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The increasing availability of location-acquisition technologies (GPS, GSM networks, etc.) enables people
to log the location histories with spatio-temporal data. Such real-world location histories imply, to some
extent, users’ interests in places, and bring us opportunities to understand the correlation between users
and locations. In this article, we move towards this direction and report on a personalized friend and location
recommender for the geographical information systems (GIS) on the Web. First, in this recommender system,
a particular individual’s visits to a geospatial region in the real world are used as their implicit ratings on that
region. Second, we measure the similarity between users in terms of their location histories and recommend
to each user a group of potential friends in a GIS community. Third, we estimate an individual’s interests
in a set of unvisited regions by involving his/her location history and those of other users. Some unvisited
locations that might match their tastes can be recommended to the individual. A framework, referred
to as a hierarchical-graph-based similarity measurement (HGSM), is proposed to uniformly model each
individual’s location history, and effectively measure the similarity among users. In this framework, we take
into account three factors: 1) the sequence property of people’s outdoor movements, 2) the visited popularity
of a geospatial region, and 3) the hierarchical property of geographic spaces. Further, we incorporated a
content-based method into a user-based collaborative filtering algorithm, which uses HGSM as the user
similarity measure, to estimate the rating of a user on an item. We evaluated this recommender system
based on the GPS data collected by 75 subjects over a period of 1 year in the real world. As a result,
HGSM outperforms related similarity measures, namely similarity-by-count, cosine similarity, and Pearson
similarity measures. Moreover, beyond the item-based CF method and random recommendations, our system
provides users with more attractive locations and better user experiences of recommendation.
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1. INTRODUCTION

Recommender systems are changing the way people interact with the Web by providing
a more personalized information access experience than searching. Typically, these
systems estimate a particular user’s interests from the data implicitly or explicitly
generated by the user. In addition, the social environment of a user is usually involved
in inferring their taste. Hence, digital results matching an individual’s preferences are
more likely to be retrieved for him/her.

In the past years, companies like Amazon [Linden et al. 2003] have shown the
effectiveness of recommender systems in improving the sales of a retailer. However, so
far, most of the products and researches related to recommendation are based on online
user behavior in Web communities, such as news recommenders [Das et al. 2007] and
music recommenders [Li et al. 2007; Tiemann et al. 2007].

Recently, the increasing pervasiveness of location-acquisition technologies, like GPS
and GSM networks, are leading to the collection of large spatio-temporal datasets,
which bring the opportunity of discovering valuable knowledge about users’ move-
ments. A branch of geographic applications based on user-generated GPS data have
appeared on the Web, and received considerable attention. In such applications [Bikely;
GPS Sharing; SportsDo; Counts and Smith 2007; Zheng et al. 2008c, 2009a, 2010d],
using a GPS-enabled device, individuals can record their outdoor movements with GPS
trajectories when traveling in the real world. Later, these individuals are able to up-
load these logs to a Web community where they can visualize and browse their own
travel/sports experiences on a Web map. These systems tell the users’ basic informa-
tion, such as distance, duration, and velocity, of a particular route; tags and photos can
also be shown for the route. Further, users are able to exchange life experiences among
each other by sharing their GPS trajectories in the Web community.

GPS-log-sharing provides people with a more explicit and fancy approach than the
text-based description to express their life experiences. For example, rich information,
such as velocity/acceleration/bearing/altitude of each point, slope/curvature of a seg-
ment and the names of locations a user passed by, can be mined out from a bike-riding
trajectory. In this manner, users are facilitated to absorb knowledge from others’ past
experiences. Meanwhile, by browsing other people’s GPS trajectories on a Web map, an
individual is likely to discover a travel route that interests him/her. Hence, the indi-
vidual can get references when making a decision for travel planning. Unfortunately,
so far, these applications still use raw GPS data directly without much understanding.
Facing a large dataset of GPS trajectories, users have to spend a lot of manual effort
to discover locations matching their tastes by themselves.

In contrast to users’ online activities, people’s outdoor movements in the real world
would imply more information about their interests and preferences. For instance, if
a person usually goes to stadiums and gyms, it denotes that the person might like
sports. Likewise, if a user frequently travels to some mountains, it might imply that
the user is interested in hiking. According to the first law of geography [Tobler 1970],
“everything is related to everything else, but near things are more related than dis-
tant things”, people who have similar location histories might share similar interests
and preferences. The more location histories they share, the more correlated these
two users would be. It is not difficult to understand that people who visit the same
restaurants and shopping malls might share some similar entertainment interests.
Also, users traveling to the same lakes and valleys might pertain to the similar style of
tourists. In turn, the geographical regions visited by similar users might imply a simi-
lar profile. As a consequence, people’s location histories can not only help us understand
the similarity between individuals but also reveal the correlations among geographic
locations.
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In this article, we report on a personalized friend and location recommender system.
This system 1) uses a particular individual’s visits on a geospatial location in the real
world as his/her implicit ratings on the location, 2) estimates the similarity between
users in terms of their location histories, and 3) infers an individual’s interests in an
unvisited place by involving his/her location history and those of other users. In this
system, each user will be recommended two categories of objects, similar users (poten-
tial friends) who might share similar places preferences and geospatial regions that
could match a user’s tastes although have not having been found by themselves. There-
fore, an individual is first able to organize with minimal effort some social activities,
such as hiking and cycling. In short, with such a friend list in the community, a user
is more capable of delivering invitations to the right candidates who might also have
a passion related to that invitation. Second, given the recommended places from such
potential friends’ location histories, users can easily expand their travel knowledge and
discover the locations that interest them.

The work reported in this article is a location-history-based recommender system,
which estimates the similarity between users in terms of their movements in geograph-
ical spaces. This is a step toward estimating a user’s tastes on items (locations) they
have not considered (visited) using the user’s implicit ratings and social environment.
From the algorithm’s perspective, this system moves toward incorporating the content-
based method into a user-based collaborative filtering algorithm. This is also a step
toward associating recommender systems with geographical information systems on
the Web. The main contributions of this work lie in the following three aspects.

(1) We propose a framework, referred to as hierarchical-graph-based similarity mea-
surement (HGSM), which uniformly models people’s location histories and effec-
tively estimates the similarity between users. In this framework, we consider the
following three factors.
—Sequence property of users’ movements. We take into account not only the ge-

ographic regions they accessed, but also the sequence of these regions being
visited. The longer similar sequences matched between two users’ location his-
tories, the more related these two users might be.

—Hierarchy property of geographic spaces. We mine user similarity by exploring
people’s movements on different scales of geographic spaces. Users who share
similar location histories on geographical spaces of finer granularities might be
more correlated.

—Popularity of different locations. Analogous to inverse document frequency (IDF),
we consider the visited popularity of a geographical region when measuring
the similarity between users. Two users who accessed a location visited by a
few people might be more correlated than others who share a location history
accessed by many people. For instance, lots of people have visited the Great Wall,
a well-known landmark in Beijing. However, it might not mean all these people
are similar to one another. However, if two users visited a restaurant which is
not that famous, they might indeed share some similar preferences.

(2) Using HGSM to estimate the similarity between users, a collaborative filtering-
based method is employed in our recommender system to infer an individual’s
interests in unvisited geospatial regions. Meanwhile, we understand the profile of
a geospatial region by exploring the categories of points of interest (POIs) within
the region. Therefore, we are able to find geospatial regions with similar profiles
which enable us to integrate the content-based method into collaborative filtering.
This approach can reduce to some extent the cold start problem of our systems.
Also, such profiles endow us with the ability to filter some boring locations, such
as people’s abodes. Moreover, the approach allows us to recommend various types
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of locations based on users’ requests on different occasions. For instance, we can
recommend a region covering some restaurants to an individual searching for a
place for dinner. Likewise, we are able to suggest a geospatial region containing
some malls to a person when he/she prefers to go shopping.

(3) We evaluate our approach using a large-scale GPS dataset collected by 75 people
over a period of one year in the real world. The total number of GPS points al-
most reached 7 million (6,963,824), and its total distance exceeded 135 thousand
(135,940) kilometers. As a result, our HGSM outperforms the baseline methods,
such as the Cosine similarity and Pearson similarity, in measuring the similarity
between users based on location history. Moreover, beyond the item-based collabo-
rative filtering, our approach provides users with more attractive places and more
personalized user experiences.

The rest of this article is organized as follows. In Section 2, we first present the
user interface of the system. Later, the architecture of our recommender system, which
consists of three parts, location history representation, user similarity mining, and
CF-based location recommendation, is introduced. In Section 3, we detail the processes
of mining the similarity between users based on their location histories. Section 4 de-
scribes the CF-based location recommender, and Section 5 reports major experimental
results. After giving a survey on the related works in Section 6, we draw our conclusions
in Section 7, and propose the future work we attempt to conduct in Section 8.

2. OVERVIEW OF OUR RECOMMENDER SYSTEM

In this section, we first demonstrate the user interface of this recommender system
using a few cases. Then, we define some terms used in this article and briefly introduce
the architecture of our system.

2.1. User Interface of the System

The recommender system reported in this article is an important component of our
project GeoLife [Zheng et al. 2009a and 2010d], which is a GPS-log-driven application
on Web maps. GeoLife focuses on lively visualization [Zheng et al. 2008c and 2008d],
fast retrieval [Wang et al. 2008; Chen et al. 2010] and a deep understanding of GPS
track logs [Li et al. 2008; Zheng et al. 2008a, 2008b, 2009b, 2010a, 2010b, 2010c, 2010e,
2010f] for both personal and public use. This recommender system has been deployed
in the prototype of GeoLife as a part of research result.

Figure 1 presents the user interface of our recommender system. A particular user,
John, can sign in GeoLife using his Live ID. In GeoLife, we help John maintain a
personal Web site, called MyGeoLife, where John can upload and manage his own
trajectory data. By default, the data is private for John’s personal use; however, John
can pick out some GPS trajectories to share with others if he desires. Once he makes
public some trajectories, we are able to provide him with a more personalized location
recommendation.

After logging onto MyGeoLife, in the right box of the window, John can discover a
group of potential friends and a set of geospatial locations recommended to him. These
potential friends are more likely to share similar tastes (in terms of location history)
with John as compared to other users in this community. Below the recommended
friends, the top five geospatial regions that might match John’s interests are also listed
with corresponding thumbnails. These regions are mined from those potential friends’
past experiences; John has not found them by himself. With a database of POI, we are
able to identify a proper name for a given region using an inverse geo-coding technology.

Further, we can understand the properties of a georegion based on the categories
of the POIs located in this region. Here, we differentiate four kinds of categories,
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Fig. 1. User interface of the recommender system.

Fig. 2. Render recommendation results according to a user’s preferences on different categories.

“restaurant,” “sports,” “entertainments” and “travel.” (Refer to Section 4.2 for details.)
Therefore, as illustrated in Figure 2(a), John can select “Travel” in the category combo
box when he intends to find some interesting landscapes like the Summer Palace. Or,
as demonstrated in Figure 2(b), he can select the category of “restaurant” if he prefers
to look for a place for dinner, e.g., Sanlitun. Of course, if John does not specify any
categories, for example, using “All,” in Figure 1, locations of various types would be
recommended together. All these results mentioned above are ranked based on their
ratings estimated by our algorithm.
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Fig. 3. View a geospatial region in our recommender system.

As depicted in Figure 3, John can take a closer look at a recommended location by
clicking the icon of this location in the results list. In a pop-up information box, John
can obtain summarized information of this region and browse a set of photos taken
by other users visiting the region. Meanwhile, he can view the POIs and businesses
located in the region on the map (if switching the map to a road view). Thus, he is able
to make a decision whether this place deserve, his arrival before really accessing it.

