
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Flow Prediction in Spatio-Temporal Networks
Based on Multitask Deep Learning

Junbo Zhang, Member, IEEE, Yu Zheng, Senior Member, IEEE, Junkai Sun, Dekang Qi

Abstract—Predicting flows (e.g. the traffic of vehicles, crowds and bikes), consisting of the in-out traffic at a node and transitions
between different nodes, in a spatio-temporal network plays an important role in transportation systems. However, this is a very
challenging problem, affected by multiple complex factors, such as the spatial correlation between different locations, temporal
correlation among different time intervals, and external factors (like events and weather). In addition, the flow at a node (called node
flow) and transitions between nodes (edge flow) mutually influence each other. To address these issues, we propose a multitask
deep-learning framework that simultaneously predicts the node flow and edge flow throughout a spatio-temporal network. Based on
fully convolutional networks, our approach designs two sophisticated models for predicting node flow and edge flow respectively. These
two models are connected by coupling their latent representations of middle layers, and trained together. The external factor is also
integrated into the framework through a gating fusion mechanism. In the edge flow prediction model, we employ an embedding
component to deal with the sparse transitions between nodes. We evaluate our method based on the taxicab data in Beijing and New
York City. Experimental results show the advantages of our method beyond 11 baselines, such as ConvLSTM, CNN, and Markov
Random Field.

Index Terms—Deep Learning, Spatio-temporal Data, Urban Computing

F

1 INTRODUCTION

S Patio-temporal networks (ST-networks), like transporta-
tion networks and sensor networks, are widely available

in the real world, with each node incorporating a spatial
coordinate and each edge being associated with dynamic
properties. Flows in such ST-networks have two representa-
tions (see Figure 1): 1) node flow, i.e., the in- and out-flows
at a node, and 2) edge flow, namely, the transitions between
nodes. In a transportation system, these two types of flows
can be measured by 1© the number of cars driven nearby
roads, 2© the number of people traveling by metro/bus,
3© the number of pedestrians, or 4© all of them together if

data is available. Figure 1(b) presents an illustration. Taking
node r1 as an example, we can calculate the inflow as 3, and
outflow as 3 according to the mobile phone signals and the
GPS trajectories of vehicles, respectively. In detail, we can
see the transition from r3 to r1 is 3, and the transition from
r1 to r2 and r4 are 2 and 1, respectively. Therefore, we can
get two levels of flows: node-level and edge-level, as shown
in Figure 1(c), of which the inflow and outflow of four nodes
(r1, r2, r3, r4) are (3, 3, 0, 5) and (3, 2, 5, 1), respectively, with
transitions over all edges being viewed as a directed graph.

Predicting these types of flows in a ST-network is of
great importance to public safety, traffic management and

• J.B. Zhang and Y. Zheng are with JD Urban Computing Business Unit
and JD Intelligent City Research, Beijing, China. J.B. Zhang is also
affiliated with School of Information Science and Technology, Southwest
Jiaotong University, China. Y. Zheng is also affiliated with Xidian Univer-
sity, and Shenzhen Institutes of Advanced Technology, Chinese Academy
of Sciences. E-mail: {msjunbozhang, msyuzheng}@outlook.com.

• J.K. Sun is with School of Computer Science and Technology, Xidian
University, China. E-mail: junkaisun@outlook.com

• D.K. Qi is with School of Information Science and Technology, Southwest
Jiaotong University, China. E-mail: dekangqi@outlook.com

Yu Zheng and Junbo Zhang are corresponding authors. Partial work were done
when authors are researchers at Microsoft Research.

outflow inflow

r1

r2

r3 r4

r1

transition

(a) In-out/transition

Starting End

r1 r2

r3 r4

(b) Measurement

3

2
1
2
2

r1 r2

r3 r4

1

3 2
5 1

3 3
0 5

inflow outflow
node-level

edge-level

(c)

Fig. 1. Flows in a simple spatio-temporal network.

network optimization [34]. Taking the crowd flow [33] as an
example, amounts of people streamed into a strip region at
the 2015 New Year’s Eve celebrations in Shanghai, resulting
in a catastrophic stampede that killed 36 people. If one can
predict the transitions between regions and the crowd flow
in each region, such tragedies can be prevented or mitigated
by utilizing emergency mechanisms (e.g., sending out warn-
ings, evacuating people, or conducting traffic control).

