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Spatio-Temporal Meta Learning for
Urban Traffic Prediction

Zheyi Pan, Wentao Zhang, Yuxuan Liang,
Weinan Zhang, Yong Yu, Junbo Zhang, and Yu Zheng

Abstract—Predicting urban traffic is of great importance to intelligent transportation systems and public safety, yet is very challenging
in three aspects: 1) complex spatio-temporal correlations of urban traffic, including spatial correlations between locations along with
temporal correlations among timestamps; 2) spatial diversity of such spatio-temporal correlations, which varies from location to location
and depends on the surrounding geographical information, e.g., points of interests and road networks; and 3) temporal diversity of such
spatio-temporal correlations, which is highly influenced by dynamic traffic states. To tackle these challenges, we proposed a deep meta
learning based model, entitled ST-MetaNet+, to collectively predict traffic in all locations at the same time. ST-MetaNet+ employs a
sequence-to-sequence architecture, consisting of an encoder to learn historical information and a decoder to make predictions step by
step. Specifically, the encoder and decoder have the same network structure, consisting of meta graph attention networks and meta
recurrent neural networks, to capture diverse spatial and temporal correlations, respectively. Furthermore, the weights (parameters) of
meta graph attention networks and meta recurrent neural networks are generated from the embeddings of geo-graph attributes and the
traffic context learned from dynamic traffic states. Extensive experiments were conducted based on three real-world datasets to
illustrate the effectiveness of ST-MetaNet+ beyond several state-of-the-art methods.

Index Terms—Urban traffic, spatio-temporal data, neural network, meta learning
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1 INTRODUCTION

R ECENT advances in data acquisition technologies and
mobile computing lead to a large collection of traffic

data (e.g., vehicle trajectories), enabling us to conduct urban
analysis and works on downstream applications [2]. Urban
traffic prediction, such as traffic speed prediction [3] and
citywide flow prediction [4], has become a mission-critical
work for intelligence city efforts, as it can provide insights
for urban planning and traffic management to improve the
efficiency of public transportation, as well as to raise early
warnings for public safety emergency management [5].

However, forecasting urban traffic is very challenging
due to the complex spatio-temporal (ST) correlations. Specif-
ically, the complexity of ST correlations lies in the following
two aspects:

• Complex composition of ST correlations
Urban traffic is highly dynamic-varying in both temporal
and spatial domains. In the temporal domain, the current
traffic readings of a certain location, such as traffic speed
reported by loop detectors, are strongly correlated with its
precedents. Figure 1(a) illustrates an example to support this
fact. Suppose there is a car accident at S2 at 9:00 am, it will
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result in a heavy traffic jam at S2, and decrease the nearby
traffic speed for a long time. On the other hand, in the spatial
domain, the traffic of some locations is mutually correlated.
As shown in Figure 1(a), since traffic has strong spatial
dependencies [3] on road networks, the traffic congestion
at S2 will quickly diffuse to its neighbors, i.e., S1 and S3,
and impact their traffic condition.

(a) Example of ST correlations
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Fig. 1: Complex composition of ST correlations.

As urban traffic broadcasts in the spatial domain (e.g.,
along road networks), and changes over time, we employ
a geo-graph to describe the spatial structure, containing
nodes and edges to represent locations and the relationships
between pairs of locations, respectively. In general, a node
can be a sensor on a road or a big region within a city, which
is determined by the prediction target, such as road speed
detected by sensors or citywide flows of urban regions.
In the meantime, a widely used scheme to build edges is
directly based on road connection between pairs of nodes,
because traffic moves along road networks. As shown in
Figure 1(b), the red and blue arrows represent the spatial
correlations between locations and temporal correlations
within each location, respectively. As both types of cor-
relations interact with each other and affect urban traffic,
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it is necessary to simultaneously capture such spatial and
temporal correlations.

• Diversity of ST correlations
1. Spatial diversity of ST correlations. ST correlations of urban
traffic are different, across nodes and edges in the spatial
domain, i.e., geo-graph. In urban areas, characteristics of
nodes and their mutual relationships are diverse, depending
on their own geo-graph attributes: 1) node attributes: the
condition of a node, such as the distribution of nearby points
of interests (POIs) and density of road networks (RNs); 2)
edge attributes: the relationships between two nodes, such
as the features of road segments (e.g., the number of lanes,
speed limit, etc.) and the geospatial distance between them.
As the example shown in Figure 2(a), R1 and R3 are business
districts, consisting of numerous office buildings, while R2
is a residence district, which has many apartments. These
districts are distinguished by their distributions of POIs and
road network structures, resulting in the different character-
istics of them. Besides, it can be easily seen in Figure 2(b)
that the trends of their inflows are diverse, revealing that
districts with different characteristics always have different
types of ST correlations.

(a) Distribution of geo-attributes
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Fig. 2: Spatial diversity of ST correlations.

Nonetheless, an important fact to adhere to is that nodes
with similar combinations of geo-graph attributes can lead
to similar characteristics and analogous types of ST corre-
lations. As the example shown in Figure 2(a), in general
citizens usually commute from home to their workplaces
in the morning, while opposite at night. Thus, business
districts R1 and R3 witness similar upward trends of inflows
in the morning, while the residential district R2 meets a
completely different rush hour in the evening, as shown
in Figure 2(b). Therefore, it is essential to model such di-
versity by considering the inherent relationships between
geo-graph attributes and the types of ST correlations.
2. Temporal diversity of ST correlations. The types of ST
correlations change over time, depending on the context
included in dynamic traffic states. As the example shown in
Figure 3(a), on an expressway with large amounts of vehicle
flows, traffic usually quickly passes through, as vehicles
can keep high speed. In this case, large amounts of vehicle
flows would not impact future traffic conditions. However,
sometimes there is a traffic jam blocking the expressway,
as shown in Figure 3(b). Consequently, the vehicle flows
would intensify the traffic jam, which shows a different
type of ST correlations. Therefore, effectively modeling the
relationships between dynamic traffic states and the types of
ST correlations is extremely important in traffic prediction.

Recently, although there has been significant growth
of works in ST prediction (including urban traffic predic-

(a) Vehicle flows pass through the 
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Fig. 3: Temporal diversity of ST correlations.

tion), the aforementioned challenges are still not completely
solved. For instance, several studies [3], [4], [6], [7], [8],
[9], [10] focus on modeling ST correlations by a single
model for all locations. However, these methods cannot
explicitly model the inherent relationships between geo-
graph attributes and various types of ST correlations, as
a result, such relationships are hard to be learned with-
out any prior knowledge. Another group of works [11],
[12], [13] adopt multi-task learning techniques, which build
multiple sub-models for each location and all of them are
trained together under the presence of similarity constraints
between locations. These methods depend heavily on the
prior knowledge (i.e., the location similarity) or over-strong
assumption of the specific tasks. Naturally, the main draw-
back of this kind of methods lies in the lack of ground
truth to reflect such similarity and assumption. Therefore,
such side information can only provide relatively weak
supervision, producing unstable & tricked, even ruinous
results in complex real-world applications.

To tackle all the above challenges, we propose a deep
meta learning based framework, entitled ST-MetaNet+, for
urban traffic prediction. The key insight is to regard geo-
graph attributes and dynamic traffic states as the metadata
of ST neural networks for capturing ST correlations. There-
fore, to capture the relationships between ST correlations
and these metadata, a direct solution is to employ the weight
generation-based meta learning method.