If John is attracted by the location shown in Figure 3, he can invite a group of people
from the community to visit there together. As demonstrated in Figure 4, by clicking
the “contact them” button, John will be provided with an interface where he can send
his proposal with a suggested destination to the potential friends in this community.
After receiving the invitation message from John, these potential friends can view what
the proposed region looks like by browsing the Web map and photos taken within this
region. Later, they are able to make their own decision on whether to join this activity.

2.2. Difference between This Article and Our Previous Publication

In the previous publication of GIS 2008, we proposed only a preliminary measurement
that estimates the similarity between users in terms of their location histories. In this
paper, we first improve the similarity measurement and then conduct a friend and
location recommendation system, employing the improved similarity measurement.
More specifically, the differences lie in the following three aspects.

(1) Conduct a personalized friend and location recommendation system. In this article
we integrate the user similarity into a collaborative filtering (CF) model to conduct
a personalized friend and location recommendation system. This is a totally new
research we performed after the GIS publication. This work includes the following.
(a) Using a collaborative filtering (CF) based method, our system involves the

location histories of a user’s potential friends to estimate the user’s interests on
a set of unvisited georegions. Refer to Section 4.
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Fig. 4. Propose a social activity by sending a proposal to potential friends in the community.

(b) By understanding the profile of a geospatial region so that a content-based
method is integrated into the location recommender to reduce the cold start
problem. Refer to Section 4.3.

(c) We building a prototype of this recommender system and showcasing its user
interfaces in Section 2.1.

(d) We evaluate this recommender system (not the similarity measurement) based
on the GPS data collected by 75 subjects over a period of 1 year in the real
world. A study investigating users’ feedback on the recommended locations is
reported in Section 5.3.2.

(2) We improve our similarity meas as follows.
(a) We propose a new sequence matching strategy. By splitting the long sequence

into several short sequences, we enhanced the efficiency of the matching process
while keeping its effectiveness. Refer to Section 3.2.2 for details.

(b) We take into account the popularity of a location, which improves the perfor-
mance of the measurement. Analog to IDF, we consider the visited popularity
of a geographical region when measuring the similarity between users. Refer
to Section 3.3.

(3) More evaluation and discussion.
(a) In this article, we evaluated the performance of the improved measurement

using a real-world GPS dataset. Also, we studied the effectiveness of an IDF
feature when integrating with different similarity measurements, such as the
Cosine similarity and Pearson similarity.

(a) More experiments and discussion have been conducted in this research. For
example, the new user problem and the new location problem of recommender
system have been discussed and considered. Meanwhile, based on the newly
performed experimental results, we give more justifications in choosing the
parameters for the algorithm. Refer to 5.1.4
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Fig. 5. A GPS trajectory and a stay point.

Fig. 6. Some examples of stay points.

2.3. Preliminary

In this section, we will define some terms: GPS trajectory (Traj), stay point(s), location
history (LocH), and hierarchical graph (HG).

Definition 1 (GPS Trajectory). A GPS trajectory (Traj) is a sequence of GPS points,
each of which contains a latitude (pi.Lat), longitude (pi.Lngt) and timestamp (pi. T).
Thus, Traj = p1 → p2 → ... → pn, where pi.T < pi+1.T .

Definition 2 (Stay Point). Generally speaking, a stay point(s) stands for a geo-
graphic region where a user stayed over a certain time interval. The extraction of
a stay point depends on two scale parameters, a time threshold (θ t) and a distance
threshold (θd). Formally, a single stay point(s) can be regarded as a virtual location
characterized by a group of consecutive GPS points P = {pm, pm+1, . . . , pn}, where
∀m < i ≤ n, Distance(pm, pi) ≤ θd and |pn.T − pm.T | ≥ θt. Conditioned by P, θd and θt, a
stay point s = (Lat, Lngt, arvT, levT), where

s. Lat =
n∑

i=m

pi.Lat/|P|, (1)

s. Lngt =
n∑

i=m

pi.Lngt/|P|, (2)

respectively, stands for the average latitude and longitude of the collection P, and
s.arvT = pm.T and s.levT = pn.T represents a user’s arrival and leaving times on s.

As demonstrated in Figure 5, p1 → p2 → · · · → p8 formulates a GPS trajectory and
a stay point can be constructed by points {p3, p4, p5, p6}.

Typically, these stay points occur in the following two situations. One is when people
enter a building and lose a satellite signal over a time interval, until coming back
outdoors. Figure 6(a) shows an example using an individual’s GPS trajectory while
visiting a shopping mall. The other situation is when a user exceeds a time limit
at a certain geospatial area. For instance, people strolling along a nice beach (refer to
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Fig. 7. The algorithm for stay point detection.

Figure 6(b)), or being attracted by a landmark building (See Figure 6(c)) could generate
a stay point.

Here, we hope to represent each stay of a user as precisely as possible. Unfortunately,
we have to use a proper georegion to specify an individual’s stay for to the following
reasons.

First, a strict region size, such as 20×20 meters, might be more capable of accurately
identifying a business like a Starbucks visited by a user; however, it would cause many
stays to remain undetected. As demonstrated in Figure 6(a), a user could enter a
shopping mall from Gate A while leaving the mall from Gate B (see the blue line).
Given a shopping mall could cover a 150 × 150 meter georegion, the distance between
the last GPS point before entering the mall and the first point after coming out from
the mall could be larger than 150 meters (i.e., the user’s stay at this shopping mall
cannot be detected using a very small region constraint like 20 meters). Moreover, even
if a user leaves the shopping mall from the same gate they entered, like Gate C, in most
cases, the distance between the last GPS point before entering and the first point after
coming out could be larger than 100 meters. Typically, the GPS devices need some time
to relocate themselves after coming back outdoors, while people do not have patience
to wait.

Second, sometimes a very small region constraint could cause the stays of people to
be overdetected. As shown in Figure 6(b) and (c), multiple stay points could be detected
when people stroll along a beach or wander around a landmark. This is not aligned
with people’s intuitiveness, as in their minds they only access one place (the beach or
the landmark).

Using the algorithm shown in Figure 7, these stay points can be detected automat-
ically from a user’s GPS trajectory. For instance, in our experiment, if an individual
spent more than 30 minutes within a distance of 200 meters, the region is detected
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Fig. 8. Hierarchical graph modeling individual location history.

as a stay point. As compared to a raw GPS point, each stay point carries a particular
semantic meaning, such as the shopping mall we accessed and the restaurants we
visited. The reasons why we detect stay points using the algorithm shown in Figure 7,
rather than directly clustering raw GPS points, lie in two aspects. (1) Most significant
places like shopping malls and restaurants cannot be detected if we directly cluster
raw GPS points, as GPS devices lose satellite signal indoors (i.e., few GPS points will
be generated on such places). (2) Using an interpolation operation, the computation of
clustering such a big dataset will be extremely heavy with increasing users. Refer to
Section 5.4.1 for details.

Definition 3 (Location History). Generally, location history is a record of locations
that an entity visited in geographical spaces over an interval of time. In this article,
an individual’s location history (LocH) is represented as a sequence of stay points (s)
he/she visited with corresponding arrival and leaving times.

LocH =
(
s1

�t1→ s2
�t2→, . . . ,

�tn−1→ sn

)
, where si ∈ S and �t1 = si+1. arvT − si. levT .

However, the location histories of various people are inconsistent and incomparable,
as the stay points pertaining to different individuals are not identical. Also, it is sub-
jective to directly measure how similar two stay points are based on the geodistance
between them. Moreover, user similarity is not a binary value (That is, it is not reason-
able to judge whether two users are similar or not). What we aim to do is to identify
how relevant two individuals are as compared to others, and then, for each user, rank
a group of people according to the similarity between them.

To address the preceding issue, we propose a framework, called hierarchical graph
(HG), to uniformly model each individual’s location history. As illustrated in Figure 8,
to build such a graph for every user, two steps need to be performed.
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(1) Formulate a shared framework F. We put all users’ stay points together into a
dataset. Using a density-based clustering algorithm, we hierarchically cluster this
dataset into several geospatial regions (clusters C) in a divisive manner. Thus, the
similar stay points from various users are assigned to the same clusters on different
layers. This structure of clusters, referred to as hierarchical framework (F), provides
various users with a uniform framework to formulate their own graphs.

(2) Construct a personal HG. Based on the shared hierarchical framework F and in-
dividual location history (LocH), each user can build a personal directed-graph in
which a graph node is the cluster containing the user’s stay points and a graph edge
stands for the sequence of the clusters (geographic regions) being visited by this
user. Here, we do not differentiate the diverse paths that a user created between
two places (clusters).

Definition 4 (Hierarchical Framework F). F is a collection of stay point-based clus-
ters C with a hierarchy structure L. F = (C, L), where L = {l1, l2, . . . ,ln} denotes the
collection of layers of the hierarchy. C = {cij |1 ≤ i ≤ |L|, 0 ≤ j ≤ |Ci|}, where cij repre-
sents the jth cluster of stay points on layer li ∈ L, and Ci is the collection of clusters on
layer li.

As illustrated in Figure 8, from the top to the bottom of the hierarchy, the geospatial
scale of clusters decreases while the granularity of geographic regions increases from
being coarse to being fine. Thus, the hierarchical feature of this framework is useful
and essential to differentiate people with different degrees of similarity. The users who
share the same location histories on a lower layer might be more correlated than those
who share location histories on a higher layer.

Definition 5 (Hierarchical Graph). Given a user’s location history (LocH) and the
shared framework (F), the user’s hierarchical graph (HG) can be formulated as a set of
graphs HG = {Gi = (Ci, Ei), 1 < i ≤ |L|}. On each layer li ∈ L, Gi ∈ HG includes a set
of vertexes Ci and the edges Ei connecting cij ∈ Ci.

Notations. In the rest of this article, we use the following notations to simplify the
descriptions. U = {u1, u2, . . . , un} represents the collection of users in a community,
uk ∈ U, 1 ≤ k ≤ |U | denotes the k-th user. Trajk, Sk, LocHk and HGk respectively stand
for the uk’s GPS trajectories, stay points, location history, and hierarchical graph. sk

j

means the j-th stay point of uk; Gk
j is uk’s personal graph on layer li; seqk

j denotes uk’s
sequence extracted from layer li.

2.4. Architecture of the System

Figure 9 gives an overview of the architecture of our recommender system, which
consists of three parts: location history representation, user similarity exploration and
location recommendation.

First, based on individual GPS trajectories, we build a hierarchical graph for each
user using the method we proposed in Section 2.2. This hierarchical graph is capable
of modeling the user’s location histories on different geospatial scales.

Second, given two users’ hierarchical graphs, we are able to match the similar se-
quences shared by them on each layer of the hierarchy and calculate a similarity score
for them. Later, a group of people, called potential friends, with relatively high scores
will be retrieved for a particular individual.

Third, using a POI database, we understand the profile of a geospatial region by
exploring the categories of POIs located in the region. Such profiles enable us to detect
the similarity between geospatial regions and recommend locations based on users’
diverse requests. At the same time, with the similarity between locations, we are able
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Fig. 9. Architecture of our recommender system.

Fig. 10. The procedures of location history representation.

to conduct a hybrid recommender based on a collaborative filtering and the content-
based method. By employing the hybrid recommender, we estimate a particular user’s
interests in the geographic regions which appeared in his/her potential friends’ location
histories but have not been found by the user.

Finally, the top N geographic regions, which are most likely to attract the user, are
recommended and shown on a Web map.

2.4.1. Location History Representation. Figure 10 describes the major processes of model-
ing a user’s location history based on his/her GPS trajectories. First, given the collection
of all users’ GPS, trajectories, ϕ = {Trajk

, 1 ≤ k ≤ |U |} for each user, we extract stay
points from each individual’s trajectories using the algorithm described in Figure 7 and
then put these stay points together into a dataset SP = {Sk, 1 ≤ k ≤ |U |}. Later, using
a density-based clustering algorithm, this dataset SP will be hierarchically clustered
into several geospatial regions C in a divisive manner. Thus, the similar stay points
from various users will be assigned to the same clusters on different layers. Third,
based on the shared hierarchical framework (F) and individual trajectory, a personal
hierarchical graph is built for each user to model his/her location history on different
geospatial scales.