However, simultaneously predicting in/out flows at all
nodes and transitions over edges of a ST-network is very
challenging because of the following aspects:
1) Scale and complexity: The in/out flow of a location
depend on that of its near neighbors as well as distant
neighbors in geographical spaces, as people can transit
between any locations, particularly when some events take
place in a city. Given a big city with a large number (N )
of locations, there are N2 possibility of transitions, though
these transitions may not occur simultaneously at a time
interval. Thus, to predict the flow of location, either the
in/out flow or transition flow, we need to consider the
dependence between the location and others throughout a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

city. In addition, the prediction is also concerned with the
flow at past time intervals. Moreover, we cannot predict the
flow of each location individually and respectively, because
locations in a city are connected, correlated, and mutually
influence each other. The complexity and scale have posed
huge challenges to traditional machine learning models like
probabilistic graphical models.
2) Model multiple correlations and external factors: There
are three types of correlations we need to model when
dealing with such a prediction problem. The first one is
the spatial correlation between flows of different locations,
including the correlation between near locations and that
between distant locations. The second one is the temporal
correlation between flows of a location at different time
intervals, consisting of the temporal closeness, periodic and
trend properties. Third, the in/out flows and transition flow
are highly correlated and mutually reinforced. The sum of
transitions streaming into a location is the in-flow of the
location. Likewise, an accurate prediction of the total out-
flow in a location can help predict the transition flows from
the location to other places more accurately, vice versa.
Additionally, these flows are affected by external factors,
such as events, weather, and accidents. How to integrate
them into the predictive model is non-trivial.
3) Dynamics and sparsity: Because of the N2 possibility,
the flow of transitions between locations changes over time
much more tremendously than the in/out flow. The tran-
sitions (between a location and the rest of places) that will
really occur at the next time interval may be a very small
portion of the N2 possibilities (i.e. very sparse). Predicting
such a sparse transition in such a high dimensional space is
a very challenging task.

To tackle the aforementioned challenges, we propose a
Multitask Deep-Learning (MDL, see Figure 4) framework
to predict the flows at nodes and on edges collectively and
simultaneously. The contributions of the research are three-
fold:

• The MDL devises a deep neural network for predict-
ing the flow at nodes (entitled NODENET) and that
on edges (entitled EDGENET) respectively. These two
deep neural networks are coupled through a con-
catenation of their latent layers, and trained together.
In addition, the correlation between these two types
of flows are modeled by a regularization in the loss
function. The deep learning-based model can handle
the complexity and scale problem in the prediction,
while the multitask framework mutually reinforces
the prediction of each type of flows.

• Both NODENET and EDGENET are three-stream fully
convolutional networks (3S-FCNs), where closeness-
stream, period-stream, and trend-stream capture
three different temporal correlations. Each stream
FCN also captures spatial correlations between both
near and distant locations. A gating component is
employed to fuse the external factors with the spatio-
temporal correlations. To deal with the transition
sparsity problem, in the EDGENET we design an
embedding component, which encodes the sparse
(and high dimensional) input with a latent and low-
dimensional representation.

rI(J�1)+1

J

rIIr1

rIJ

(b) Inflow matrix (c) Outflow matrix(a) Map segmentation

Node A
�Region A�

Fig. 2. Spatial nodes (regions) and flow matrices

• We evaluated our approach using the taxicab data in
Beijing and the New York City. The results demon-
strate advantages of our MDL beyond 11 baselines,
such as CNN/RNN/LSTM and Markov Random
Field, and the improvement beyond individual pre-
dictions.

Table 1 lists the mathematical notation used in this paper.