More concretely, as shown in Figure 4(a), we first com-
bine spatial and temporal models to capture these two types
of correlations, simultaneously. Then, since ST correlations
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Fig. 4: Insights of our framework.

are implicitly affected by the characteristics of nodes (lo-
cations) and edges (inter-location relationships), as well as
dynamic traffic states, we have to further capture such
relationships, as presented in Figure 4(b) and Figure 4(c).
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Intuitively, the characteristic of an edge relies on its at-
tributes, e.g., the road connectivity and the distance between
nodes. Likewise, the characteristic of a node is influenced
by its attributes, like the GPS location and the distribution
of nearby POIs. Besides, traffic states contain implicit infor-
mation about traffic context, which impacts ST correlations.
Based on these insights, ST-MetaNet+ first extracts the meta
knowledge (i.e., characteristics) of nodes and edges from their
attributes respectively, as well as the dynamic traffic context
from traffic states. After that, the extracted information (i.e.,
the meta knowledge and the traffic context) are simply
aggregated by a data fusion module and then used to model
the ST correlations, namely, generating the weights of the
spatial and temporal models. The main contributions of our
study are four folds:
• We design a novel framework based on deep meta learn-

ing, entitled ST-MetaNet+, to forecast urban traffic. ST-
MetaNet+ leverages the meta knowledge extracted from
geo-graph attributes and dynamic traffic context learned
from traffic states to generate the parameter weights of
graph attention networks and recurrent neural networks
within a sequence-to-sequence architecture. As a result,
it can capture the inherent relationships between diverse
types of ST correlations and geo-graph attributes along
with dynamic traffic states.

• An improved meta graph attention network (Meta-GAT+)
is proposed to model the spatial correlations. The atten-
tion mechanism can capture the dynamic mutual rela-
tionships between locations, with regard to their current
states. In addition, the weights of the graph attention
networks are generated by the meta knowledge of nodes
and edges extracted from geo-graph attributes, as well
as dynamic traffic context of nodes extracted from traffic
states, such that it can model diverse spatial correlations.

• We propose an improved meta gated recurrent neural net-
work, entitled Meta-GRU+, which generates all weights of
a normal gated recurrent unit from the meta knowledge
and traffic context of each node. Thus each location has
a unique model for its own type of temporal correlation
under different traffic states.

• We evaluate our framework on three typical traffic predic-
tion tasks in the real world. The experiment results verify
that ST-MetaNet+ can significantly improve the predictive
performance, and learn better traffic-related knowledge
from the given geo-graph attributes.

2 PRELIMINARIES

In this section, we introduce the definitions and problem
statement. All frequently used notation is shown in Table 1.

Suppose there are Nl locations, which report Dt types
of traffic information (e.g., traffic flows and speed) on Nt
timestamps respectively.

Definition 1. Urban traffic is denoted as a tensor X =

[X1, · · · , XNt ] ∈ RNt×Nl×Dt , where Xt =
[
x

(1)
t , · · · , x(Nl)

t

]
denotes all locations’ traffic information at timestamp t.

Definition 2. Geo-graph is a directed graph that represents
locations and their mutual relationships, denoted as G =
{V,E,V, E}. Specifically, V = {1, · · · , Nl} represents node

TABLE 1: Notation table.
Notation Description
Nl, Nt Number of locations/timestamps.
τin, τout Timestamps for historical/future traffic
Xt The traffic readings at all timestamps.
v(i) The node attributes of location i.
e(ij) The edge attributes between node i and j.
Ni Neighborhoods of location i.

NMK (·) The function to learn node meta knowledge.
EMK (·) The function to learn edge meta knowledge.
CL (·) The context learner to learn traffic context.
gθ (·) The function to learn parameter weights θ.

indices, while E = {(i, j) | 1 ≤ i, j ≤ Nl} represents directed
edges, where each pair (i, j) denotes node j impacts node i. In
addition, nodes and edges are associated with attribute vectors,
denoted as V =

[
v(1), · · · , v(Nl)

]
and E =

{
e(ij) | (i, j) ∈ E

}
,

to represent the geographical features of nodes and relation-
ships between nodes, respectively. Moreover, we use Ni =
{j | (i, j) ∈ E} to denote the neighbors of node i.

With above two definitions, here we present the formal
definition of the research problem in this work.

Problem 1. Given previous τin traffic information
[X1, · · · , Xτin ] and geo-graph G, predict the traffic for all
locations in the next τout timestamps, denoted as

[
Ŷ1, · · · , Ŷτout

]
.

3 METHODOLOGIES

In this section, we describe the architecture of ST-MetaNet+,
as shown in Figure 5(a). Leveraging the sequence-to-
sequence architecture [14], ST-MetaNet+ is composed of two
separate modules: the encoder (blue part) and the decoder
(green part). The former one is used to encode the sequence
of the input, i.e., the historical information of urban traffic
[X1, · · · , Xτin ], producing the output hidden states, which
are used as the initial states of the decoder that further
predicts the output sequence

[
Ŷ1, · · · , Ŷτout

]
. More specifi-

cally, the encoder and the decoder have the same network
structure, consisting of three types of components:
1) Meta-knowledge learner. As shown in Figure 5(b), we

use two fully connected networks (FCNs), named node-
meta-knowledge learner (NMK-Learner) and edge-meta-
knowledge learner (EMK-Learner), to respectively learn
the meta-knowledge of nodes (NMK) and edges (EMK)
from node attributes (e.g., POIs and GPS locations) and
edge attributes (e.g., road connectivity and the distance
between nodes). Then the learned meta knowledge is
further used to learn the weights of another two types
of networks, i.e., graph attention network (GAT) and
recurrent neural network (RNN). Taking a certain node
as an example, the attributes of the node are fed into the
NMK-Learner, and it outputs a vector, representing the
meta knowledge of that node.

2) Meta-GAT+ (meta graph attention network+), the im-
proved version of Meta-GAT proposed in [1], is com-
prised of a context learner, a fusion gate, a meta learner,
and a GAT, as shown in Figure 5(c). In this component,
the traffic context is learned from the input states by
an FCN, namely, the context learner. Then the fusion
gate combines the meta knowledge of nodes and edges,
and the learned traffic context. After that, we propose
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Fig. 5: Overview of ST-MetaNet+.

to employ an FCN as the meta learner, which takes the
output of the fusion gate as the input, and calculates
the parameter weights of GAT. Meta-GAT+ can capture
diverse spatial correlations by individually broadcasting
nodes’ hidden states along edges.

3) Meta-RNN+ (meta recurrent neural network+), the im-
proved version of Meta-RNN proposed in [1], is com-
prised of a context learner, a fusion gate, a meta learner,
and an RNN, as shown in Figure 5(d). Similar to Meta-
GAT+, the traffic context is learned from the input traffic
states by the context learner, and is fused with the node
meta knowledge by the fusion gate. Then we use the
meta learner to generate the weights of RNN for each
node from the output of the fusion gate. Meta-RNN+

can capture diverse temporal correlations associated with
nodes’ geo-information and dynamic traffic states.

In the following subsections, we will respectively illustrate
each component of ST-MetaNet+ in details.

3.1 Meta-Knowledge Learner
In urban areas, characteristics of locations and their mu-
tual relationships are diverse, depending on geographical
information, e.g., POIs and RNs. Such diverse characteristics
bring about various types of ST correlations within urban
traffic. Hence, we propose two meta-knowledge learners,
i.e., NMK-Learner and EMK-Learner, to learn traffic-related
node and edge embeddings (meta knowledge) from geo-
graphical information, respectively. As shown in Figure 5(b),
two meta-knowledge learners respectively employ differ-
ent FCNs, in which the input is the attributes of a node
or an edge, and the corresponding output is the embed-
ding (vector representation) of that node or edge. Since
such embeddings are used for generating weights of GAT
and RNN to capture ST correlations of urban traffic, the
learned embeddings can reflect traffic-related characteristics
of nodes and edges. For simplicity, we use NMK

(
v(i)
)

and EMK
(
e(ij)

)
to denote the learned meta knowledge

(embedding) of a node and an edge, respectively.