2.4.2. User Similarity Explorations. Figure 11 briefly shows the procedures of the user
similarity exploration. First, given the hierarchical graphs HGp and HGq of two users
(up and uq), we search for the same graph nodes shared by these two users on each
layer of the hierarchy. Later, from each layer li ∈ L, two sequences (seqp

i and seqq
i )
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Fig. 11. Explore similarity between users based on individual hierarchical graphs.

containing such graph nodes will be respectively retrieved for up and uq. Second, we
can find a set of similar subsequences (sseqp,q

i ) from the given sequence pairs (seqp
i

and seqq
i ). Here, a similar sequence stands for two individuals sharing the property of

visiting the same sequence of places with similar time intervals. Third, based on the
retrieved similar sequences, we calculate for the pair of users a similarity score (ssp,q)
considering the following three common sense knowledge.

—Sequence. The longer the similar sequence of visitation shared by two users, the
more similar the two users might be.

—Hierarchy. The finer the granularity of geographic regions shared by two individuals,
the more similar these two individuals might be.

—IDF. Two users visiting a geospatial region accessed by a few people might be more
correlated than others sharing a location history accessed by many people.

Consequently, we endow location sequences of different lengths with different signif-
icances. The longer a similar sequence is, the higher score this sequence can obtain. At
the same time, the lower the layer a similar sequence was found, the higher similarity
score the sequence obtains. (Refer to Section 3 for more details.)

2.4.3. Location Recommendation. Figure 12 depicts the major procedures of the location
recommendation. First, given a user (uk) as a query, we can rank other people in a
community (uj ∈ U) according to their similarity score (ssk, j) to uk. Then, a group of
people (U′) with relatively high similarity scores can be retrieved as potential friends
for uk. Second, from the location histories (LH) of uk’s potential friends, we are more
likely to discover some geospatial regions (Loc) that might interest uk but have not
been found by uk. Third, using our HGSM, a CF-based method is employed to infer
the individual’s interest in the geospatial regions that uk has not visited previously.
Consequently, the top-N geospatial regions with relatively high predicted ratings are
recommended to uk.

In addition, we understand the profile of a geographical region by exploring the
categories of POIs within it. So far, four categories, consisting of “restaurants,” “en-
tertainments,” “sports,” and “travel,” are exploited in our system. With this, we are
able to find geospatial regions with similar profiles which enable us to integrate the
content-based method into collaborative filtering. This approach can reduce the cold
start problem of our systems. Also, such profiles endow us with the ability of filtering
some unwanted locations like people’s homes. Moreover, it allows us to recommend var-
ious types of locations based on users’ requests on different occasions. In other words,
we can recommend the regions containing some landscapes to a user if they wants
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Fig. 12. Major procedures of location recommendation.

to get some suggestions for journey planning. Likewise, the regions containing some
shopping malls or cinemas could be recommended when a user prefers to find a place
for entertainment (refer to Section 4 for details).

3. USER SIMILARITY EXPLORATION

In this section, we detail the processes of user similarity exploration: location history
extraction, sequence matching, and similarity measurement.

3.1. Location History Extraction

The hierarchical graph (HG) offers an effective representation of a user’s location his-
tory (LocH) which implies a sequence property of the user’s movements on geographic
spaces of different scales. Given HG1 and HG2 of two individuals (u1 and u2), we first
find the same graph vertexes (V 1,2

i ) shared by the two individuals on each layer (li ∈ L)
where V 1,2

i = {cij |cij ∈ HG1. Ci ∩ HG2. Ci)}, 1 ≤ i ≤ |L|. Then, on each li ∈ L, a sequence
is respectively formulated for u1 and u2 based on V 1,2

i . Later, measuring the similarity
between two users can be transformed into a problem of sequences matching.

Following the example shown in Figure 8, Figure 13 demonstrates how a sequence
of places is extracted from each layer of an individual’s HG. As we can see, u1 and
u2 share the same graph vertexes, V 1,2

3 = {c31, c32, c33}, on the third layer of HG1 and
HG2. Over these vertices, a list of green nodes linked by a dash line denotes the
stay points that the users generated in the corresponding clusters. This list can be
obtained by ranking the user’s stay points in each cluster by timestamps. Using a
brown curve, we can sequentially connect these green nodes over the shared graph
vertices in terms of time serials. Therefore, on the 3rd layer of the hierarchy, a sequence
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Fig. 13. Sequence representation based on users’ hierarchical graph.

seq1
3 = c32 → c31 → c33 → c33 → c32 → c32 → c33 → c32 is generated for u1, and a

sequence seq2
3 = c31 → c33 → c32 → c31 → c31 → c32 → c31 is created for u2. Here, seqk

i
denotes the sequence of uk on the ith layer of HGk. For simplicity we represent these
sequences as follows:

seq1
3 = c32(1) → c31(1) → c33(2) → c32(2) → c33(1) → c32(1),

seq2
3 = c31(1) → c33(1) → c32(1) → c31(2) → c32(1) → c31(1),

where the number following a graph vertex stands for the occurrences that the user
successively travels in the corresponding cluster. Given the information of each stay
point, we are able to calculate the time interval (�ti) between consecutive items of these
sequences. For instance, in seq1

3 , �t1 = s1
3 . arvT −s1

1 . levT and �t3 = s1
6 . arvT −s1

5 . levT .
Thus, the two sequences can be represented as follows:

seq1
3 = c32(1)

�t1→ c31(1)
�t2→ c33(2)

�t3→ c32(2)
�t4→ c33(1)

�t5→ c32(1)

seq2
3 = c31(1)

�t1′→ c33(1)
�t2′→ c32(1)

�t3′→ c31(2)
�t4′→ c32(1)

�t5′→ c31(1).

Here, two users’ location histories become comparable because we use cluster ID rather
than stay point ID to represent the items of a sequence. These clusters are derived from
all users’ datasets and shared by all the users.

3.2. Sequence Matching

3.2.1. Concepts of Similar Sequences

Definition 6 (Similar Sequence). Generally, a similar sequence stands for two users,
up and uq, sharing the property of visiting the same sequence of places with similar
time intervals. Formally, a pair of sequences, seqp

i and seqq
i ,

seqp
i = 〈

a1(m1)
�t1→ a2(m2)

�t2→ . . .
�tj−1→ aj(mj)

�tj→ . . .
�tn−1→ an(mn)

〉
,

seqq
i = 〈

b1(m′
1)

�t′
1→ b2(m′

2)
�t′

2→ . . .
�t′

j−1→ bj(m′
j)

�tj
′

→ . . .
�t′

n−1→ bn(m′
n)

〉
,

where aj ∈ V pq
i is a cluster ID and V pq

i are the graph vertices shared by up and uq on
layer li. mi represents the times the user successively visits cluster aj , and �t j stands
for the transition time the user traveled from cluster aj to aj+1.

seqp
i and seqq

i are similar if and only if they satisfy the following conditions.

(1) ∀1 ≤ j ≤ n, aj = bj , (i.e., the nodes at the same position of the two sequences share
the same cluster ID);
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Fig. 14. An example of similar sequences.

(2) ∀1 ≤ j < n,
|�tj−�t′

j |
max(�tj ,Dt′

j )
≤ p, where p is a predefined ratio threshold, called temporal

constraint. It denotes that the two users have similar transition times between the
same regions.

If both conditions hold, a similar sequence, sseqp,q
i , contained in seqp

i and seqp
i is re-

trieved as follows.

sseqp,q
i = 〈

a1(min(m1, m′
1)) → a2(min(m2, m′

2)) → · · · an(min)(mn, m′
n)

〉
,

where min(m1, m′
1) denotes the minimum value between m1 and m′

1.

Definition 7 (n-Length Similar Sequence). If the number of nodes in similar se-
quences is n, we call this sequence the n-length similar sequence.

Definition 8 (The Maximal-Length Similar Sequence). The maximal-length similar
sequence stands for the sequence that is not contained in any other similar sequences.

Using part of the two sequences (seq1
3 and seq2

3 ) depicted in Figure 13, Figure 14
further illustrates the definitions mentioned in this Section. For simplicity’s sake, we
use A, B and C to respectively represent the cluster c31, c32 and c33. As a result, the
first four items of seq1

3 and seq2
3 can be represented as

〈
B(1)

5h→ A(2)
8h→ C(2)

6h→ B(2)
〉

and
〈
A(1)

7h→ C(2)
6.5h→ B(2)

10h→ A(2)
〉
.

The values of transition time between adjacent clusters are assumed for demon-
stration.

Clearly, the time interval between the two users’ transition time from A to C is 1 hour
(8–7 = 1 h). If the temporal constraint is configured as 0.2, a 2-length similar sequence,
A(1) → C(1), is detected (1/8 = 0.125 < 0.2) from u1 and u2’s location histories. Likewise,
other two 2-length similar sequences C(1) → B(1) and A(1) → B(1) can be retrieved, as
they also hold the conditions mentioned in definition 6. However, these 2-length similar
sequences are not maximal-length similar sequences as they are contained in the 3-
length similar sequence A(1) → C(1) → B(1). Therefore, what we aim to detect from
two users’ location histories are the maximal-length similar sequences like A(1) → C(1)
→ B(1). Although u1 and u2 share the same order of visiting B and A, the temporal
constraint cannot be satisfied. This phenomenon usually implies that u2 visits too
many other places before reaching region A. Hence, the sequence property of the user’s
movements would be reduced tremendously.

3.2.2. Algorithm for Similar Sequences Detecting. Although there are already some se-
quence matching algorithms, it is not proper to employ them directly due to the follow-
ing two reasons.

First, it is well-known that the computation of existing sequence matching algorithms
increases quite fast with the extending length of the sequences to be matched. However,
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Fig. 15. Major procedures of sequence matching.

a user could reach over 200 locations in a quarter (including duplicated places like home
and company). The computation will be extremely heavy, therefore, we cannot measure
the similarity between users very quickly. (Imaginge we have 1 million users in the
system.)

Second, we do not expect (and it is not necessary) to retrieve all the similar sequences
from a given sequence pair. What we aim to do is to search users’ location histories for
enough similar sequences which can differentiate these users with different degrees of
similarity. Initially, we observe that the number of similar sequences with a relatively
long length is extremely small. In short, the probability of sharing a long sequence of
movements between two individuals is very small. Then we observe that the excessively
long time interval between two nodes of a sequence implies that the user has visited
several other places before reaching the next node (i.e., the sequential property of the
user’s movements between these two regions has been reduced greatly). Thus, we are
able (and need) to split long sequences into several short subsets for better efficiency,
while maintaining the effectiveness of our method.

As a result, we employ a split policy to partition each user’s sequences into sev-
eral subsets, each of which has a relatively short length. Then, we match these sub-
sequences very efficiently against one another and merge the search results into a
collection. Using a sequence pair, seq j

i and seqk
i , of two users, uj and uk, Figure 15

describes the major procedures of sequence matching.
Following the case shown in Figure 13, Figure 16 demonstrates the sequence spliting

and match process. Like Figure 16, we still use A, B, and C to represent the clusters
c31, c32 and c33. As depicted in Figure 16(A), if the transition time between consecutive
nodes of a sequence exceeds a certain threshold (tp), 24 hour in this case, we split the
sequence into two parts. Later, we match each subsequence of u1 against that of u2.