TABLE 1
Description of notation

Symbol Description
V = {rij} spatial node set, 1 ≤ i ≤ I , 1 ≤ j ≤ J
N number of nodes, i.e., I × J
T available time interval set
Xt ∈ R2×I×J tensor of inflow/outflow at nodes at time t
St ∈ RN×N matrix of transition over edges at time t
Mt ∈ R2N×I×J tensor of transition converted from St

Et ∈ Rle external features at time t
Xt(:, i, j),Mt(:, i, j) vector of node rij
Xt(c, :, :),Mt(c, :, :) matrix of c-th channel
Xdep

t dependent set of Xt

Mdep
t dependent set ofMt

2 # channels of node flow Xt

2N # channels of edge flowMt

2 PROBLEM FORMULATION

Definition 1 (Node). A spatial map is divided into I × J
grids based on the longitude and latitude, denoted by
V = {r1, r2, ..., rI×J}, each of which represents a spatial
node, as shown in Figure 2(a).

Let (τ, x, y) be a temporal geospatial coordinate, of
which τ denotes timestamp, and (x, y) denotes geospatial
point. The movement of an object can be recorded as a time-
ordered spatial trajectory, among which the start point and
end point (i.e. start-end pair), denoted by s = (τs, xs, ys)
and e = (τe, xe, ye), represent the source and destination,
respectively. Let P be all start-end (i.e. (s, e)) pairs.
Definition 2 (In/out flows). Given a set of start-end pairs P.

Let T = {t1, · · · , tT } be a sequence of time intervals. For
a node rij that lies at the ith row and the jth column of
the map, the outflow and inflow during the interval t are
defined respectively as

Xt(0, i, j) = |{(s, e) ∈ P : (xs, ys) ∈ rij ∧ τs ∈ t}| (1)
Xt(1, i, j) = |{(s, e) ∈ P : (xe, ye) ∈ rij ∧ τe ∈ t}| (2)

where Xt(0, :, :) and Xt(1, :, :) mean outflow and inflow
matrices, respectively. (x, y) ∈ rij means the point (x, y)
lies within the node rij , and τe ∈ t means the timestamp

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

3

2
1

2
2

2 1
2

3 2
1

3
2 1

1 2 2

Outgoing Incoming

…

t-1 t

8 c
ha

nn
els

r1 r2

r3 r4

r1 r1

r1r2 r2

r2r1

r2
r3 r3 r3

r3

r3r4 r4 r4

r4 r2r1 r3 r4

r4

r2r1

(a) (b) (c) (d)

1

Fig. 3. Converting a time-varying graph into a tensor.

τe is in the time interval t. The inflow and outflow
matrices at a certain time are shown in Figure 2.

Considering two types of flows (i.e. inflow and outflow),
a time-varying spatial map is conventionally represented
as a time-ordered sequence of tensors, with each tensor
corresponding to a snapshot of the map during a certain
time interval. In detail, each tensor consists of two matrices:
inflow matrix and outflow matrix, as shown in Figure 2.
Let V denote the set of all nodes in a ST-network under
study, and N , |V | = I × J be the number of nodes.
A temporal graph consisting of T discrete non-overlapping
time intervals is represented by the time-ordered sequence
of directed graphs Gt1 , · · · , GtT . A particular graph Gt =
(V,Et) captures the topological state of the spatio-temporal
system during the tth time interval. For each graph Gt
(where t = t1, · · · , tT ), there exists a counterpart weight
matrix St ∈ RN×N that represents the weighted directed
edges between nodes during the tth time interval. In our
study, the weight of the edge from node rs to node re at
time t is a non-negative scalar representing the transition
from rs to re in the corresponding time interval. In a case
where there is no connection between two nodes at time t,
the corresponding element in St should be 0.
Definition 3 (Transition). Given a set of start-end pairs P.