3.2 Meta Graph Attention Network+

Urban traffic has spatial correlations that some locations
are mutually affected. In addition, such correlations are
diverse across nodes and edges, and related to geographical
information and dynamic traffic states. Inspired by graph

attention network [15], we propose to employ attention
mechanisms into the framework to capture diverse spatial
correlations between nodes. However, it is inappropriate to
directly apply GAT because all nodes and edges would use
the same attention mechanism, ignoring the relationships
between spatial correlations and geographical information
along with dynamic traffic states.

To capture such diverse spatial correlations, we propose
an improved meta graph attention network (Meta-GAT+)
as shown in Figure 6, which employs an attention network
whose weights are generated from the meta knowledge (the
embeddings of geographical information) and the traffic
context (the embeddings of input traffic states) by the meta
learner. Consequently, the attention mechanisms for spatial
correlation modeling are different across nodes and edges,
and depending on geographical information and dynamic
traffic states.

Formally, suppose the inputs of Meta-GAT+ are H =[
h(1), · · · , h(Nl)

]
∈ RNl×Dh (i.e., the inputs of traffic states

at a single timestamp) and geo-graph G, while the output
is H̄ =

[
h̄(1), · · · , h̄(Nl)

]
∈ RNl×D′

h , where Dh and D′h
are the dimension of nodes’ hidden states. The meta graph
attention mechanism for each node contains two main steps:
1) attention score calculation for each edge; and 2) hidden
state aggregation. As shown in Figure 6, we give an example
to show the structure of Meta-GAT+, that calculates the
impact on the red node from its neighborhoods (the purple,
orange, and green node) along edges. The details of Meta-
GAT+ are as follows.

Attention score calculation
First, the input H is projected to a new space by a single
fully connected layer, denoted as H ′ =

[
h′(1), · · · , h′(Nl)

]
∈

RNl×D′
h . Then the attention scores are calculated based on

H ′ and the meta knowledge of geo-graph.
As we discussed, the attention score of edge (i, j) is

related to the hidden states of node i and node j, the
node and edge meta knowledge learned from geographical
information, and the dynamic traffic context of these nodes.
As shown in Figure 6, for edge (i, j), we fetch the hidden
states of nodes by index, i.e., h′(i) and h′(j), and the meta
knowledge MK(ij), which is a composition of meta knowl-
edge of nodes and edge:

MK(ij) = NMK
(
v(i)
)
‖ NMK

(
v(j)

)
‖ EMK

(
e(ij)

)
, (1)
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where NMK
(
v(i)
)

, NMK
(
v(j)

)
, and EMK

(
e(ij)

)
are one

dimensional vectors, while ‖ is vector concatenation op-
erator. After that, using the traffic hidden states as the
inputs, the dynamic traffic context (TC) of each edge can
be calculated by:

TC(ij) = CLGAT

(
h′(i)

)
‖ CLGAT

(
h′(j)

)
, (2)

where CLGAT (·) is the context learner, a learnable FCN
sharing parameters across all nodes. We set the output
dimension of CLGAT (·) such that TC(ij) has the same dimen-
sion as MK(ij). Then we can apply a function to calculate the
attention score based on these vectors, denoted as:

w(ij) = a(h′(i), h′(j),MK(ij),TC(ij)) ∈ RD
′
h , (3)

where w(ij) is a D′h dimension vector, denoting the im-
portance of how h′(j) impacts h′(i) at each channel. Like
GAT shown in Figure 6(b), we employ a single fully con-
nected layer to calculate function a(·). However, different
pairs of nodes have different meta knowledge and dynamic
traffic context, resulting in different attention mechanisms.
To model such diversity, we employ an edge-specific fully
connected layer, followed by activation of LeakyReLU [16]:

a
(
h′(i), h′(j),MK(ij),TC(ij)

)
= LeakyReLU

(
W (ij)

[
h′(i) ‖ h′(j)

]
+ b(ij)

)
,

(4)

where W (ij) ∈ RD
′
h×2D′

h , b(ij) ∈ R are edge-specific pa-
rameters of the fully connected layer. In particular, these
parameters are generated from the fusion information (FI)
of the meta knowledge MK(ij) and the traffic context TC(ij),
as shown in Figure 6(b). The insight is that MK(ij) can show
static properties of this edge, while TC(ij) can indicate how
each static property takes effect under the specific traffic
state. So inspired by the gating function used in long-short
term memory [17], here we apply a fusion gate to calculate
the fusion information, which can be formulated as:

FI(ij) = φ
(

MK(ij)
)
⊗ σ

(
TC(ij)

)
, (5)

where ⊗ is Hadamard product, σ (·) is sigmoid function,
and φ (·) is tanh function. In this formula, σ(TC(ij)) shows
the importance of each dimension in MK(ij), making the

fusion information reflect the dynamic attention mechanism
of edge (i, j).

After getting the fusion information FI(ij), we employ
a meta learner, consisting of two FCNs gW and gb, which
share parameters across all edges, to generate W (ij) and
b(ij), respectively. Then, for any edge (i, j):

W (ij) = gW
(

FI(ij)
)
∈ RD

′
h×2D′

h ,

b(ij) = gb
(

FI(ij)
)
∈ R.

(6)

Note that the output of an FCN is a vector, so we need to
reshape the output to the corresponding parameter shape.
And finally, we can use the resulting W (ij) and b(ij) to
calculate attention function a (·).

Hidden state aggregation
Like GAT, we firstly normalize the attention scores for a
node across all its neighborhoods by softmax:

α(ij) =
exp

(
w(ij)

)
∑
j∈Ni

exp
(
w(ij)

) . (7)

Then for each node, we calculate the overall impact of
the neighborhoods by linear combinations of the hidden
states corresponding to the normalized weights, and then
apply a nonlinearity function ReLU, which is expressed as
ReLU

(∑
j∈Ni

α(ij)h′(j)
)

. In addition, we add a shortcut
connection to make network easily train. And finally, the
hidden state for node i with consideration of spatial corre-
lations can be expressed as:

h̄(i) = Uh(i) + ReLU
(∑

j∈Ni

α(ij)h′(j)
)
, (8)

where Uh(i) denotes the shortcut path, and U ∈ RD
′
h×Dh is

a trainable matrix projecting h(i) to RD
′
h .

Since we extract the meta knowledge from the features
of nodes and edges, as well as the dynamic traffic context
from the input traffic states, and then use both information
to generate the weights of graph attention network, Meta-
GAT+ can model the inherent relationships between diverse
spatial correlations and geo-graph attributes along with
dynamic traffic states.
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3.3 Meta Recurrent Neural Network+

Conventionally, RNN layers are employed to model the
temporal correlations of urban traffic. However, as temporal
correlations of urban traffic vary from node to node and
from time to time, a simple shared RNN is not sufficient to
simultaneously capture diverse temporal correlations for all
nodes and all timestamps at once. To model such diversity,
we adopt the similar idea of Meta-GAT+, which generates
the weights of RNN from the node embeddings learned
from node attributes (e.g., POIs and RNs), and the dynamic
traffic context learned from traffic states.