Figure 17 shows the algorithm we implemented to detect similar sequences from
given sequence pairs. Two operations, sequence extension and sequence pruning, are
involved in this process. In the extension operation, we aim to extend each m-length
similar sequence to one of (m+ 1)-length. This operation starts with finding a 1-length
similar sequence. Subsequently, in the pruning operation, we pick out the maximum-
length similar sequence from the candidates generated by the extension operation and
remove the rest. Basically, the extension and pruning operations would be implemented
alternatively and iteratively until each node in the sequence is scanned.
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Fig. 16. Split a long sequence into subsequences by the time interval between consecutive nodes.

Fig. 17. Detecting similar sequences from a given sequence pair.

Fig. 18. Demonstration of sequence matching.

Using a subsequence pair illustrated in Figure 16(b), Figure 18 demonstrates the
algorithm presented in Figure 17. Here, the figures on the top of each box stand for
the index of each node in a sequence. First, as shown in Figure 18(a), we detect the
1-length similar sequences as follows. 〈B13〉, 〈A21〉, 〈C32〉 and 〈B43〉, where the subscript
of each character represents the index of the matched node in each sequence. For
instance, 〈B13〉 denotes the the first node of sequence 1 sharing the same node B with
the third node of sequence 2. Such indexes can help us differentiate nodes of the
same cluster ID being visited by users at different times. Second, Figure 18(b) depicts
the process of the extension operation based on the results of the first step. If we
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Fig. 19. Similarity measurement based on retrieved similar sequences.

set the temporal constraint p to 0.2, three 2-length similar sequences 〈A21 → C32〉,
〈A21 → B43〉 and 〈C32 → B43〉 can be retrieved. Then, in the pruning operation, all the
1-length sequences will be removed from the similar sequence set (sseq) because they
are contained in the 2-lenght sequences. Third, based on the 2-length sequences, one
3-length similar sequence, 〈A21 → C32 → B43〉, can be detected. Subsequently, in the
pruning operation, all 2-length similar sequences will be removed from sseq as they are
subsets of the retrieved 3-length similar sequence.

3.3. Similarity Measurement

Figure 19 describes the process of calculating a similarity score between two users.
Using the sequence matching method we introduced previously, a collection of similar
sequences, Qp,q = {sseqp,q

i , 1 ≤ i ≤ |L|}, can be retrieved from up and uq ’s location
histories. When calculating the score, we take into account three factors: (1) the vis-
ited popularity of a place contained in a similar sequence, (2) the length of a similar
sequence, and (3) the layer on which the sequence was found.

First, we calculate the score (ssl) that two users (up and uq) obtain on a certain layer
by adding up the score (ssq) of each similar sequence found on this layer. Then, the
score (ssl) of each layer will be weighted and summed up to a final score (ssp,q).

3.3.1. Inverse Document Frequency. When measuring the similarity score of a given sim-
ilar sequence, we involve inverse document frequency (IDF) to differentiate the visited
popularity of each geospatial region (cluster of stay points) contained in the sequence.
Here, a cluster can be regarded as a document, while the users who have visited this
cluster can be deemed as terms. If the number of users (nij) that visited a region (cij),
is very large, the IDFij = log |U |

nij
of this region would become very small. Therefore, this

region will not offer many contributions to the similarity score of these two users. In-
tuitively, the phenomenon that lots of people visited a geospatial region like the Great
Wall might not mean all these people are similar to one another. The real reason might
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be that this region has a famous reputation which attracts a variety of users. However,
if two individuals share a location history which is not that well known (and hence, is
not accessed by so many people), the individuals might share some similar interests
indeed.

3.3.2. Length of a Similar Sequence. Further, we add up the score of each node in a
sequence to calculate the similarity score (ssq) of the sequence. The score of a node
is a multiplication of two parts (IDFij × min(mp, mq)): the IDF of this region, as
mentioned previously, and the times (min(mp, mq)) the two users successively accessed
this region in this sequence (refer to Definition 6). This paradigm looks like the TF
(term frequency)-IDF policy in document retrieval. In addition, a length-dependent
factor (β) is involved to distinguish the importantce of similar sequences with various
lengths (len). For instance, we use β = 2len−1 in our experiment. In other words, the
longer the sequence matched between two users’ location histories, the more related
these two users might be; hence, a high score should be awarded to this sequence.

3.3.3. The Hierarchy of the Geospatial Scale. By summing up the similarity score (ssq) of
each sequence on a layer, we can calculate the similarity score (ssl) of the two users on
the layer. A layer-dependent factor (a) is involved to weight the significance of sequences
found on different layers. For instance, we use a = 2i−1 in our experiment. In other
words, people that share a sequence of places on a lower layer (with finer granularity)
might be more related than others who share a sequence of places on a higher layer
(with coarse granularity). Later, we sum up the ssl of each layer to achieve the overall
similarity score (ssp,q) of two users.

Finally, to provide a fair result to the users with various scales of GPS trajectories,
we divide the overall similarity score (ssp,q) by the multiplication of the scales of their
dataset (|Sp| × |Sp|). Intuitively, people joining in a Web community earlier are more
likely to accumulate more GPS trajectories than new users. If we do not consider the
scale of data, more similar sequences would be retrieved from these people’s relatively
large datasets. Therefore, these senior users might always be recommended to others,
althought they are not the most perfect candicates.

4. LOCATION RECOMMENDATION

In this section, we first introduce how we discover a collection of geospatial regions for
a particular user. Second, a collaborative filtering-based method is employed to infer
the user’s interests on these discovered regions. Third, using a POI database, we under-
stand the properties of a region. Hence, we can recommend different types of locations
matching the user’s preferences at various occasions. In addition, by understanding the
properties of a region, we can find the similar regions based on their profiles (contents).
Therefore, we are able to reduce the well-known cold start problem of a recommender
system by combining the content-based approach with collaborative filtering.

4.1. Location Discovering

Using the approach proposed in Section 3, we are able to measure the similarity (ssk, j)
between two users (uk and uj), and formulate a similarity matrix SM, where SM =
{ssk, j, 1 ≤ k ≤ |U |, 1 ≤ j ≤ |U |, j �= k}. Given uk as a query, we can retrieve from
the SM the vector vk containing the similarity scores between uk and others, where
vk = 〈ssk, j, 1 ≤ j ≤ |U |, j �= k〉. Then, ssk, j will be normalized to a value falling into
[0, 1] by Equation (3)

ssk, j = ssk, j − min(vk)
Max(vk) − min(vk)

. (3)

ACM Transactions on the Web, Vol. 5, No. 1, Article 5, Publication date: February 2011.



Recommending Friends and Locations Based on Individual Location History 5:21

Later, the top N users with relatively high ssk, j will be retrieved as uk’s potential friends
(U′). On each layer li ∈ L, we retrieve for uk a set of regions Rk

i that are accessed by uk’s
potential friends but not visited by uk. Here, Rk

i = {c ∈ Ci|rk
c = ∅∧∃uj ∈ U ′, r j

c �= ∅}, 1 ≤
i ≤ |L|, rk

c represents uk’s accesses (ratings) on geospatial region c. Here, a particular
user’s occurrences in a geospatial region are used as implicit ratings of this user on the
region.

4.2. CF-Based Inference

Given the geospatial regions discovered for a particular user, a collaborative filtering
based method is employed to infer the user’s interests on these regions. Equation (4),
(5), and (6) describe the process predicting uk’s rating (rk

c ) on a location c.
As shown in Equation (4), the similarity between users uk and uj , sim(uk, uj), is

essentially a distance measure and is used as a weight, i.e., the more similar uk and uj

are, the more weight r j
c will carry in the prediction of rk

c . Here, sim(uk, uj) is calculated
using HGSM. However, different people may visit places with various times (e.g., a
user would visit a park twice while another person may access the same park four
times, although both of them are strongly interested in this park), i.e., they use the
rating scale differently. Therefore, an adjusted weighted sum is used here.

First, instead of using the absolute values of ratings, we use their deviations from the
average rating of the corresponding user. That is r j

c − r j , where r j denotes the average
rating of uj . Second, a normalizing factor d is involved. Here, d can be calculated
as Equation (5), where U′ is the collection of the users who are the most similar to
uk. Third, we consider uk’ rating scale by calculating the average rating (rk) of uk as
Equation (6), where C′ represents the collection of locations accessed by uk.

Actually, the equations shown here illustrate a well-known method [Adomavicius
and Tvzhhilin 2006; Nakamura and Abe 1998], which has been used widely in many
recommender systems. Hence, we do not explain them in more detail.

rk
c = rk + d

∑
uj∈U ′

sim(uk, uj) × (
r j

c − r j); (4)

d = 1
|U ′|

∑
uj∈U ′

sim(uk, uj); (5)

rk = 1
|c′|

∑
c∈C ′

rk
c , C ′ = {

c ∈ Ci|rk
c �= ∅}

; (6)

4.3. Location Understanding

Beside using collaborative filtering to infer a particular user’s interests on locations,
offline we understand the profiles of a geospatial region by exploring the categories of
the POIs within the region. Actually, what attracts people is not the region itself but
the POIs (contents), located in the region, such as shopping malls, restaurants and
cinemas. The motivations of this step lie in the following three parts.

(1) We aim to differentiate locations with different profiles, which enable the location
recommendation based on users’ requests on different occasions. Sometimes, an
individual prefers to get suggestions related to restaurants when he/she is looking
for a place for dinner, while on other occasions the individual might want to view
some recommendations about entertainments before going shopping.

(2) We can filter some regions, which might not be useful or attractive to individuals.
For instance, a region only covering people’s homes should not be recommended to
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users. However, it might appear in the discovered locations when many users from
a community live closely in the real world.

(3) By understanding the profile of a geospatial region, we are able to combine the
content-based method with collaborative filtering to reduce the cold start problem
of recommender systems.

In our system, we investigate four categories of POIs: restaurants (R), entertain-
ments (E), sports (S) and travels (T). Here, the entertainments include POIs of shop-
ping malls, cinemas, cafés and bars, etc. Then, a vector, Z = 〈R, E, S, T 〉, is formulated
for each region we discovered from users’ datasets. Each item of the vector denotes the
number of POIs pertaining to the corresponding category. For instance, Z = 〈2, 5, 0, 0〉
stands for a region that contains two restaurants and five entertainment entities. When
a region does not contain any POIs, we regard it as a travel place, that is, Z = 〈0, 0, 0, 1〉.
Intuitively, this situation occurs when users exploit new tourist spots in the real world.
In fact, a geospatial region usually covers various categories of POIs. Hence, we allow a
region to simultaneously hold multiple properties, such as restaurants and entertain-
ments.

With such a vector, Z, we are able to achieve the three objectives mentioned previ-
ously. For instance, if a user prefers to get recommendations related to sports, a region,
with Z = 〈2, 5, 0, 0〉, should be filtered on the results page (See Figure 2 for a case).
Meanwhile, as shown in Equation (7), given two vectors, Zj and Zk, of two regions, c j
and ck, we are able to infer their similarity using the cosine similarity measure.

Sim(c j, ck) = (zj . zk)
‖zj‖2 · ‖zk‖2

. (7)

Later, the ratings on the similar locations can enable the content-based recommen-
dation which will reduce the new item problem of collaborative filtering. In other words,
the users’ ratings (accesses) on a geospatial region can be used as estimated tastes of
these users on other locations which share similar profiles with the region. Therefore,
when a new location is discovered, we are able to obtain enough ratings from multiple
users and, hence accurately predict other users’ interests in it.

The process of understanding geospatial regions would not take many computations
due to the following two reasons. First, this process can be conducted offline; second, the
number of locations is constrained and increases very slowly. In short, we can perform
this process offline infrequently.

5. EXPERIMENTS

In this section, we first present the experimental settings, including the GPS devices,
volunteers, GPS data and some parameters we selected in the experiment. Then, us-
ing the GPS trajectories collected by 75 users over a period of one year, we evaluate
two aspects of our recommender system, friend recommendation and location rec-
ommendation. With regard to the friend recommendation, we compare our HGSM
with other measures, including the cosine similarity and Pearson similarity measure-
ments. Regarding the location recommendation, by performing a user study, we com-
pare our approach with the pure item-based collaborative filtering and random recom-
mendation.