Let T = {t1, · · · , tT } be a sequence of time intervals.
Let St be the transition matrix during the interval t.
The transition from node rs to re, denoted St(rs, re), is
defined as

St(rs, re) = |{(s, e) ∈ P : (xs, ys) ∈ rs ∧
(xe, ye) ∈ re ∧ τs ∈ t ∧ τe ∈ t}| (3)

where rs, re ∈ V are the start and end nodes, respec-
tively. (x, y) ∈ r means the point (x, y) lies within the
grid r. τs ∈ t and τe ∈ t mean that the timestamp τs and
τe are both in the time interval t. Here we consider the
transitions that only happen at a certain time interval.
Therefore, for a real-world application, we can predict
a real transition whose start and end points are both in
future.

2.1 Converting time-varying graphs into tensors
To apply deep neural networks to time-varying graphs, we
propose converting each graph at time t into a tensor first.
Given a directed graph Gt = (V,Et) at time t, we unroll
it first, then compute the directed weight matrix (e.g., tran-
sition matrix St), and finally get a tensor Mt ∈ R2N×I×J .
Figure 3 presents an illustration. (a) Given a graph consist-
ing of 4 nodes and 6 edges at time t. (b) We first unroll it that

is a directed graph. (c) For each node, there are incoming
and outgoing transitions, represented by a vector (dimen-
sion = 8). Taking Node r1 for example, its outgoing and
incoming transition vectors are respectively [0, 2, 0, 1] and
[0, 0, 3, 0], which are further concatenated into one vector
[0, 2, 0, 1, 0, 0, 3, 0], containing both outgoing and incoming
information. (d) Finally, we can reshape the matrix into a
tensor, among which each node has a fixed spatial position
according to the original map segmentation, protecting the
spatial correlations.

2.2 Flow Prediction Problem

Flow prediction, generally speaking, is a time series prob-
lem, which aims to predict the citywide flows in each region
at time interval T+1 given the historical observations until
time T. But the flows in our paper contain two perspectives,
which are inflow,outflow in regions and transition flows
between regions, as defined above. Our goal in this paper
is to predict all these flows at the same time. In addition,
we also integrate some external factors such as holidays
information, weather conditions, temperature and so on.
These external features can be collected and provide some
extra useful information. The related notations are listed in
Table 1.
Problem 1. We here define the goal of our paper. Given the

historical flow observations {Xt,Mt|t = t1, · · · , tT } and
external features ET , we propose a model to collectively
predict XtT+1

andMtT+1
in the future.

3 MULTITASK DEEP LEARNING

Figure 4 presents our MDL framework, consisting of three
components, which are used for data converting, node
flow modeling, and edge flow modeling, respectively. As
illustrated in the left part of Figure 4, we first convert the
trajectory (or trip) data over a map along time into two
types of flows: i) node flow that is a time-ordered sequence
of tensors {Xt|t = t1, · · · , tT } (Step (1a)); ii) edge flow that
is a time-ordered sequence of graphs (transition matrices)
{St|t = t1, · · · , tT } (Step (2a)), which is further converted
into a sequence of tensors {Mt|t = t1, · · · , tT } (Step (2b))
according to the method introduced in Section 2.1. These
two types of video-like data are then fed into NODENET and
EDGENET, respectively. Taking NODENET as an example,
it selects three different types of fragments, and feed them
into a 3S-FCN, which can model the temporal correlations,
including closeness, period, and trend. Among them, each
steam FCN can capture spatial near and distant correlations
via multiple convolutions. The latent representations of
middle layers of NODENET and EDGENET are coupled by
a BRIDGE component, and trained together. We employ a
embedding layer (called Em) to handle transition sparsity
problem. A gating fusion component is used to integrate
the external factors. In addition, the correlation between the
node flow and edge flow are modeled by a regularization
between X̂t and M̂t.