There are various types of RNN implementation for time
series analysis. Among them, as gated recurrent unit (GRU)
[18] is a simple but effective structure, we introduce GRU
as a running example to illustrate Meta-RNN+. Formally, a
GRU is defined as:

ht = GRU (zt, ht−1 |WΩ, UΩ, bΩ) , (9)

where zt ∈ RD and ht ∈ RD
′

are the input vector and the
encoding state at timestamp t, respectively. WΩ ∈ RD

′×D

and UΩ ∈ RD
′×D′

are weight matrices. bΩ ∈ R are biases
(Ω ∈ {u, r, h}). GRU derives the vector representation of a
hidden state, which is expressed as:

u =σ (Wuzt + Uuht−1 + bu) ,

r =σ (Wrzt + Urht−1 + br) ,

h′ =φ (Whzt + Uh (r ⊗ ht−1) + bh)

ht =u⊗ ht−1 + (1− u)⊗ h′,

(10)

where ⊗ is Hadamard product, σ (·) is sigmoid function,
and φ (·) is tanh function.

In urban traffic prediction, we collectively encode all
nodes’ traffic. As the temporal correlations are diverse from
node to node and related to dynamic traffic states, we adopt
the parameter generation technique within Meta-GRU+ like
Meta-GAT+. Formally, we define Meta-GRU+ as:

Ht = Meta-GRU+ (Zt, Ht−1,V) , (11)

where Zt =
[
z

(1)
t , · · · , z(Nl)

t

]
and Ht =

[
h

(1)
t , · · · , h(Nl)

t

]
are the inputs and the hidden states at timestamp t, respec-
tively, and V =

[
v(1), · · · , v(Nl)

]
is the node attributes.
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Fig. 7: Structure of Meta-GRU+.

The structure of Meta-GRU+ is shown in Figure 7. For
any node i, we first obtain the dynamic traffic context by:

TC(i)
t = CLGRU

(
z

(i)
t

)
, (12)

where CLGRU (·) is the context learner, a learnable FCN
sharing parameters across all nodes. Next, we use the fusion

gate to calculate the fusion information by the following
equation:

FI(i)t = φ
(

NMK
(
v(i)
))
⊗ σ

(
TC(i)

t

)
. (13)

Finally, the output hidden states can be calculated by:

W
(i)
t,Ω =gWΩ

(
FI(i)t

)
,

U
(i)
t,Ω =gUΩ

(
FI(i)t

)
,

b
(i)
t,Ω =gbΩ

(
FI(i)t

)
,

h
(i)
t =GRU

(
z

(i)
t , h

(i)
t−1 |W

(i)
t,Ω, U

(i)
t,Ω, b

(i)
t,Ω

)
,

(14)

where W
(i)
t,Ω ,U (i)

t,Ω and b
(i)
t,Ω are the node-specific dynamic

parameters generated from the fusion information by the
meta learner, which consists of several FCNs gWΩ

, gUΩ
, gbΩ

(Ω ∈ {u, r, h}). As a result, all nodes have their individual
and dynamic RNNs respectively, and the models represent
the diverse temporal correlations related to node attributes
and dynamic traffic states.

3.4 Optimization Algorithm
Suppose we employ a differentiable loss function Ltrain to
measures the difference between the prediction values and
the ground truth. Then, we can train ST-MetaNet+ end-
to-end by backpropagation like common neural networks.
Specifically, there are two types of trainable parameters.
• The trainable parameters ω1 in common neural networks,

e.g., the first fully connected layer and shortcut connection
in Meta-GAT+. The gradient of ω1, denoted as ∇ω1

Ltrain,
can be directly calculated by chain rule like a normal
neural network.

• The trainable parameter ω2 in the meta-knowledge learn-
ers, context learners, and meta learners, which generates
parameters θ in the normal GATs and RNNs. The gradient
of ω2 can be calculated by chain rule, because all meta-
knowledge learners, context learners, and meta learners
are differentiable neural networks:

∇ω2
Ltrain = ∇θLtrain∇ω2

θ. (15)

We employ a general sequence-to-sequence training process,
which is similar to [1].

4 EXPERIMENTS

In this section, we conduct experiments based on three real-
world traffic prediction tasks to evaluate ST-MetaNet+. In
particular, we answer the following questions:
Q1. Can ST-MetaNet+ outperform the state-of-the-art mod-

els in the traffic prediction tasks?
Q2. Do the meta learning components take effect? How

large is the improvement of the meta learning method?
Q3. How do the settings of ST-MetaNet+, such as the num-

ber of hidden units of each meta learned layer, impact
the prediction results?

Q4. How about the stability and the convergence of ST-
MetaNet+ in the training phase?

Q5. Do the embeddings learned from geo-graph attributes
by the meta knowledge learners reflect the properties
of nodes (locations)?
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4.1 Experimental Settings
4.1.1 Task Descriptions
We first introduce three traffic prediction tasks, and then
illustrate the details of the datasets shown in Table 2.

TABLE 2: Details of the datasets.

Tasks Flow prediction Speed prediction

Name TAXI-BJ METR-LA PEMS-BAY
Region Beijing Los Angles Bay Area
Prediction target Flows Speed Speed
Start time 2/1/2015 3/1/2012 1/1/2017
End time 6/2/2015 6/30/2012 6/30/2017
Time interval 1 hour 5 minutes 5 minutes
# timestamps 3600 34272 52116

# nodes 1024 207 325
# edges 4114 3312 5200
# node features 989 18 18
# edge features 32 2 2

Taxi flow prediction
We partition Beijing city (lower-left GPS coordinates: 39.83◦,
116.25◦; upper-right GPS coordinates: 40.12◦, 116.64◦) into
32× 32 grids, and adopt grid-based flow prediction task to
evaluate our framework, where grids are regarded as nodes.
The details of the dataset are as follows:
• Taxi flow. We obtain taxi flows from TDrive dataset [19],

which contains a large number of taxicab trajectories from
Feb. 1st 2015 to Jun. 2nd 2015. For each grid, we extract
the hourly inflows and outflows from these trajectories by
counting the number of taxis entering or exiting the grid.

• Geo-graph attributes. We obtain geo-graph attributes from
POIs and RNs in Beijing city. Specifically, we have 982,829
POIs that belong to 668 categories, and 690,242 roads with
8 attributes, including length, width, the number of lanes,
etc. The node attributes of a grid consist of many features
of POIs and RNs within it, including the number of POIs
in each category, the number of roads and lanes, etc. The
edge attributes are the features of roads connecting pairs
of grids, such as the number of roads and lanes.

In this task, we use the previous 12-hour flows to predict
the next 3-hour flows. We split the traffic data along the
time axis into non-overlapping training, evaluation, and test
data, by the ratio of 8:1:1.

Traffic Speed prediction
The second and third tasks are traffic speed predictions.
In these two tasks, we predict the traffic speed on road
networks. The details of the datasets are as follows:
• Traffic speed. We adopt two real-world datasets to evaluate

traffic speed prediction: 1) METR-LA [20], which contains
traffic speed readings of 207 sensors in the highway of Los
Angeles County; and 2) PEMS-BAY, which contains traffic
speed readings of 325 sensors collected by California
Transportation Agencies Performance Measurement Sys-
tem (PeMS). The readings of both datasets are aggregated
into 5-minute sliding windows, and then released by [3].

• Geo-graph attributes. In traffic speed prediction tasks, we
do not have any POI information. Thus, we only make use
of GPS locations and road networks as the features of geo-
graph. The node attributes consist of GPS points of nodes,
and road structure information for each node, i.e., a vector
reflecting the road distance between the node and its k-
nearest neighbors. The edge attribute is simply defined

as the road distance between nodes. For the efficiency
of model training and testing, we only keep the edges
between each node and its k-nearest neighbors. Since the
traffic correlations are directional on road networks [3],
we collect node attributes and edges on both directions.