5.1. Settings

5.1.1. GPS Devices. Figure 22 shows the GPS devices we chose to collect data. They
include stand-alone GPS receivers (Magellan Explorist 210/300, G-Rays 2 and QSTARZ
BTQ-1000P) and GPS phones. Except for the Magellan 210/300, these devices are set
to receive GPS coordinates every two seconds. Regarding the Magellan devices, we
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Fig. 20. Demographic statistics of our experiment.

Fig. 21. Distribution of GPS data used in the experiments.

configure their settings to record GPS points as densely as possible because they are not
allowed to be configured for recording data by fixed time interval. When an individual
changes his/her heading direction or speed to some extent, a GPS point is recorded
with such devices.

5.1.2. Volunteers. Carrying a GPS-enabled device mentioned in the 75 users, preceding
Section, 41 females and 34 males, recorded their outdoor movements with GPS trajec-
tories over the past year. All of the users are based in China, and most of them live
in Beijing. Figure 20 depicts the demographic information of these volunteers. More
than half of the volunteers were college students, 18 percent of them were employees of
Microsoft, and the rest of them came from a variety of corporations and organizations.
Their ages ranged from 19 to 35 years old, and their education background ranged
from undergraduate students to Ph. D. holders; the average age of the volunteers was
24. From these volunteers, we can conveniently discover human relationships, such
as friends, roommates, lovers, married couples, classmates, colleagues, neighbors, ac-
quaintances and strangers.

5.1.3. GPS Data. Figure 21 depicts the distributions of the stay points extracted from
the GPS dataset that we used in the experiment. The dataset covers 36 cities in China
and some cities in the USA, South Korea, and Japan. The volunteers are motivated
to log their outdoor movements as much as possible by the incentive payments based
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Fig. 22. GPS devices used in our experiments.

Table I. The Policies of Incentive Payment for the Data Collection

Policies Payment
Distance of a trajectory Price (RMB/KM)

0 < D < 30KM 0.2
Payment based on distance of a trajectory 30 < D < 60KM 0.15

60 < D < 200KM 0.1
D > 200KM 0

Payment based on stay points 3RMB per stay point
Awards for the top 3 GPS-carrying-rate 300RMB per person

for the top 3 effective-time-span 300RMB per person

Table II. GPS Dataset We Used in the Experiments

Carrying Period Number of Number of GPS Number of Stay Distance
(Month) Users Points (Million) Points (K) (K-KM)
Period <3 20 1.1 1.1 13
3< Period <6 21 1.5 1.6 18
6< Period <12 24 2.8 2.1 36
12< Period 10 1.6 2.8 69
Total 75 7.0 7.6 135.9

on the policy shown in Table I (the exchange rate is 1 US Dollar = 6.88 Chinese RMB
at this moment). This incentive policy is composed of three parts: the payment based
on the distance of a collected GPS trajectory, the payment based on number of stay
points, and the awards. The first two parts are tiny compensation for these volunteers’
travel since we do not want to change their behaviors. Regarding the award, the GPS-
carrying-rate means the ratio between the number of days in which a volunteer has at
least one trajectory and the period of data collection program. The effective-time-span
denotes the sum of the time duration of all the trajectories collected by a volunteer.
In other words, the more frequently a volunteer has carried a GPS device, the higher
these two values are. As a result, the total distance of the GPS trajectories has exceed
135 thousand kilometers, and the total number of GPS points reached almost 7 million
(6,963,824).

Table II details the information related to the dataset. Almost half of the volunteers
have carried a GPS device over 6 months, and three quarters of them have participated
in the data collection activity for a period over 3 months. Using the detection algorithm
presented in Figure 7, 7539 stay points have been extracted from the dataset. Consid-
ering the privacy issues, we use these datasets anonymously. In short, people cannot
build connection between a particular individual and their GPS trajectories.

5.1.4. Parameter Selection
Stay point detection. Regarding the range threshold, θd, in most cases, 150 ∼ 300 me-

ters could cover the geographical scales of most significant places, such as landmarks,
plazas and beaches. On one hand, a too small distance constraint, like 50 meters, will
cause many stays to remain undetected or be overdetected (refer to Figure 6). On the
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Fig. 23. The number of stay points detected by different time interval and distance thresholds.

other hand, a too large distance constraint, for example, 800 meters, would (1) make
the representation of a stay point imprecise (a big region could cover many businesses)
and (2) cause multiple stays of a user merged into one stay point. Regarding the time
threshold, using a short time interval like 5 minutes, a stay point would be detected
at some insignificant places, such as bus stops or cross roads where people wait for
the red light. On the contrary, a long time interval, such as 2 hours, would cause some
significant stays to remain undetected, e.g., generally, people would not spend too much
time in a fast food store or at a plaza.

In our experiment, when detecting stay points from a given GPS trajectory, we set
θ t to 30 minutes and θd to 200 meters. In other words, if an individual stays over
30 minutes within a distance of 200 meters, a stay point is detected. Basically, these
two parameters are derived from real-world commonsense knowledge. Meanwhile, we
tested a set of parameter candidates and observe (from Figure 23) that the numbers of
detected stay points are close to each other when 20 ≤ θt ≤ 40 minutes and 150 ≤ θd ≤
300 meters. Especially when θ t is set to 30 minutes, the numbers of stay points do not
change too much even if θd is configured to different values, 200, 250 and 300 meters.

Therefore, (1) selecting θd = 200 meters and θt = 30 minutes would not affect the
final recommendations too much even if they might not be the perfect candidates.
(2) These two parameters enable us to find out some significant places, such as restau-
rants, landscapes and shopping malls, while ignoring the insignificant locations, like
the cross road and bus stops.

Clustering. A density-based clustering algorithm called OPTICS [Ankerst et al. 1999]
is employed to hierarchically cluster stay-points into geospatial regions in a divisive
manner. As compared to an agglomerative method like K-Means, the density-based
approach is capable of detecting clusters with irregular structures which may stand
for a set of nearby restaurants or travel spots. The clustering operation is conducted
iteratively until one of the following conditions hold. (1) The number of users pertaining
to a cluster is less than two or (2) the diagonal of a cluster’s minimal boundary rectangle
(MBR) in geospace is smaller than 500 meters. Taking these parameters, we establish a
5-layer hierarchical structure which provides each user with a consistent framework to
build individual hierarchical graphs. Table III details the information of the framework;
the top layer is referred to as layer 1 (higher) and the bottom layer is called layer
5 (lower).

Sequence matching. Two parameters are involved in the process of sequence match-
ing; one is the temporal constraint, p, the other is the sequence partition threshold,
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Table III. Information of the Shared Framework

Number of Average diagonal of Average number of Average number of
Layer Cluster MBR (KM) user/cluster stay points/cluster
1 1 11450.7 75 7,539
2 29 15.5 10.8 259
3 47 8.3 8.9 158
4 91 2.4 6.5 81
5 150 0.28 5.5 49

Fig. 24. Differentiate the significances of similar sequences with different length and on different layers.

tp. p is used to check whether the transition time of two users is similar, while tp is
employed to partition a long sequence into a set of short subsequences for improving
matching efficiency. In the experiments, we test a set of tp (24 h, 36 h, 48 h) and p (from
0.01 to 0.65 with a step of 0.02), and show the sequence matching results changing
over them.

Similarity measurement. To differentiate the significance of similar sequences with
different lengths and on different layers, we set β = 2len−1, and α = 2l−1. Here β
increases exponentially with the lenght of sequence, len, since we observe that the
occurrence of len-length similar sequences drops exponentially as the len increases
(See Figure 24(a)). Thus, the significance of an occurrence of a len-length similar
sequence increases exponentially with len. At the same time, as depicted in Figure
21(b), the average occurrence that two users share a cluster on the l-layer drops
exponentially as the l increases. Therefore, the significance of similar sequences found
on l-layer increases exponentially with l.

Location recommendation. In our experiments, the top 50 similar users are selected
as a subject’s potential friends considering the following three reasons. First, during
the process of the experiment, we observe that more than 20 unvisited locations can
be retrieved for a subject from the location histories of the top 50 users that are
similar to them. Those are enough for the further location recommendation, as we only
provide a subject with the top 10 recommendations in our system. Second, intuitively,
the recommended locations would not change even if we involve more similar users’
location histories. If a place is not included by the location histories of the top N similar
users, the inferred interest of the subject in that place cannot be very high. Hence, the
place will not be recommended. 3) From the implementation’s perspective, using top
N similar users will make the system more efficient and easy to control. Imagining we
would have 1 million users in the future; the computation would be extremely high
using the whole user set.
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Table IV. Examples of Users’ Profiles Shown in the Questionnaire

Name Gender Affiliation Living place
Yukun Chen male Microsoft Research Asia Tsinghua university, Beijing
Yechen Hao female Deloitte CPA company Xiushuiyuan community, Beijing
Quannan Li male Huazhong university Wuhan, Hubei, China
. . . . . . . . . . . .

Table V. Detailed Relevance Settings

Relevance level Relationships suggestion
4 Strongly similar Family members, intimate lovers, roommates
3 Similar Good friends, close colleagues, close classmates
2 Weakly similar Ordinary friends, acquaintances, neighbors in a community
1 Different Strangers in the same city
0 Quite different Strangers in other cities

Based on these friends’ location histories, we recommend for each subject the top
ten geospatial regions. Meanwhile, if the number of users visiting a location is less
than five, the content-based method is used to reduce the cold start problem. The top 5
similar regions to this location are employed to expand the ratings on the location.

5.2. Evaluation Approaches

5.2.1. Evaluation of Friend Recommendation
Ground truth. After the data collection, we present each user with a name list of

all the volunteers with a simple user profile, as shown in Table IV. To protect a user’s
privacy, the information, e.g., living places, is not very detailed. Each user is required
to rate other users based on individual understanding and the relevance suggestion
shown in Table V. Then, a relation matrix of these volunteers is generated and is used
as the ground truth to evaluate the recommendation results for each user. As these
volunteers rate each user in a stand-alone manner, the relevance rating between two
users might be asymmetric, that is, though user u1 rates 2 on u2, u2 may not rate 2
on u1.

Of course, we agree that the perfect evaluation should be conducted only using the
data from strangers. But, at that moment, it would be even more difficult to get the
ground truth of users’ relationships. Although this ground truth might not be perfect,
it is the best way we can conceive.

In the 75 users, we identified only 1 married couple and 2 pairs of intimate lovers.
Typically, they traveled together four times per month (because they live in different
parts of Beijing and only meet on weekends). They are the people who are most likely to
travel together. Although other users could have friendships, the frequency of traveling
together is very rare (because they might live in different parts of a city and have
different living routines). In short, the percentage of colocated traces is very small
(<2%) which would not affect the validity of the evaluation results very seriously.

Evaluation Framework. As demonstrated in Figure 25, our approach is evaluated as
an information retrieval problem, in which 75 people are, respectively, used as queries
to search for each of them the top ten similar users. For instance, using uk as a query, we
retrieve the top ten similar users based on their similarity score to uk. Then, a relevance
vector, G, of the search results is formulated based on the relationship matrix. Given
the retrieved G and the corresponding ground truth, we calculate MAP and NDCG for
this retrieval. After all the volunteers have been tested, we calculate a mean value of
MAP and NDCG based on each individual’s results.
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Fig. 25. The framework of evaluation on friend recommendation.

Evaluation Criteria. MAP and NDCG are employed to evaluate the performance of
our approach. MAP is the most frequently used summary measure of a ranked retrieval
run. In our experiment, it stands for the mean of the precision score after each relevant
user is retrieved. In the search results, a user is deemed as a relevant user if his/her
relevant level is greater than or equal to 3. For instance, the MAP of a relevance vector,
G = 〈4, 0, 2, 3, 3, 1, 0, 2, 1, 1〉 is computed as follows:

MAP = 1 + 2/4 + 3/5
3

= 0.7.