3.1 EDGENET

According to the aformentioned converting method, the
transition graph at each time interval can be converted into

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 4. MDL framework. Em: embedding; Conv: convolution; FCN: fully convolutional network.

a tensor Mt ∈ R2N×I×J . For each node rij , it has up to
2N transition possibility, including N incomings and N
outgoings. However, for a certain time interval, the tran-
sition between nodes may be very sparse. Inspired by the
embedding method of natural language processing [23], we
propose employing a spatial embedding method, to tackle
such sparse and high-dimensional (2N , depending on the
number of nodes in the ST-network) problem. In detail, the
spatial embedding tends to learn a function that maps a
2N -dimension vector of node rij into a k-dimension space
as follows:

Zt(:, i, j) = WmMt(:, i, j) +bm, 1 ≤ i ≤ I, 1 ≤ j ≤ J (4)

where Wm ∈ Rk×2N and bm ∈ Rk are the learnable
parameter matrix and vector, respectively. All I × J nodes
share these parameters.Mt(:, i, j) ∈ R2N means the vector
located at (i, j).
The flows, like the traffic of crowds in a city [33], are always
affected by spatio-temporal dependencies. To capture differ-
ent temporal dependencies (closeness, period, and trend),
Zhang et al. proposed a deep spatio-temporal residual
network that selects different key frames along the time.
Inspired by this, we here selects recent, near, and distant key
frames to predict the time interval t, respectively denoted
Mdep
t = {M close

t ,Mperiod
t ,M trend

t }, as follows:

• Closeness dependents:
M close
t = {Zt−lc , · · · ,Zt−1}.

• Period dependents:
Mperiod
t = {Zt−lp·p,Zt−(lp−1)·p, · · · Zt−p}.

• Trend dependents:
M trend
t = {Zt−lq·q,Zt−(lq−1)·q, · · · Zt−q}.

where p and q are the period and trend span, respectively.
lc, lp, and lq are the lengths of these three parts of sequences.

The output (i.e. the prediction at next time interval) has
the same resolution as the inputs. Such task is very similar
to the well-known image segmentation problem, which can
be handled by a fully convolutional network (FCN) [22].

Fig. 5. FCN with residual connections.

Inspired by this, we here propose a three-stream FCN (3S-
FCN, see Figure 4) to capture temporal closeness, period,
and trend dependencies. Among that, each stream is a FCN,
consisting many convolutions (see Figure 5). According to
the property of convolution, one convolutional layer can
capture spatial near dependencies. As the number of con-
volutional layers increases, FCN can capture farther and
farther dependencies, even citywide spatial dependencies.
However, such deep convolution network become very hard
to train. Therefore, we employ residual connections [12]
to help the training. Similar to the residual block used in
the residual network [13], we use a block that consists of
Batch Normalization (BN, [16]), Rectified Linear Unit (ReLU,
[19]), and Convolution (Conv). Let the outputs of closeness-
, period-, and trend-stream FCNs be Mc,Mp,Mq , re-
spectively. Different nodes may have different properties
of closeness, period, and trend. To address this issue, we
propose using a parametric-matrix-based fusion [33] (PM
fusion in Figure 4), to merge them,

Mfcn = Wc �Mc +Wp �Mp +Wq �Mq (5)

where � is the Hadamard product (i.e., element-wise mul-
tiplication), Wc,Wp,Wq are the learnable parameters that
adjust the degrees affected by temporal closeness, period and
trend, respectively.

3.2 NODENET and BRIDGE

Similar to EDGENET, NODENET is also a 3S-FCN, we select
recent, near, and distant key frames as the closeness, period,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

and trend dependents. The difference is that NODENET
doesnot have the embedding layer because the number of
channels of inputs is only 2. These three different sets of
dependents are fed into three different stream FCNs, whose
outputs are further merged by a PM fusion component (see
Figure 4), too. Then, we can get the output of 3S-FCN,
denoted Xfcn ∈ RCx×I×J .