In these two tasks, we set k = 8, and use the historical 60-
minute traffic speed to predict the traffic speed over the next
60 minutes. We partition the traffic speed dataset along the
time axis into non-overlapping training, evaluation, and test
data, by the ratio of 7:1:2. Our settings are exactly the same
as the experiment in [3].

4.1.2 Metrics

We use Mean Absolute Error (MAE) and Rooted Mean
Square Error (RMSE) to evaluate the models involved:

MAE =
1

n

n∑
i=1

|yi − ŷi| , RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2
,

where n is the number of instances, ŷi is the prediction result
and yi represents the ground truth.

4.1.3 Baselines

We compare ST-MetaNet+ with the following baselines:
• HA. Historical Average. Urban traffic is modeled as the

seasonal process, whose period is one day. We take the
average of the previous seasons as the prediction result.

• ARIMA. Autoregressive Integrated Moving Average is
a widely-used model for time series prediction, which
combines moving average and autoregression. In the ex-
periments, we train an individual ARIMA model for each
node, and predict the future readings separately.

• GBRT. Gradient Boosting Regression Tree is a non-
parametric statistical learning method for regression prob-
lem. For each future step (e.g., next 1 hour or next 2 hour),
we train a single GBRT, and predict the urban traffic,
where the input consists of previous traffic information
and node attributes.

• Seq2Seq [14]. We implement a sequence-to-sequence net-
work with two stacking GRU layers for urban traffic
prediction. The features of nodes, i.e., node attributes,
are firstly embedded by an FCN, and then fused with
the outputs of the decoder. Finally, the fused vectors are
linearly projected into the prediction results. All nodes
share a model with the same parameter values.

• GAT-Seq2Seq. We combine graph attention networks and
sequence-to-sequence architecture to model spatial and
temporal correlations, respectively. It applies a similar
structure as ST-MetaNet+, which consists of two GAT
layers and two GRU layers. Similar to Seq2Seq, the node
attributes are firstly embedded by an FCN and then fused
with the outputs of the decoder. Finally, the output vectors
are linearly projected into the prediction results.

• ST-ResNet [4]. The model is widely used in grid-based
flow prediction task. It models the spatio-temporal corre-
lations by stacked residual units. To make the comparison
fair, we only use the same input timestamps in our model,
i.e., keeping only the closeness part in ST-ResNet. Finally,
we fuse the outputs with node attributes, i.e., features of
grids, and then make predictions by linear projection.
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• STDN [21]. The model is used in grid-based flow pre-
diction. It employs CNNs to capture spatial correlations,
LSTMs to capture temporal correlations, and a period-
ically shifted attention mechanism to model long-term
periodic temporal shifting. We also fuse the outputs with
node attributes, and make predictions by linear projection.

• DCRNN [3]. It employs diffusion convolution operators
within sequence-to-sequence architecture to capture spa-
tial and temporal correlations, respectively. Besides, we
embed the node attributes, and add them into the input
traffic vectors as the additional input features.

• Graph WaveNet [9]. It employs WaveNet and graph
convolution to capture temporal and spatial correlations,
respectively. The authors also proposed a self-adaptive
adjacency matrix to automatically uncover unseen graph
structures from data without the guidance of any prior
knowledge. Like DCRNN, we also add embeddings of
node attributes into the input traffic vectors as the addi-
tional features.

• ST-MetaNet [1]. It is the prior version of this work. The
main difference between them is that ST-MetaNet does
not model the relationships between ST correlations and
dynamic traffic states within Meta-GATs and Meta-GRUs.

For all neural network baselines, we conduct grid search
on the number of hidden units in each layer, and select the
best models according to the validation results. Besides, all
neural networks, including our ST-MetaNet+, use the same
network structure to embed geo-graph attributes, i.e., a two-
layer FCN with [32, 32] hidden units.

4.1.4 Framework Settings and Training Details
The settings of ST-MetaNet+ contain three parts:
• The structures of NMK-Learner and EMK-Learner. We

simply employ two FCNs (2 layers with the same num-
ber of hidden units) as NMK-Learner and EMK-Learner
respectively, to learn the meta knowledge of nodes and
edges. We conduct grid search on the number of hidden
units over {8, 16, 32, 64}.

• The dimension of hidden states in sequence-to-sequence
architecture. For simplicity, we use the same number
of hidden units in all components (Meta-GAT+, Meta-
GRU+) within the encoder and decoder, and conduct grid
search on this number over {16, 32, 64}.

• Weight generation of meta learners. For each generated
parameters in Meta-GAT+ and Meta-GRU+, i.e., W (ij),
b(ij), W (i)

t,Ω, U (i)
t,Ω, and b

(i)
t,Ω, we simply build an FCN with

hidden units [dg, n] to generate parameter weights from
the meta knowledge, where n is the number of parameters
in the target. We search on dg over {1, 2, 4, 8}.

ST-MetaNet+ is trained by Adam optimizer. The batch size
is set as 32. We train the framework for 1000 iterations by
random sampling in every epoch. The initial learning rate
is 1e-2, and it is divided by 10 every 10 epochs. We also
apply gradient clipping where the maximum gradient norm
is set as 5. To tackle the discrepancy between training and
inference in sequence-to-sequence architecture, we employ
inverse sigmoid decay for scheduled sampling [22]:

εi =
r

r + exp (i/r)
,

where r is a constant and set as 2000.

4.2 Performance Comparison (Q1)

The performance of the competitive baselines and ST-
MetaNet+ are shown in Table 3, Table 4, and Table 5. In
addition, we also list the trainable parameters involved in
deep models to show the model complexity. All models
are trained and tested for five times, and the results are
presented in the format: “mean ± standard deviation”.

In all three tasks, the statistical models, i.e., HA and
ARIMA, turn out to be the worst models as they only
consider the statistical features of the input data. While
GBRT, which is a popular non-parametric model, has a
relatively better performance. However, it does not learn
any high-level temporal or spatial features. Accordingly, it
still has large predicting errors.

For deep learning models, Seq2Seq is an encoder-
decoder based model, capable of effectively capturing tem-
poral correlations. However, spatial correlations are ignored
in this case, resulting in low accuracy in these tasks. GAT-
Seq2Seq further employs graph attention to handle spatial
correlations, which upgrades the predictive performance.
However, GAT-Seq2Seq still has a large margin for improve-
ment because it does not consider the relationships between
ST correlations and geographical information along with
dynamic traffic states. In TAXI-BJ dataset, we also have
two additional baselines, i.e., ST-ResNet and STDN, to make
grid-based taxi flow predictions. As shown in Table 3, ST-
ResNet and STDN have unstable and very low prediction
accuracy. The reason is that TAXI-BJ dataset has 1024 grids
and the functions of grids are very different, but both
models use the same parameters to make predictions for
all grids (e.g., the same convolutional kernel and the same
LSTM model). Thus, they cannot effectively capture such
discrepancy of ST correlations among grids.

DCRNN and Graph WaveNet are two powerful base-
lines using road distance to generate the adjacent matrix
of graph convolution, such that the spatial correlations can
be modeled. However, the graph convolution based method
needs prior knowledge, e.g., the function of road distance, to
construct the graph. Such an assumption is relatively weak,
for example, we cannot fully make use of some other impor-
tant features like POIs and road network structures. As a re-
sult, in TAXI-BJ dataset, ST-MetaNet+ outperforms DCRNN
and Graph WaveNet by at least 3.5% MAE and 5.4% RMSE
respectively. In METR-LA and PEMS-BAY datasets, our ST-
MetaNet+ still shows competitive results. However, as these
two datasets do not have many geographical information
(only GPS locations and road distance are provided), the
improvement over baselines is less.