NDCG is used to compute the relative-to-the-ideal performance of information retrieval
techniques [Jarvelin et al. 2002]. The discounted cumulative gain of G is computed as
follows. (In our experiments, b = 2.)

DCG[i] =

⎧⎪⎪⎨
⎪⎪⎩

G[1], if i = 1
DCG[i − 1] + G[i], if i < b

DCG[i − 1] + G[i]
logbi

, if i ≥ b.

(8)

Given the ideal discounted cumulative gain, DCG’, then NDCG at i-th position can be
computed as NDCG[i] = DGC[i]/DCG′[i].

Baselines. We compare our HGSM with three baselines; similarity by count, the
cosine similarity and Pearson similarity. The first method measures the similarity
between two users by counting the regions shared by these two users. It is an intuitive
method that most people might conceive. The rest are the cosine similarity and the
Pearson similarity measures, which have been widely used in recommendation systems
and have been claimed to outperform other existing similarity measures [Spertus et
al. 2005]. Suppose N = |Ci| clusters {cij ∈ Ci, 1 ≤ j ≤ N} are generated on the i-th
layer of the shared framework. If in the cluster cij , u1 has mj stay-points and uz has
m′

j stay-points, two vectors can be respectively constructed for u1 and u2 as follows,

U1 = 〈m1, m2, . . . mj, . . . , mN〉 and U2 = 〈m′
1, m′

2, . . . , m′
j, . . . , m′

N〉.
The similarity by count is computed as Equation (9):

simcount(u1, u2) =
N∑

j=0

min(mj, m′
j) (9)
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Table VI. Detailed Ratings

Ratings Score Notations
R1 2 Very interesting
R2 1 Interesting
R3 0 Neural
R4 −1 Boring

The cosine similarity and Pearson similarity are computed as Equation (10) and Equa-
tion (11), respectively:

simcosine(u1, u2) =
∑

j mjm′
j√∑

j m2
j

√∑
j (m′

j)2
(10)

simpearson(u1, u2) =
∑

j (mj − U1)(m′
j − U2)√∑

j (mj − U1)2
∑

j (m′
j − U2)2

(11)

5.2.2. Evaluation of Location Recommendation
Evaluation Framework. Regarding the evaluation of the location recommendation,

we conduct a user study which uses Beijing as a test region, that is, only the locations
located in Beijing will be recommended. 30 volunteers, 15 females and 15 males, were
invited to participate in the study. They are a subset of the 75 users collecting data for
us. Also, each of them has been in Beijing for at least 6 years and has accumulated at
least two-months of GPS trajectories. In short, they have rich travel knowledge about
Beijing and could be more likely to give a reasonable evaluation on the recommen-
dations than others. In this study, using our prototype system, each volunteer was
respectively recommended ten geospatial regions based on their location history (refer
to Figure 3 for an example) on a desktop computer. These ten regions may contain dif-
ferent types of POIs, such as businesses, cinemas and restaurants, because no filtering
has been performed. Later, the volunteer is requested to offer his/her feedback on each
recommended location by giving one of the ratings shown in Table VI.

In order to test the effects of the various scales of GPS trajectories on the recom-
mendation results, we repeat this study three times based on the GPS trajectories
collected by users over different periods. In the first run, we study the effectiveness of
the location recommendation using these subjects’ GPS trajectories for two weeks. In
the second run, the subjects’ GPS trajectories for one month are used. Finally, their
GPS trajectories for three months are employed in the third run of the study.

Evaluation Criteria. After performing a user study, we investigate the following two
aspects of the criteria; one is the average score (s̄), the other is the percentage of
each rating (P(Ri)) in the subjects’ feedback. These two criteria can be computed as
Equations (12) and (13);

s̄ = �N
k �m

j rk
j . score

N
, (12)

P(Ri) = �N
k uk . |Ri|
N ∗ m

, (13)

where N stands for the number of the volunteers that participated in the study and
m denotes the number of locations recommended to a user, here, N = 30, m = 10.
Meanwhile, rk

j ·score represents uk’s rating on location c j , and uk.|Ri| means the number
of ratings pertaining to Ri in uk’s feedback. In other words, the higher s̄ is, the better
the location recommendation might be; the higher P(R1) and P(R2) are, the better the
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recommendation might be. On the contrary, the higher P(R3) and P(R4), the worse the
recommendation would be.

Baseline. We compare our approach with two baseline methods, pure-item-based
recommendation and random recommendation. In the former method, a geospatial
region is regarded as an item and the occurrences of an individual on this region
are deemed as his/her ratings on the region. Then, by integrating all users’ location
histories, an item-based collaborative filtering, slope-one algorithm [Lemire et al. 2005]
is employed to infer the individual’s tastes on the regions he/she does not visit. In
contrast to our approach, this method does not take into account the similarity between
users to weight the ratings of different users. In the latter baseline, the system will
randomly recommend to a particular user a set of geospatial regions the user does not
visit.

5.3. Results

5.3.1. Results of Friend Recommendation
Notations. We define some notations shown in the following figures. Seq stands

for the similarity measure considering only the sequence feature, and Hier denotes
the measure considering the hierarchy property of geographical spaces. IDF means
the similarity measure taking into account the factor of visited popularity (inverse
document frequency). Thus, Seq+IDF+Hier (our HGSM) represents the measure of
similarity simultaneously considering the sequence, IDF and hierarchy properties.
Meanwhile, Count means similarity-by-count on the bottom layer, and Hier+Count
represents similarity-by-count across multilayers. Cosine and Pearson respectively de-
note the cosine similarity and the Pearson similarity on the bottom layer. Likewise,
Hier+Cosine and Hier+Pearson, respectively, represent the cosine similarity and Pear-
son similarity across multilayers.

Objectives. We focus on investigating the effectiveness of the proposed properties,
sequence, hierarchy and IDF, in measuring the similarity between users. In addition,
we test the performances of the combination of these features and study their contri-
butions to the baseline measures, such as the cosine and Pearson similarities.

Comparison of Different Measures. Figure 26 and Figure 27, respectively, depict the
MAPs and NDCG of different similarity measures. From the data shown in these
figures, we can obtain the following results.

First, in contrast to the baselines, the sequence property is more powerful in mod-
eling users’ location histories and differentiating the people with various degrees of
correlations.

Second, the IDF feature brings a significant improvement to the measure only based
on sequence property. In addition, with this IDF feature, the performances of the
baseline methods have also been enhanced.

Third, by taking into account the hierarchy property, we can further improve the
performance of our approach. However, this feature is not that useful for the baseline
methods, that is, the hierarchy property can achieve a good performance only when
it is used together with the sequence property and IDF. Otherwise, it may cause the
suspicion of an over-count of the similarity between two users on a lower layer.

Finally, our method, HGSM (Seq+IDF+Hier), employing these three features, out-
performs other methods in measuring the user similarity.

Sequence Matching of HGSM. To further explore the property of HGSM, Figure 28
and Figure 29, respectively, show the MAP and NDCG@5 of HGSM changing over the
temporal constraint p and the sequence partition threshold tp. Three tp candidates,
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Fig. 26. Comparison of MAP among different similarity measures.

Fig. 27. NDCG@5 and NDCG@10 of different similarity measures.
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Fig. 28. MAP of HGSM changing over the temporal constraint p and partition threshold tp.

Fig. 29. NDCG@5 of HGSM changing over the temporal constraint p and partition threshold tp.

24 hours, 36 hours, and 48 hours, are tested in the experiment. In other words, if the
time interval between consecutive nodes in a sequence exceeds 24 (or 36, or 48) hours,
the sequence will be divided into two subsequences for better efficiency of similar
sequence matching. As we can see, when p is set to a small value like 0.05, HGSM
cannot achieve a good performance. Intuitively, some similar sequences will not be
detected from two users’ location histories due to the over strict temporal constraint.
This will reduce the capability of HGSM in differentiating similar users of various
degrees. On the contrary, if the p is configured as a very large value, like 0.65, some
sequences, which are not that similar will be regarded as similar ones; hence, the
performance drops. Thus, we select p = 0.41, tp = 48 hours in our experiments.

Hierarchy of HGSM. Table VII shows the MAP and NDCG of our approach using only
one layer of the proposed framework. As we can see, both MAP and NDCG increase as
the level of layer increases, that is, layer 5 is more capable of discriminating similar
users than layer 4, while the approach considering the hierarchy property achieved the
best performance.
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Table VII. MAP and NDCG Changing on Different Layer

Layer-2 Layer-3 Layer-4 Layer-5 Multi-layer
MAP 0.607 0.713 0.829 0.878 0.92
NDCG@5 0.647 0.743 0.839 0.901 0.931
NDCG@10 0.675 0.771 0.847 0.92 0.923

Table VIII. The Results of the User Study on Location Recommendation

Percentage of Ratings
Mean Score

User Study Recommender P(R1) P(R2) P(R3) P(R4) (s̄)
The 1st run (2-week) HGSM-Based CF + Content 0.253 0.438 0.222 0.087 0.857

HGSM-Based CF method 0.231 0.420 0.256 0.093 0.789
Item-Based CF method 0.225 0.434 0.267 0.074 0.810
Random Recommendation 0.167 0.324 0.328 0.181 0.477

The 2st run (1-month) HGSM-Based CF + Content 0.354 0.418 0.183 0.045 1.081
HGSM-Based CF method 0.299 0.404 0.239 0.058 0.944
Item-Based CF method 0.285 0.424 0.227 0.064 0.930
Random Recommendation 0.171 0.335 0.319 0.175 0.502

The 3rd run (2-month) HGSM-Based CF + Content 0.365 0.422 0.172 0.041 1.110
HGSM-Based CF method 0.321 0.411 0.203 0.065 0.988
Item-Based CF method 0.315 0.406 0.219 0.06 0.976
Random Recommendation 0.206 0.292 0.295 0.207 0.497

5.3.2. Results of Location Recommendation. Table VIII presents the results of the user
study we performed to evaluate the location recommendation. Using the GPS trajec-
tories collected by 30 subjects over different periods (2 weeks, one month, and two
months), we compare our system with two baseline methods (item-based collaborative
filtering (CF) and random recommendation). Meanwhile, the contributions brought by
the content-based method have been studied. In addition, the effectiveness of our loca-
tion recommendation affected by a user’s data scale can also be revealed through the
study.

First, using the two-week dataset of these users, the preliminary HGSM-based CF
approach showed clear advantages over the random recommendation; however, this
approach does not outperform the item-based baseline method. After we incorporate
the content-based method into the HGSM-based CF, the performance of our method
has been significantly improved. Using the ANOVA test, we can view the statistical
results on the two methods with and without integrating the content-based method.

P(R1) : F(1, 30) = 9.73, p < 0.01; P(R2) : F(1, 30) = 7.86,

p < 0.01; s̄ : F(1, 30) = 10.61, p < 0.01.

In short, combined with the content-based method, the percentage of R1 and that of
R2 (refer to Table VI) of our method have been significantly enhanced in the evaluation
results, i.e., more places matching users’ tastes have been recommended. Meanwhile,
the mean score of the evaluations offered by users has been clearly improved.

In contrast to item-based CF method, however, our approach, incorporating content-
based method, does not show significant advantages.

P(R1) : F(1, 30) = 6.32, p < 0.05; P(R2) : F(1, 30) = 3.57,

p < 0.08; s̄ : F(1, 30) = 9.61, p < 0.01,

On one hand, according to the mean score s̄, our method is significantly better than
that of item-based CF method as p < 0.01. On the other hand, although the average
value of P(R1) and P(R2) of our method are slightly bigger than that of item-based CF
method, the difference is not very significant (as both p > 0.04).
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With a small scale of GPS trajectories, our method becomes less capable of measuring
the similarity between users. Therefore, the inferred ratings of a location might not
that accurate.