Considering that node flow is correlated with edge flow,
so the representations learned from NODENET and ED-
GENET should be connected. To connect NODENET and ED-
GENET, assuming two latent representations of NODENET
and EDGENET are Xfcn and Mfcn respectively. We here
propose two fusion methods.
SUM Fusion: The sum fusion method directly sum up these
two representations, the output map at the same spatial
node rij across channel c is as follows :

H(c, :, :) = Xfcn(c, :, :) +Mfcn(c, :, :), c = 0, · · · , C − 1 (6)

where C is the number of channels of Xfcn and Mfcn,
and H ∈ RC×I×J . It’s obvious that this fusion method is
subjected to the fact that both representations of two tasks
should have a same shape, i.e. Xfcn andMfcn have a same
size at channel dimension.
CONCAT Fusion: In order to be free from the restraint. We
propose an another fusion method called CONCAT.Formally,
the concatenation of two latent representation maps Xfcn
and Mfcn at the same spatial node rij across channel c as
follows:

H(c, :, :) = Xfcn(c, :, :), c = 0, · · · , Cx − 1 (7)
H(Cx + c, :, :) =Mfcn(c, :, :), c = 0, · · · , Cm − 1 (8)

where Cx and Cm are the numbers of channels of Xfcn
andMfcn, respectively, and H ∈ R(Cx+Cm)×I×J . CONCAT
fusion actually can better integrates two levels of node and
edge flows by mutually reinforcing. We also discuss another
fusion method as BRIDGE (see Section 4.3).

After CONCAT fusion, we append a convolutional layer
into NODENET and EDGENET, respectively. The convolu-
tion is used to map combined latent feature maps H into
different-size-channel outputs, i.e., Xres ∈ R2×I×J and
Mres ∈ R2N×I×J , see Figure 6.

3.3 Fusing External Factors Using a Gating Mechanism
External factors, such as events and weather, that can affect
the flows in the different parts of a ST-network. For example,
an accident may block the traffic of a certain area locally,
and a rainstorm may reduce the citywide flows globally.
Such an external factor just like a switch, the flows would
be tremendously changed if it happen. Based on this insight,
we here develop a gating-mechanism-based fusion, as shown
in Figure 6. At time t, one can obtain the corresponding
external features in the ST-network, denoted Et ∈ Rle×I×J ,
of which Et(:, i, j) ∈ Rle represents the feature vector of
a particular node. Formally, we can obtain the following
gating values for EDGENET as follows,

Fm(i, j) = σ (We(:, i, j) · Et(:, i, j) + be(i, j)) ,

1 ≤ i ≤ I, 1 ≤ j ≤ J (9)

where We ∈ Rle×I×J and be ∈ RI×J are learnable
parameters. Fm ∈ RI×J is the output of GATING, of which

Fig. 6. MDL using CONCAT fusion

Fm(i, j) is the gating value of the corresponding node rij in
the ST-network. σ(·) is the sigmoid function, “·” is the dot
product (inner product) of two vectors.

Then we employ a PRODUCT fusion based on the gating
mechanism as follows:

M̂t(c, :, :) = tanh(Fm �MRes(c, :, :)), c = 0, · · · , 2N − 1
(10)

where tanh is a hyperbolic tangent that ensures the output
values are between -1 and 1.
Similarly, the final prediction of NODENET at time t is

X̂t(c, :, :) = tanh(Fx �XRes(c, :, :)), c = 0, 1 (11)

where Fx ∈ RI×J is another output of GATING. One reason
of using different GATING values (i.e. F) for node and edge
flows is that the external factors can affect the in/out flows
and transitions of different locations differently.

3.4 Losses
Let φ be all the learnable parameters in EDGENET, we intend
to learn them by minimizing the following objective func-
tion between predicted transitions M̂ and true transitions
M,

argmin
φ

Jedge =
∑
t∈T

2N−1∑
c=0

∥∥∥Qct � (M̂t(c, :, :)−Mt(c, :, :)
)∥∥∥2

F

(12)
where Qct is an indication matrix for all the non-zero entries
inMt(c, :, :), i.e., Qct(i, j) = 1 if and only ifMt(c, i, j) > 0.
T is a set of available time intervals. ‖ · ‖F is the Frobenius
Norm of a matrix.
Similarly, let θ be all the learnable parameters in NODENET.
For the square loss it yields the following optimization
problem,

argmin
θ
Jnode =

∑
t∈T

1∑
c=0

‖P ct �
(
X̂t(c, :, :)−Xt(c, :, :)