Next, we compare ST-MetaNet+ with its prior version
ST-MetaNet. ST-MetaNet+ significantly outperforms its ba-
sic version in all three tasks, as it further tackles the inherent
relationships between ST correlations and dynamic traffic
states. Thus, by making the meta learners generate different
parameter values at different timestamps, ST-MetaNet+ can
boost the expressiveness of the spatial and temporal net-
works, namely GAT and GRU, in advance.

Finally, we discuss the model complexity. In Meta-GAT+

and Meta-GRU+, we generate the parameter weights de-
fined in GAT and GRU, which would intuitively introduce
much more trainable parameters. However, as the number
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TABLE 3: Predictive performance on TAXI-BJ dataset.

Models [# params]
Overall 1 hour 2 hour 3 hour

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 26.2±0.00 56.5±0.00 26.2±0.00 56.5±0.00 26.2±0.00 56.5±0.00 26.2±0.00 56.5±0.00
ARIMA 40.0±0.00 86.8±0.00 27.1±0.00 58.3±0.00 41.2±0.00 77.0±0.00 51.8±0.00 108.0±0.00
GBRT 28.8±0.04 60.9±0.15 22.3±0.01 47.7±0.01 29.9±0.06 62.7± 0.14 34.3±0.11 70.5± 0.23
Seq2Seq [333k] 21.3±0.06 42.6±0.14 17.8±0.05 35.1±0.07 22.0±0.06 43.6±0.16 24.2±0.09 48.1±0.20
GAT-Seq2Seq [407k] 18.3±0.13 35.6±0.23 16.3±0.12 31.9±0.21 18.7±0.12 36.3±0.20 19.9±0.14 38.4±0.30
ST-ResNet [445k] 18.7±0.53 36.1±0.59 16.8±0.50 31.9±0.69 18.9±0.57 36.4±0.71 20.3±0.52 39.5±0.46
STDN [198k] 23.4±2.49 43.2±2.95 21.5±3.24 37.4±3.34 24.7±3.43 44.4±3.71 24.1±1.27 46.9±3.11
DCRNN [405k] 17.8±0.13 36.1±0.15 15.8±0.05 32.3±0.08 18.2±0.15 36.9±0.17 19.4±0.19 38.9±0.24
Graph WaveNet [996k] 17.1±0.06 35.0±0.14 15.2±0.08 31.1±0.27 17.4±0.09 35.7±0.30 18.6±0.11 37.8±0.25
ST-MetaNet [129k] 16.7±0.13 33.6±0.15 14.8±0.05 29.6±0.08 17.1±0.15 34.3±0.17 18.2±0.19 36.5±0.24
ST-MetaNet+ [166k] 16.5±0.16 33.2±0.35 14.7±0.18 29.7±0.40 16.9±0.16 33.9±0.35 17.8±0.17 35.8±0.53

TABLE 4: Predictive performance on METR-LA dataset.

Models [# params]
Overall 15 min 30 min 60 min

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 4.79±0.00 8.72±0.00 4.79±0.00 8.72±0.00 4.79±0.00 8.72±0.00 4.79±0.00 8.72±0.00
ARIMA 4.03±0.00 7.94±0.00 3.27±0.00 6.14±0.00 3.99±0.00 7.78±0.00 5.18±0.00 10.10±0.00
GBRT 3.86±0.01 7.49±0.01 3.16±0.00 6.05±0.00 3.85±0.00 7.50±0.00 4.86±0.01 9.10±0.02
Seq2Seq [81k] 3.55±0.01 7.27±0.01 2.98±0.01 5.88±0.01 3.57±0.01 7.26±0.01 4.38±0.01 8.88±0.02
GAT-Seq2Seq [113k] 3.28±0.00 6.66±0.01 2.83±0.01 5.47±0.01 3.31±0.00 6.68±0.00 3.93±0.01 8.03±0.02
DCRNN [372k] 3.04±0.01 6.27±0.03 2.67±0.00 5.18±0.01 3.08±0.01 6.31±0.03 3.56±0.01 7.53±0.04
Graph WaveNet [297k] 3.05±0.01 6.16±0.03 2.70±0.01 5.16±0.01 3.08±0.01 6.20±0.03 3.55±0.12 7.35±0.05
ST-MetaNet [124k] 3.05±0.04 6.22±0.06 2.68±0.02 5.15±0.05 3.03±0.10 6.25±0.05 3.49±0.12 7.47±0.08
ST-MetaNet+ [162k] 3.00±0.01 6.16±0.02 2.65±0.01 5.11±0.01 3.04±0.01 6.16±0.02 3.48±0.02 7.37±0.04

TABLE 5: Predictive performance on PEMS-BAY dataset.

Models [# params]
Overall 15 min 30 min 60 min

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 3.84±0.00 7.16±0.00 3.84±0.00 7.16±0.00 3.84±0.00 7.16±0.00 3.84±0.00 7.16±0.00
ARIMA 2.19±0.00 5.05±0.00 1.62±0.00 3.30±0.00 2.19±0.00 4.86±0.00 3.05±0.00 6.90±0.00
GBRT 1.96±0.02 4.48±0.00 1.49±0.01 3.21±0.00 1.99± 0.02 4.50±0.01 2.61±0.04 5.76±0.02
Seq2Seq [81k] 1.77±0.00 4.18±0.01 1.38±0.00 2.99±0.01 1.81±0.01 4.2±0.01 2.31±0.01 5.36±0.01
GAT-Seq2Seq [113k] 1.74±0.00 4.08±0.01 1.38±0.01 2.94±0.01 1.79±0.00 4.1±0.01 2.26±0.01 5.22±0.04
DCRNN [372k] 1.59±0.00 3.70±0.02 1.31±0.00 2.76±0.01 1.65±0.01 3.78±0.02 1.97±0.00 4.60±0.02
Graph WaveNet [297k] 1.59±0.01 3.66±0.04 1.31±0.01 2.75±0.01 1.65±0.01 3.73±0.04 1.98±0.03 4.56±0.06
ST-MetaNet [124k] 1.71±0.04 3.96±0.11 1.36±0.01 2.88±0.04 1.77±0.06 4.00±0.08 2.19±0.08 5.03±0.20
ST-MetaNet+ [162k] 1.60±0.01 3.72±0.02 1.31±0.00 2.78±0.01 1.66±0.01 3.81±0.01 1.99±0.01 4.62±0.04

of parameters shown in Table 3, Table 4, and Table 5, the
parameters of ST-MetaNet+ is acceptable, compared with
state-of-the-art models, i.e., ST-ResNet, STDN, DCRNN, and
Graph WaveNet. This fact is related to the good expres-
siveness of ST-MetaNet+ that small dimensional hidden
states in Meta-GAT+ and Meta-GRU+ can already have
good representation of urban traffic states, which verifies the
advantage of meta learning in modeling the relationships
between ST correlations and geographical information along
with dynamic traffic states.

4.3 Ablation Studies on Meta Learning (Q2)
To illustrate the effectiveness of meta learning, we conduct
ablation studies of ST-MetaNet+ on these three datasets. In
each dataset, we compare the prediction accuracy based on
two settings: 1) we set RNN components as Meta-GRU+,
and test the prediction results under different choices of
graph neural network (GNN), i.e., normal GAT, Meta-GAT
(no dynamic traffic context), and Meta-GAT+; and 2) we set
GNN components as Meta-GAT+, and test the prediction
results under various choices of RNN, i.e., normal GRU,
Meta-GRU (no dynamic traffic context), and Meta-GRU+.