Second, using the 1-month dataset, the HGSM-based method starts to present its
advantages beyond the baseline methods. When combined with the content-based
method, the HGSM-based approach achieved a significant improvement and clearly
outperformed other methods.

In contrast to item-based CF method:

P(R1) : F(1, 30) = 15.25, p < 0.01; s̄ : F(1, 30) = 11.61, p < 0.01,

that is, the percentage of R1 and the mean score of our approach (incorporating the
content-based method) is significantly higher beyond the item-based CF method. This
means that more geospatial regions which strongly interest an individual have been
recommended to the individual using our method.

In addition, we observe a clear improvement on the performance of our method
over that shown in the first run (P(R1) : F(1, 30) = 23.65, p � 0.01; s̄ : F(1, 30) =
18.35, p � 0.01).

Third, with the two-month dataset, our method continues enhancing its performance
and shows its advantages over the baseline.

In contrast to the item-based CF method:

P(R1) : F(1, 30) = 14.53, p < 0.01; s̄ : F(1, 30) = 13.26, p < 0.01.

In short, our method significantly outperforms the item-based CF method.
Although the performance of our method using the 2-month dataset is beyond that

using the 1-month dataset, the improvement is not as much as expected.

P(R1) : F(1, 30) = 4.73, p < 0.05; s̄ : F(1, 30) = 6.13, p < 0.08.

The reason behind this phenomenon lies in the recommendation policy; we do not
recommend places a user visited previously. On one hand, with a relatively large
dataset, we are more likely to accurately estimate the similarity between users and
properly infer a particular user’s interests on an unvisited region. Thus, more places
matching the user’s tastes might be recommended. On the other hand, fewer regions
remain for recommendation since the individual’s location history might have covered
many places.

5.3.3. User Feedback. When performing the user studies, we recorded some users’ feed-
back and comments on our system. Typically, users’ will be faced with four situations
when giving feedback based upon a recommended location.

(1) The recommended locations have been visited by a user although the user’s GPS
trajectories have not covered these locations (perhaps they had no GPS recording
device during previous visits). Therefore, such users are very confident in giving an
evaluation on the recommended places shown on Web maps. For example, Yi Du
said, “This is Houhai. I have been to this place twice, since the bars located in this
place are very nice. From my perspective, it is better than Sanlitun village.”

(2) A user has not visited a recommended location, however, this location contains some
POIs, which are branches of the businesses (e.g., a different branch of Starbucks)
that a user previously accessed and is interested in. In these cases, the users can
also show their confidence when giving an evaluation. For instance, Yechen Hao
said, “There is a branch of JiaoYe (a famous Thai-food restaurant) in this region.
I tried another branch restaurant of JaioYe in Zhongguanchun when celebrating
the birthday of my friend last year. It is very impressive, as you can watch a
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Thai-culture show when enjoying pretty Thai-food. So, I believe this branch of
Jiaoye deserves to be tried again.”

(3) A user has not been to the recommended location while the location contains some
POIs whose categories interest a user. For example, Quannan Li said, “There is a
lake located in this region. I would like to travel to this place as I like lake and fresh
air.” Another example is, “There is a fantastic mall where I can go shopping, watch
a movie, and enjoy Taiwanese food. It looks very similar to ShuangAn shopping
mall,” said Tingting. Although the subject’s confidence is not as strong as if his/her
faced with the previous two situations, he/she still can offer his/her evaluations
on the recommended location. The more categories that interest the user in the
recommended region, the better the evaluation the user could give to the region.

(4) A user has not visited the recommended places which do not contain any POIs or
categories the subject is familiar with. In this case, a subject typically spends a
relatively long time generating his/her evaluation on the places, and his/her con-
fidence in this evaluation drops below the previous three situations. For instance,
Yukun said, “it is difficult to identify what would be interesting within this region
from the maps. Maybe they might be nice, but I do not know how nice it would be
to me.”

Because the users we selected to participate in the user study have been in Beijing
for more than 6 years, they have rich knowledge and travel experiences about Beijing.
In short, most evaluations offered on the recommended locations can be covered by
the first three situations. Hence, the evaluation would be as accurate as if they really
travel to the recommended locations.

5.4. Discussion

5.4.1. Location History Modeling
Stay Point Detection. The reasons we detect stay points using the algorithm shown

in Figure 7, rather than directly clustering raw GPS points, lie in two aspects. (1)
First, as depicted in Figure 30(a), most significant places, like shopping malls and
restaurants, cannot be detected if we directly cluster raw GPS points. As GPS devices
lose satellite signal indoors, few GPS points will be generated on such places. Thus,
the density of points recorded there cannot satisfy the condition to formulate a cluster.
On the contrary, some regions, like road crossings, that a user iteratively passes but
does not carry semantic meanings, will be extracted. (2) To address this problem,
an interpolation operation should be conducted for each user’s GPS trajectories. For
example, some GPS points should be interpolated between the last point recorded
before a user entered a shopping mall and the first point recorded after the user came
out from the mall. Then, the clustering algorithm could make sense. Now, we have
GPS trajectories collected by 75 users over a period of 1 year. So, after interpolation
we would have 75 (users) × 365 (day) × 24 (hours) × 3600 (Seconds) = 2,365,200,000
(as different GPS devices have different configurations, only 1 second/point can make
the interpolated data consistent). The computation of clustering such a big dataset will
be extremely heavy and will become a terrible disaster with increasing users. What
are we supposed to do if there are thousands of users in the near future? Actually, it
is very easy to reach this scale with thousands of users even if we do not perform the
interpolation.

As demonstrated in Figure 30(b), the boundary problem of the grid-based partition
method might also miss significant places. In other words, the geospatial region of a
shopping mall might be split into several grids, in each of which the density of GPS
points would not reach the condition to formulate a cluster.
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Fig. 30. Other possible stay-point-detection algorithms.

Clustering. Human trajectories show a high degree of temporal and spatial regu-
larity [Gonzalez et al. 2008]. Each individual is characterized by a time-independent
characteristic travel distance and a significant probability to return to a few highly
frequented locations. Therefore, as compared to other methods using predefined grids
or administrative regions to build hierarchy, clustering user-generated stay points is
a data-driven approach which is more likely to feature the distribution of users’ spa-
tiotemporal data. Also, this method can discover the regions with semantic meanings
and irregular structures, such as shopping streets and pretty beaches. Meanwhile, in
contrast to clustering raw GPS points, grouping users’ stay points can generate a more
precise presentation of users’ stays and save lots of computation.

5.4.2. User Similarity Measure.
Sequence Property. We are not surprised at the advantage of sequence property (over

a set of separated locations) as shown in the experimental results, due to the following
reasons. A sequence of geographic regions (1) can better model users’ movements, and
(2) reveals the correlation between a user’s individual behaviors at different places.
Therefore, beyond individual locations, the sequence property can present a more com-
prehensive view of a user’s preferences and intention. The following cases can justify
our claim.

One example can be described using two well-known types of people traveling to
Xidan (a shopping street) and Houhai (a bar street along a pretty lake) in Beijing. One
type of person typically travels to Xidan before visiting Houhai. He/she likes drinking
in the bars of Houhai while these bars would not open until the evening. So, he/she can
go shopping first in Xidan, and then travel to Houhai. On the contrary, the other type
of person, who does not like the noisy bars, prefers to travel to Houhai first and then go
to Xidan for shopping. In the daytime, Houhai is quiet and pretty; therefore, people can
enjoy the natural scene of the lake nearby Houhai. Although these two types of people
have visited Xidan and Houhai, their intention and preferences are quite different.
One prefers the bars (entertainment); the other likes nature scenes (travel). Without
the sequence property, we cannot differentiate these two types of people from their
individual behaviors.

Another example can be introduced using the interns of Microsoft Research Asia
(MSRA). Some students from Tsinghua University perform an internship in MSRA.
Typically, they would generate a sequence of “Tsinghua → MSRA.” Occasionally, some
famous professors from the USA would visit MSRA and Tsinghua University at dif-
ferent times but they would not access these two places in a sequence. Maybe, they
would travel to these two places in different trips (e.g., visit MSRA in January while
traveling to Tsinghua in June) or start from the hotel they are staying at (e.g., MSRA →
Hotel → Tsinghua). Obviously, the interns and professors are different types of people
since they have different intentions and preferences when visiting these two places.
However, the professors could share the same location history with the interns of MSRA
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Fig. 31. The discovered locations within a given geospatial range.

(Tsinghua and MSRA). In short, we cannot differentiate them if we do not take into
account the sequence property.

In the cases mentioned, the measure of similarity-by-count, the cosine similarity and
the Pearson similarity cannot successfully differentiate between these people as they
do not take into account the sequence property.

Hierarchy Property. In general, Figure 26 and Figure 27, respectively, present the
contribution of the hierarchy property of HGSM over the single-layer method. Further,
Table VI illustrates how this contribution is generated by investigating the performance
of each layer of the hierarchy. The layer with a finer granularity is more capable of
differentiating similar users from each other beyond the layer with a coarse granularity.
Imagine that a cluster might cover a whole city on a higher layer of the hierarchy. At this
moment, users living in this city are indistinctive if we only explore user similarity on
that layer. On the contrary, if we only consider users’ location histories on the layer with
a fine granularity, users’ high-level movements would be neglected. Thus, some similar
users would be missed. For instance, two individuals travel from Beijing to Seattle
frequently while they share little location history within Beijing. In this case, the
similarity between the two users cannot be well recognized if we only investigate their
movements on the bottom layer. Overall, the layer with a relatively fine granularity
improves HGSM’s capability of precisely differing similar users, while the layer with a
relatively coarse granularity enhances HGSM’s capability of recalling similar users.

5.4.3. New Users Problem
The new user problem will affect two aspects of our system, scalability and the cold
start.

Scalability. In the experiments, we observed that the number of locations discovered
in a fixed geospatial range does not continue to increase when the number of users
joining in our system exceeds a certain value. As depicted in Figure 31(a), we randomly
add the stay points detected from 75 users’ location histories step by step into the
dataset, which will be hierarchically clustered into several regions. As a result, in a
geospatial range of 3 kilometers by 3 kilometers, the number of discovered locations
does not increase any more when the number of stay points exceeds 4000. Figure 31(b)
illustrates the distribution of these locations within the given geospatial range. Also,
the cooccurrence of two locations in users’ GPS trajectories is demonstrated with some
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directed lines. Here, an edge between two locations means that at least 5 users have
traveled to these two locations in a sequence; the direction of which is specified by an
arrow.

Motivated by the above observation, rather than rebuilding the framework with
the arrival of new users, we can insert the stay point of a new user into the existing
framework, F, and update the framework in a relatively low frequency, e.g., 1 update
per week. Meanwhile, it is not necessary to recalculate the similarity between users
once someone uploads some new GPS trajectories. Adding a few days GPS trajectories
to an individual’s dataset would not cause many changes in the user similarity matrix.

Cold Start. Typically, a new user could have little data when they join in this Web
community. Thus, we are not able to infer their interests in locations no matter what
kinds of recommendation techniques we use. In our system, we recommend the top N
locations with the most visited popularity to a user having little GPS trajectories.
Later, when the time span of the user’s dataset reaches a certain value, for example,
two weeks, we use HGSM to measure the similarity between him/her and others.

5.4.4. New Locations Problem. When a new location appears in the system, it represents
that at least a few people have visited this place. Otherwise, it is impossible to formulate
a cluster on this region when we perform density-based clustering. In other words, we
can obtain a few ratings on this region from several people once the region is discovered
by the system. Hence, the cold start problem of our system is not as serious as other
recommenders. However, a location with a few ratings might also face the challenges
of being ignored during the process of the recommendation. Therefore, we combine
the content-based method with collaborative filtering to offer a better recommendation
result. By exploring the categories of POIs within geospatial regions, we are able to
find some regions similar to a new location based on their profiles. Later, other users’
ratings on these regions can be used as estimated ratings of these users on this new
location.

