, we calculate the traffic flow difference with pre-
vious timeslot t− 1 of all regions. Then we sort the absolute
values of all differences in descending order and define
the top 5% as the timeslots where sudden changes happen.
And the left 95% timeslots are as normal cases. We obverse
that our MVGCN greatly outperforms all other baselines,
especially on TaxiBJ. As shown in Fig 8, our model performs
better than baselines on both normal cases and sudden
changes, besides, achieves more improvements on the latter.
One reason may be that our MVGCN can effectively model
weather data that is more complete in TaxiBJ.
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Fig. 7. RMSE comparisons on sudden changes in the four datasets.

4.2.2 Results on multi-step prediction
For further analysis, we present the multi-step prediction
results based on RMSE and MAE over the dataset BikeDC
in Fig 9. For the single-step prediction models, e.g. our
MVGCN, we train different models for different timesteps.
For the multi-step prediction models, including FC-LSTM
and DCRNN, we use the previous 6 timesteps as the input
sequence and the next 6 times as the target sequence, to
train the model. Our MVGCN is robust as the step number
varies from 1 to 6, i.e. small increase in both RMSE and
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Fig. 8. Performance comparison on normal cases and sudden changes
in TaxiBJ dataset.

MAE, achieving the best for all the 6 steps. We can observe
that the original graph convolutional network (GCN) is not
robust as the timestep increases, demonstrating that it does
not work if we apply the existing models to the crowd flow
prediction in a straightforward way. DCRNN performs less
well because it also only use the sequence from the recent
timesteps, resulting in that it cannot capture period, trend,
and external factors.
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Fig. 9. Step-wise comparisons on the BikeDC test set.

4.3 Effects of Different Components
4.3.1 Temporal view
Fig 10 demonstrates the different experiment effects of
different combinations of temporal views based on RMSE
and MAE, including recent (view 1), daily (view 2), weekly
(view 3), monthly (view 4), and quarterly views (view 5).
With only the recent view considered, we get a terrible re-
sult. When taking daily view into consideration, the result is
greatly improved, indicating the periodicity is an important
feature of traffic flow pattern. Also, the result becomes better
and better with more temporal views considered.
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Fig. 10. Effect of temporal views using TaxiNYC.

4.3.2 Geospatial position.
Recall that in our model, we introduce a spatial graph
convolution (see Eq. 6), which integrates the geospatial
position into the graph convolution. After eliminating such
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geospatial information, the layer is degraded as a graph
convolution (Eq. 3). From Table 4, we observe that RMSE
increases from 23.15 to 23.64 without the geospatial position,
and MAE also becomes worse, demonstrating the effective-
ness of the spatial graph convolution.

TABLE 4
Effect of different components on TaxiNYC test set.

Setting RMSE MAE
MVGCN 23.15 9.40

w/o geospatial position 23.64 9.85
w/o external 24.41 10.25

w/o metadata 23.23 9.59

4.3.3 Global information

To show the effects of the embed component, we compare
the performance of MVGCN under two settings: removing
external factors or meta data, as shown in Table 4. By
eliminating the external factors, the RMSE increases from
23.15 to 24.41. Similarly, without the meta data, RMSE
increases to 23.23. The results demonstrate that the external
factors/meta data affect the prediction in an STG.

4.3.4 Huber loss and number of GCN layers.

To further investigate the effects of different loss functions
and number of GCN layers. We perform some ablation
studies and report results on TaxiNYC dataset with vary-
ing spatial graph convolutional layers or loss functions, as
shown in Fig 11. We plot RMSE metric and can observe
that the performance using RMSE, MAE or Huber as loss
functions all first decrease and then increase as the number of
GCN layers increases. Best results occur when the number
of GCN layers is 5. The figure demonstrates that deep
networks yield better results but much deeper networks still
cause the common problem of higher prediction error. And
the training time when early stopping happens increases
with the model depth on the whole. To validate the effects
of residual GCN layers, we compare the model with residual
connections in GCN units with plain layers without residual
connections. As shown in Fig 12, we can observe that both of
them perform similarly in shallow networks. But when the
number of GCN layers is increased to 5, residual networks
can achieve much better results, and both of them perform
better than shallow networks while set at an appropriate
depth.
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Fig. 11. Model performance with varying number of GCN layers.
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Fig. 12. Performance curve on training and validation sets using plain or
residual GCNs. The x-axis represents training epoch.