The comparison results of TAXI-BJ dataset are shown
in Figure 8. Notice that the basic meta learning method

used in Meta-GAT and Meta-GRU significantly improve
the prediction accuracy of GAT and GRU respectively. The
reason is that TAXI-BJ dataset has large amounts of geo-
graph attributes, enabling the meta knowledge learners to
learn meaningful embeddings and successfully build the
relationships between such embeddings and diverse ST
correlations. In addition, Meta-GAT+ and Meta-GRU+ take
dynamic traffic states into account, and further improve
the performance. This fact verifies that modeling the re-
lationships between dynamic traffic states and diverse ST
correlations is necessary.
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Fig. 8: Ablation studies on taxi flow prediction.
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The prediction results of METR-LA and PEMS-BAY
datasets are shown in Figure 9. Different from the results of
TAXI-BJ dataset, the improvement of Meta-GAT over GAT is
much less. The reason is that these two datasets do not have
plenty of edge attributes (only road distance is provided),
which does not reveal all kinds of characteristics related to
diverse spatial correlations. Instead, Meta-GRU still signifi-
cantly outperforms GRU, as the road structures around each
node are considered, leveraging different temporal models
for nodes to capture diverse temporal correlations. Notice
that Meta-GAT+ and Meta-GRU+ have a large improve-
ment over Meta-GAT and Meta-GRU, respectively, which
demonstrates the effectiveness of modeling traffic context in
meta learning.
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Fig. 9: Ablation studies on traffic speed prediction.

4.4 Evaluation on Framework Settings (Q3)

ST-MetaNet+ has many settings, including the dimension
of meta knowledge (outputs of NMK-Learner and EMK-
Learner), the number of hidden units within RNN and GAT,
and the number of hidden units for weight generation. To
investigate the robustness of ST-MetaNet+, for each setting,
we fix other parameters and we present the results under
different parameter choices of that setting.

First, as shown in Figure 10(a), Figure 11(a), and Figure
12(a), increasing the value of meta knowledge dimension
enhances the performance significantly in three datasets.
As the dimension of meta knowledge does not impact the
number of parameters in the generated RNNs and GATs,
this fact illustrates that the meta knowledge learned from
geo-graph attributes essentially takes effect.
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Fig. 10: Evaluation of parameter settings on TAXI-BJ.

Next, Figure 10(b), Figure 11(b), and Figure 12(b) show
that increasing the number of hidden units in the generated
GATs and RNNs can lower the MAE before overfitting. Note
that ST-MetaNet+ uses only 32 hidden units in each layer
to achieve better performance than GAT-Seq2Seq (it uses
the same network structure but no meta learning), that uses
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Fig. 11: Evaluation of parameter settings on METR-LA.
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Fig. 12: Evaluation of parameter settings on PEMS-BAY.

much more hidden units. Thus, ST-MetaNet+ have a more
compacted hidden representation for traffic states.

Finally, we discuss the prediction results under different
numbers of hidden units for weight generation in GAT and
GRU. This parameter represents the rank of the parameters
for all nodes or edges, and is very related to the number
of trainable parameters. As shown in Figure 10(c), Figure
11(c), and Figure 12(c), with only 2 hidden units for weight
generation, ST-MetaNet+ can achieve good accuracy, and
the performance is not very sensitive to the number of
hidden units for weight generation when this number is
further increased. This fact illustrates that though different
nodes or edges have different sets of parameters, they can
have a low-rank representation by several hidden units,
showing similarity among nodes or edges.

4.5 Convergence Discussion (Q4)
In this subsection, we present the framework convergence
during the training process, and compare ST-MetaNet+ with
two variants, i.e., GAT-Seq2Seq and ST-MetaNet, which use
the same sequence-to-sequence and graph-attention based
architecture, as well as the same training strategies, includ-
ing the learning rate settings, the scheduled sampling, etc.

As shown in Figure 13, there are three curves in each
chart, presenting the validation losses of GAT-Seq2Seq, ST-
MetaNet, and ST-MetaNet+ in the training procedure. In the
beginning 10,000 iterations, all models’ loss values fluctuate
due to the scheduled sampling strategy, that the decoder has
a large probability to use ground truth as the inputs, instead
of the previous decoding values. Consequently, it causes
a discrepancy between the training and testing procedure.
After that, with the decreasing of such probability, the
validation curves tend to be stable and converged.

Comparing with GAT-Seq2Seq, ST-MetaNet+ converges
to a much lower MAE with faster speed in all datasets,
showing the effectiveness of meta learning method, that can
quickly learn genetic information of ST models. Moreover,
ST-MetaNet+ has much lower convergence loss values than
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Fig. 13: Framework convergence on validation datasets.

ST-MetaNet, showing the advantage of modeling the rela-
tionships between ST correlations and dynamic traffic states.

4.6 Evaluation on Meta Knowledge (Q5)
A good meta knowledge learner should obtain the repre-
sentation of geographical information that can reflect traffic
similarity for nodes. To validate the effectiveness of such
representation, for each node we firstly find its k-nearest
neighbors in the node embedding space of geographical
information, and then evaluate the similarity of traffic se-
quences between the node and its neighbors. We employ
Pearson correlations and the first order temporal correla-
tions [23], denoted as CORR and CORT respectively, to
measure the similarity between two traffic sequences. The
similarity functions can be expressed as:

CORR (x,y) =

∑
i (xi − x̄) (yi − ȳ)√∑

i (xi − x̄)
2
√∑

i (yi − ȳ)
2
,

CORT (x,y) =

∑
i (xi − xi−1) (yi − yi−1)√∑

i (xi − xi−1)
2
√∑

i (yi − yi−1)
2
,

where x,y are two temporal sequences, and x̄, ȳ are their
mean values. Note that the larger the criteria are, the more
similar the two sequences are, and both criteria lie in [−1, 1].

TABLE 6: Evaluation on traffic similarity between each node
and its k-nearest neighbors in the embedding space (k = 8).

Metric Model TAXI-BJ METR-LA PEMS-BAY

CORR
GAT-Seq2Seq 0.62 0.7 0.38
ST-MetaNet 0.71 0.73 0.38

ST-MetaNet+ 0.7 0.72 0.4

CORT
GAT-Seq2Seq 0.39 0.48 0.14
ST-MetaNet 0.48 0.51 0.16

ST-MetaNet+ 0.46 0.5 0.18

We choose k = 8 nearest neighbors for each node and
calculate traffic similarity on the test dataset between each
node and its neighbors. We compare the meta learning
based frameworks with GAT-Seq2Seq, which uses the same
sequence-to-sequence and graph attention architecture but
adopts the data fusion strategy to incorporate geographical
and traffic information. As shown in Table 6, the node
embeddings of ST-MetaNet+ and ST-MetaNet in the taxi
flow prediction task shows significant improvement over
embeddings of GAT-Seq2Seq, which implies that the meta
learning method learns a better geographical representation
that reflects traffic-related characteristics of nodes. While in
the traffic prediction tasks, the improvement is less. The

reason is that we have much less geographical information
in METR-LA and PEMS-BAY datasets. Nonetheless, the
result still shows that the meta learning based frameworks
can effectively learn better traffic-related representations.