6. RELATED WORK

6.1. Mining Location History

6.1.1. Mining Personal Location History. Motivated by the convenience of data collection,
some research has been performed based on individual GPS data during the past years.
These works include detecting significant locations of a user [Ashbrook et al. 2003;
Hariharan and Toyama 2004], predicting the user’s movement among these locations
[Krumm and Horvitz 2007 and Liao et al. 2005], and recognizing user-specific activities
at each location [Liao et al. 2004 and Patterson et al. 2003]. As opposed to these works,
we aim to mine knowledge from multiple users’ location histories rather than recognize
user-customized activity. Hariharan and Toyama [2004] proposed the concepts of stay
points and destinations which can be used to model a particular users’ location history
based on GPS trajectories. Although the stay-point-detection method is similar to our
approach, in this article, we aim to not only model an individual’s location history but
also make multiple users’ location histories comparable and understandable.

6.1.2. Mining Multiple Users’ Location Histories. Gonotti et al. [2007] developed an exten-
sion of the sequential pattern mining paradigm that analyzes the trajectories of moving
objects. The trajectory pattern they called represents a set of individual’s trajectories
that share the property of visiting the same sequence of places with similar travel
times. MSMLS [Krumm et al. 2006] uses a history of a driver’s destination along with
data about driving behavior extracted from multiple users’ GPS trajectories to predict
where a driver may be going as a trip progresses. Zheng et al. [2008a, 2008b, 2010b]
aim to infer users’ transportation modes, such as walking and driving, based on the
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GPS trajectories of 60 individuals. Meanwhile, respectively using location-acquisition
techniques of 802.11 [Krumm and Horvitz 2004] and GSM networks [Timothy et al.
2006], some projects attempt to recognize user mobility, such as stationary and walking,
from the location histories of a group of people. In contrast to the techniques mentioned
previously, we extend the paradigm of mining multiple users’ location histories from
recognizing user behaviors to understanding the correlation between user behaviors.

6.2. Common Recommendation Systems

Typically, a recommender system compares a user’s profile to some reference charac-
teristics and seeks to predict the rating that the user would give to an item they had
not yet considered. These characteristics may be from the information of items (the
content-based approach) or the user’s social environment (the collaborative filtering
approach). Recommender systems are usually classified into the following categories
based on how recommendations are made [Balabanovic and Shoham 1997].

(1) Content-based recommendations. The user will be recommended items similar to
the ones the user preferred in the past.

(2) Collaborative recommendations. The user will be recommended items that people
with similar tastes and preferences liked in the past.

(3) Hybrid approaches. These methods combine collaborative and content-based
methods.

6.2.1. Collaborative Filtering. The general idea behind collaborative filtering [Goldberg
et al. 1992 and Nakamura and Abe 1998] is that similar users vote in a similar manner
on similar items. Thus, if similarity is determined between users and items, a potential
prediction can be made for the vote of a user for some items. According to Breese et al.
[1998], algorithms for collaborative recommendations can be grouped into two general
classes, memory-based (or heuristic-based) and model-based.

Memory-Based. Memory-based algorithms essentially are heuristics that make rat-
ing predictions based on the entire collection of previously rated items by the users
[Adomavicius and Tuzhhilin 2006]. That is, the value of the unknown rating for a user
and an item is usually computed as an aggregate of the ratings of some other (usually,
the N most similar) users for the same item. There are at least two classes of memory-
based collaborative filtering; user-based [Shardanand and Mayes 1995 and Resnick
et al. 1994] and item-based techniques [Lemire and Maclachlan 2005 and Badrul et al.
2001].

(1) User-based techniques are derived from similarity measures between users. The
similarity between two users, (A and B), is essentially a distance measure and is
used as a weight. In other words, when predicting the rating of user A on an item,
the more similar the user A and B are, the more weight the rating of user B will
carry on the item. Various approaches have been used to compute the similarity
between users in collaborative recommender systems. In most of these approaches,
the similarity between two users is based on their ratings of items that both users
have rated. The two most popular approaches are correlation and cosine-based. In
a social network, a particular user’s neighborhood with similar tastes or interests
can be found by calculating the Pearson correlation [Sarwar et al. 2000]. Further,
by collecting the preference data of the top-N nearest neighbors of the particular
user, the user’s preferences can be predicted by calculating the data using certain
techniques. Spertus et al. [2005] present an extensive empirical comparison of six
distinct measures of similarity for recommending online communities to members
of the Orkut social network. As a result, they found that the cosine similarity
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measure showed the best empirical results, beyond that of other measures, such as
log odds and point-wise mutual information.

(2) Item-based techniques predict the ratings on one item based on the ratings on an-
other item. Examples of binary item-based collaborative filtering include Amazon’s
item-to-item patented algorithm [Linden et al. 2003] which computes the cosine
similarity between binary vectors representing the purchases in a user-item ma-
trix. Slope one [Lemire and Maclachlan 2005] is the simplest form of nontrivial
item-based collaborative filtering based on ratings. Their simplicity makes it es-
pecially easy to implement them efficiently, while their accuracy is often on a par
with more complicated and computationally expensive algorithms.

Model-Based. In contrast to memory-based methods, model-based algorithms [Getoor
and Sahami 1999 and Hofmann 2003] use the collection of ratings to learn a model
which is then used to make rating predictions. For example, Breese et al. [1998] pro-
posed a probabilistic approach to collaborative filtering. It is assumed that rating
values are integers between 0 and n, and the probability expression is the probability
that a user will give a particular rating to an item given that user’s ratings of the
previously rated items. Hofmann [2003] proposed a collaborative filtering method in
a machine learning framework where various machine learning techniques (such as
artificial neural networks) coupled with feature extraction techniques can be used.

6.2.2. Hybrid Approaches. Several recommendation systems use a hybrid approach by
combining collaborative and content-based methods which helps to avoid certain limi-
tations of content-based and collaborative systems. Different ways to combine collabo-
rative and content-based methods into a hybrid recommender system can be classified
as follows [Adomavicius and Tuzhhilin 2006].

(1) Implementing collaborative and content-based methods separately and combining
their predictions [Pazzani 1999 and Claypool et al. 1999];

(2) Incorporating some content-based characteristics into a collaborative approach
[Melville et al. 2002 and Good et al. 1999];

(3) Incorporating some collaborative characteristics into a content-based approach
[Soboroff and Nicholas 1999];

(4) Constructing a general unifying model that incorporates both content-based and
collaborative characteristics [Basu et al. 2001].

In our work, we incorporated a content-based method into a user-based collaborative
filtering algorithm to estimate the rating of a user on an item. The major difference
between our work and the techniques mentioned previously lies in two aspects. One
is that we extend the direction of user similarity exploration from people’s online
behaviors to the real-world location histories. The other is the novel measure, HGSM,
we designed to estimate the similarity between users.

6.3. Location-Based Recommender System

6.3.1. Systems Based on Real-Time Location. Quite a few recommender systems take into
account a particular user’s current geographic location when recommending content
to the user. Yang et al. [2008] proposed a location-aware recommender system that
accommodates a customer’s shopping needs with location-dependent vendor offers and
promotions. Brunato et al. [2002] attempt to recommend Web sites to individuals de-
pending on the locations where they access the Web. As compared to our recommender,
these systems focus on employing a customer’s real-time location as a constraint
when rendering other information, like Web sites, to the customer. However, we mine
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multiple users’ location histories and explore the correlations between individuals and
locations.

6.3.2. Systems Based on Location History. Zheng et al. [2009b] conducted a generic travel
recommender that provides a user with the top interesting locations and travel se-
quences (in a geographic region) mined from a large number of users’ GPS trajectories.
Further, Zheng et al. [2010a and 2010e] perform a location-activity collaborative recom-
mendation which (1) recommends to a user some proper activities that could be proper
to perform in a given location or (2) offers a set of candidate locations where a specific ac-
tivity, like shopping, can be conducted. In contrast to these technologies, we implement
a personalized location recommendation in this work, instead of a generic one. Horozov
et al. [2006] proposed an enhanced collaborative filtering solution that uses location as
a key criterion to generate the recommendation of a restaurant. Takeuchi and Suginoto
[2006] attempt to recommend shops to users based on their individual preferences and
needs, estimated by analyzing their past location histories. Zheng et al. [2010c] first
learn the correlation between locations and then use the correlation to enable a per-
sonalized location recommender. Although exploring the correlation among geographic
locations, these systems still directly employ the technologies used in traditional rec-
ommender systems without considering the sequence property of users’ movement and
the hierarchy property of geographic spaces. Justified by the experimental results, such
properties are vital to differentiate geographic information systems from other online
communities, like Amazon, when measuring similarity between users.

7. CONCLUSION

In this article, we reported on a location-history-based recommender system which
(1) uses a particular individual’s visits on a geospatial location as their implicit rat-
ings on the location and (2) tries to predict a particular user’s interest in an unvisited
location in terms of their location history and those of other users. In this system,
each user will be recommended a group of potential friends who might share simi-
lar tastes of travel, sports, or entertainment, and a list of geospatial locations which
might match the user’s interests. Therefore, a user can organize some social activities
in a community and expand their geographical knowledge with minimal effort. This
is a step towards understanding the correlations between users and locations using
user-generated geospatial data. Also, this is a step towards integrating recommender
systems into GIS communities on the Web.

A similarity measure, HGSM, is proposed for this recommender to uniformly model
various users’ location histories and infer the similarity among users. Three features,
the sequence property of user movement, hierarchy property of geographical spaces
and visited popularity of a location, have been considered in this similarity measure.
Then, we incorporated a content-based method into a user-based collaborative filtering
algorithm which uses HGSM as the user similarity measure to estimate the rating of
a user on an item. Hence, we are able to reduce, to some extent, the cold start problem
of recommender systems and offer users a better location recommendation.

Using the GPS trajectories collected by 75 subjects in the past year, we evaluated
our recommender system. Regarding the friend recommendation, HGSM outperformed
the baseline methods of similarity-by-count, the cosine similarity and the Pearson sim-
ilarity. Moreover, the three proposed features showed their advantages in measuring
the similarity between users. In terms of NDCG and MAP, the performance of our ap-
proach has been improved step by step when those proposed features were taken into
account one by one. Regarding the location recommendation, we performed a three-
run user study with 30 users selected from the 75 subjects. According to these users’
feedback, our system outperformed item-based collaborative filtering and random
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recommendation by providing them with more attractive places and more personalized
user experiences. When combined with the content-based method, the HGSM-based
CF approach has achieved a significant improvement. In addition, this study revealed
the effectiveness of our system depending on the scale of a user’s dataset. With more
GPS trajectories from an individual, our system is more likely to infer a user’s interests
accurately and, hence, provide him/her with a more personalized recommendation.

8. FUTURE WORK

In the future, we would like to extend our work in the following three areas.
Regarding similarity measure. We intend to take into account more features of users’

movements, such as the distance of a similar sequence and the time a user stayed in a
geospatial region. Meanwhile, improving the efficiency of measuring user similarity is
also a potential work.

Regarding the evaluation of friend recommendation. We plan to conceive a new ap-
proach evaluating our similarity measure, study user behaviors after they are recom-
mended with potential friends, check whether they become real friends and conduct
this evaluation with more users from a variety of cities.

Regarding location recommendation. First, we aim to further understand the similar-
ity between locations and propose a more sophisticated content-based method. Second,
we try to incorporate the content-based method into the collaborative filtering method
in a more sophisticated manner. Third, we would like to study some item-based CF
methods to estimate a user’s interest levels in unvisited places.
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