5 CROWD FLOW FORECASTING SYSTEM IN IRREG-
ULAR REGIONS

We have developed a crowd flow forecasting demo (called
UrbanFlow) in irregular regions internally, which can be
accessed now6, as shown in Figure 13(a). We have deployed
it in the city area of Beijing, China, similar to that of our
previous system for gridded regions. The detailed system
architecture can be found in our previous work (Section 3 of
[44]). Figure 13(a) shows the inflow and outflow results for a
certain region in the system, where the green line represents
the ground truth inflow or outflow in the previous 14
hours, the blue line denotes the prediction results in the
14 hours, and the orange line points the forecasting values
in the next 10 hours. We can see the green and blue lines
have very close values and similar trend, meaning that our
MVGCN can work effectively and well in the traffic flow
forecasting system. Figure 13(b) displays another function
view of overall flow changes of different time stamps for
the whole city. We can observe the overall flow distribution
varying with time. As the figure shows, in the morning rush
hours, most regions have larger crowd flows because people
are travelling from home, and the flows decrease in the mid-
afternoon during which most people are working or resting
indoors.

6 RELATED WORK

6.1 Spatio-Temporal Prediction
There have been a lot of works about spatio-temporal pre-
diction. Such as predicting travel speed and traffic volume
on the road [25], [33]. Most of them making predictions
concerning single or multiple road segments, rather than
citywide ones [5], [36]. Recently, researchers have started to
focus on city-scale traffic flow prediction [13], [38]. Specifi-
cally, [13] proposed a Gaussian Markov random field based
model (called FCCF) that achieves state-of-the-art results
on the crowd flow forecasting problem, which can be for-
mulated as a prediction problem on an STG. [38] proposes
a multi-view framework for citywide crowd flows predic-
tion, but it is targeted for regular regions’ flow prediction

6. http://101.124.0.58/urbanflow graph
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(a) Prediction VS Ground Truth for a certain region

(b) Flow heatmap over time for the whole city

Fig. 13. Web user interface overview of our UrbanFlow system.

using of traditional convolutional neural networks. And
most spatiotemporal prediction works for raster-based data
have been surveyed in [31]. Work in [9] attempts to use
multi-graph graph convolution to capture non-Euclidean
correlation between regions, so they actually still perform
their experiments in regular grid-based regions. Compared
with this work, ours is targeted at the real problem of traffic
prediction in irregular urban areas, and we also propose
the method to process the traffic data and perform map
segmentation with road networks.

6.2 Classical Models for Time Series Prediction

Forecasting flow in a spatio-temporal network can be
viewed as a time series prediction problem. Existing time-
series models, like the auto-regressive integrated moving
average model (ARIMA, [2]), seasonal ARIMA [27], and
the vector autoregressive model [4] can capture temporal
dependencies very well, yet it fails to capture spatial corre-
lations.

6.3 Neural Networks for Sequence Prediction

Neural networks and deep learning [21] have achieved
numerous successes in fields such as compute vision [19],
[26], speech recognition [10], and natural language under-
standing [20]. Recurrent neural networks (RNNs) have been
used successfully for sequence learning tasks [1], [29]. The
incorporation of long short-term memory (LSTM) [14] or
gated recurrent unit (GRU) [6] enables RNNs to learn long-
term temporal dependency. However, these neural network
models can only capture spatial or temporal dependencies.
Recently, researchers have combined the above networks
and proposed a convolutional LSTM network [34] that
learns spatial and temporal dependencies simultaneously
but cannot be operated on spatio-temporal graphs. [43]
proposed a spatio-temporal residual network, which is ca-
pable of capturing spatio-temporal dependencies as well as
external factors in regular regions, yet it cannot be adapted
to deal with graphs.

7 CONCLUSION

We propose a novel multi-view deep learning model
MVGCN, consisting of several graph convolutional net-
works, to predict the inflow and outflow in each and every
irregular region of a city. MVGCN can not only capture spa-
tial adjacent and multi-hop correlations as well as interactions,
but also integrate the geospatial position via spatial graph
convolutions. In addition, MVGCN can capture many types
of temporal properties, including closeness, periods (daily,
weekly, etc), and trends (e.g. monthly, quarterly), as well as
various external factors (like weather and event) and meta
information (e.g. time of the day). We evaluate our MVGCN
on four real-world datasets in different cities, achieving a
performance which is significantly better than 8 baselines,
including recurrent neural networks, and Gaussian Markov
random field-based models.
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