4.7 Case Study

Similarity of Geographical Information
We further show the property of embeddings learned from
node attributes by ST-MetaNet+ through a case study. Intu-
itively, a good embedding space should have the character-
istic that nearby grids have similar traffic sequences. Thus,
we compare ST-MetaNet+ with GAT-Seq2Seq by the taxi
inflows of three representative grids in Beijing: Zhongguan-
cun (business district), Huilongyuan (residential district),
and Sihui Bridge (viaduct). We present these grids on Bing
Maps1, and show their inflow trends, as shown in Figure 14.
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Fig. 14: The inflows of the representative grids. The left
maps show the selected grids with special functions, i.e.,
business district, residential district, and viaduct. The right
charts show the inflow trends of the selected grids R0 and
its k-nearest neighbors Rk (k > 0) in the embedding space
produced by GAT-Seq2Seq and ST-MetaNet+.

The selected grids’ inflows of GAT-Seq2Seq are distinct
from the flows of their neighborhoods in the embedding
space. While ST-MetaNet+ obtains an embedding space
that nearby grids have very similar flows. Specifically, in
this embedding space, the neighbor grids of Zhongguancun
(business district) have inflow rush hours in the morning;
the neighbor grids of Huilongyuan (residential district) have
inflow rush hours in the evening; while the neighbor grids

1. Bing Maps: https://cn.bing.com/maps

https://cn.bing.com/maps
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(b) Traffic speed of selected node in 2012/06/21

(c) Heatmap of graph attention scores when sudden change occurs
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Fig. 15: Case study for a sudden change of traffic speed on METR-LA dataset.

of Sihui Bridge (viaduct) have two inflow rush hours in
the morning and evening. This case demonstrates that ST-
MetaNet+ learns a reasonable representation of nodes, and
captures the inherent relationships between geographical
information and ST correlations of urban traffic.

Effectiveness of Traffic Context
Intuitively, traffic context can give the model more infor-
mation about the dynamic impact on ST correlations than
geographical information. Thus, ST-MetaNet+ should have
better predictions than ST-MetaNet when traffic meets a
sudden change, such as the traffic condition at peak hour.

To show how traffic context impacts traffic prediction,
we select the traffic of a node in METR-LA dataset as an
example, and discuss the improvement of ST-MetaNet+

over ST-MetaNet. We plot the node (blue pin) and its
neighbors (red pins) on Google Maps2 in Figure 15(a), and
the predicting traffic speed (next 30 minutes) of the selected
node in Figure 15(b). In this case, when traffic meets a sud-
den change, i.e., at a peak hour, ST-MetaNet+ successfully
predicts the severe deceleration of traffic (traffic jam), while
ST-MetaNet fails, as shown in Figure 15(b). The reason is
that in off-peak hours, the traffic has high speed and has
analogous types of ST correlations, however, when traffic
starts changing at peak hour, the type of ST correlations
is also changed. Since ST-MetaNet does not consider the
relationships between ST correlations and such dynamic
traffic states, it cannot give a good prediction in predicting
such sudden change.

Next, we want to further illustrate how dynamic traffic
state impacts spatial correlations. As traffic jam usually
starts from ramp road (exits or bridges), the traffic speed
near ramp road should have a large impact than the traffic
speed on common roads when traffic jam occurs. To verify
it, we also present the heatmap of graph attention scores
for each hidden state’s channel at peak hour in Figure
15(c), where the x-axis stands for the channel IDs of the
hidden state, and the y-axis denotes the neighbors’ IDs of
the selected node. Notice that N6, N7, and N8 are near
exits or bridges in Figure 15(a), and they have the largest

2. Google Maps: https://www.google.com/maps

attention scores in Figure 15(c), showing biggest impacts to
the selected node. This fact verifies our assumptions, and
demonstrates the effectiveness of modeling the relationships
between ST correlations and dynamic traffic states.

5 RELATED WORK

Urban Traffic Prediction
There are some previously published works on predicting
an individual’s movement based on their location history
[24], [25]. They mainly forecast millions of individuals’
mobility traces rather than the aggregated traffic flows in
a region. Some other researchers aim to predict travel speed
or traffic volumes on single or multiple road segments [26],
[27], rather than citywide ones. Recently, researchers have
started to focus on city-scale traffic prediction. In the begin-
ning, some researchers proposed non-deep models [28], [29]
to predict traffic. With the development of deep learning, [4],
[21], [30], [31], [32], [33] proposed to predict traffic on regu-
lar urban grids by convolution neural network (CNN) and
recurrent neural network (RNN) based models, such that
the high-level ST correlations can be captured effectively.
In addition, [3], [6], [9], [10] employed graph convolution
components in neural networks to predict urban traffic on
non-grid spatial structure, e.g., road networks.

Being different from all above works, we aim to model
the diverse ST correlations in urban traffic. To the best of our
knowledge, we are the first to study the inherent relation-
ships between ST correlations and geographical information
along with dynamic traffic states.

Deep Learning for Spatio-Temporal Modeling
Deep learning has powered many applications in spatio-
temporal areas. In specific, the architectures of CNNs were
widely used in modeling grid data, e.g., taxi demand infer-
ence [32] and precipitation nowcasting [34]. Besides, RNNs
[18] became popular due to their success in modeling tem-
poral sequence, however, separately modeling sequences by
RNNs discards the unique characteristics of spatio-temporal
data, i.e., spatial correlations. To tackle this issue, several
studies were proposed, such as video prediction [35] and
travel time estimation [36]. Very recent studies [8], [37] have

https://www.google.com/maps
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indicated that attention mechanism can enable RNNs to
capture dynamic ST correlations in geo-sensory data.

By contrast, our work introduces a new perspective, that
the ST models can be generated by related meta knowl-
edge. Particularly, our meta learning framework can be also
applied on the above deep ST models, e.g., by generating
weights of CNNs, RNNs, and attention networks.

Deep Meta Learning
The most related deep meta learning method is network
weight generation. [38] firstly proposed to predict network
parameters for modeling temporal data. [39] used a network
called learnet to predict the parameters of a pupil network
for few-shot learning. [40] employed hypernetworks to gen-
erate network weights, which can be regarded as weight
sharing across layers. [41] proposed meta multi-task learn-
ing for NLP tasks, which also employ weight generation
method to learn task-specific semantic functions by a meta
network. [42] proposed to embed neural architecture and
adopt hypernetworks to generate its weights, to amortize
the cost of neural architecture search.

There are also other types of meta learning methods as
well as related studies on graph structure. [43] proposed
to use parametric functions to update network parameters.
[44] proposed to maintain meta-gradients for fast model
adaption. [45], [46], [47] proposed to build graphs for de-
scribing relationships between tasks or data samples, and
then propagate information on graphs for few shot learning.

Our work is distinct from all above methods, as it aims
to tackle a different category of problem, i.e., modeling
correlations on ST graphs which depends on static attributes
and dynamic states.

6 CONCLUSION AND FUTURE WORK

We propose a novel deep meta learning framework, enti-
tled ST-MetaNet+, for spatio-temporal data with applica-
tions to urban traffic prediction, capable of learning traffic-
related embeddings of nodes and edges from geo-graph
attributes and traffic context from dynamic traffic states, so
as to model diverse spatial and temporal correlations, re-
spectively. We evaluate ST-MetaNet+ over three real-world
tasks. Compared with state-of-the-art baselines, our model
demonstrates very competitive performance. We visualize
the similarity of meta-knowledge learned from geograph-
ical information, and the impact of dynamic traffic states,
to show the interpretation of ST-MetaNet+. In the future,
we will extend our framework to a much broader set of
urban ST prediction tasks and explore the usage of such
representation learned from geographical attributes in other
traffic-related tasks.
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