)
‖2F
(13)

where P ct is an indication matrix for all the non-zero entries
in Xt(c, :, :), i.e., P ct (i, j) = 1 if and only if Xt(c, i, j) > 0.
We know that the sum of transitions streaming into node
rij is the inflow of the node, and the sum of transitions
streaming out is the outflow. From Definition 2, X̂t(0, :, :)
and X̂t(1, :, :) are outflow and inflow matrices, respectively.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

According to the transition tensor constructed method in-
troduced in Section 2.1, we know that the first N channels
represent outgoing transitions, and the last N channels
represent incoming transitions. Therefore, it yields the fol-
lowing loss function:

argmin
θ,φ

∑
t∈T

∑
i

∑
j

(
‖X̂t(0, i, j)−

N−1∑
c=0

M̂t(c, i, j)‖2+

‖X̂t(1, i, j)−
2N−1∑
c=N

M̂t(c, i, j)‖2
)

(14)

Or, equivalently, it can be written as

argmin
θ,φ

Jmdl =
∑
t∈T

‖ X̂t(0, :, :)︸ ︷︷ ︸
outflow

−
N−1∑
c=0

M̂t(c, :, :)︸ ︷︷ ︸
outgoing transitions

‖2F+

‖ X̂t(1, :, :)︸ ︷︷ ︸
inflow

−
2N−1∑
c=N

M̂t(c, :, :)︸ ︷︷ ︸
incoming transitions

‖2F

 (15)

Finally, we obtain the combined loss as follows:

argmin
θ,φ

λnodeJnode + λedgeJedge + λmdlJmdl (16)

where λnode, λedge, and λmdl are adjustable hyper-
parameters.

3.4.1 Optimization Algorithm

Algorithm 1: Training of MDL Algorithm
Input: Historical observations: {Xt,Mt|t = t1, · · · , tT };

external features: {Et1 , · · · , EtT };
lengths of closeness, period, trend sequences: lc, lp, lq ;
period: p; trend span: q.

Output: MDL model.
// construct training instances

1 Dtrain ←− ∅
2 for t ∈ T do // T is available time available set

3 put an training instance ({Xdep
t ,Mdep

t , Et},Xt) into Dtrain
4 end
// train the model

5 initialize the parameters θ, φ
6 repeat
7 randomly select a batch of instances Dbatch from Dtrain
8 find θ, φ by minimizing the objective (16) with Dbatch
9 until stopping criteria is met

10 output the learned MDL model

Algorithm 1 outlines the MDL training process. We first
construct training instances from the original sequence of
observations (lines 1-4). During each iteration, we optimize
the objective (16) on the selected batch of training instances
Dbatch (lines 7-8).

4 EXPERIMENTS

We consider two kinds of datasets: TaxiBJ and TaxiNYC, see
Table 2. To evaluate the prediction performance, we consider
the Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE).

TABLE 2
Data statistics

Dataset TaxiBJ TaxiNYC
# time intervals 35064 11472

Shape of Xt 16× 16 16× 16
Shape ofMt 512× 16× 16 512× 16× 16

4.1 Settings

4.1.1 Datasets
We use two different sets of data as shown in Table 3.
Each dataset contains two sub-datasets: trajectories/trips,
and external factors, detailed as follows.

• TaxiBJ: Trajectory data is the taxicab GPS data and
meteorology data in Beijing from four time intervals:
1st Jul. 2013 - 30th Oct. 2013, 1st Mar. 2014 - 30th Jun.
2014, 1st Mar. 2015 - 30th Jun. 2015, 1st Nov. 2015
- 10th Apr. 2016. We choose data from the last four
weeks as the test set, and all data before that as the
training set.

• TaxiNYC: Taxi trip records are taken from the NYC
from 2011 to 2014. Trip data includes: pick-up and
drop-off dates/times, pick-up and drop-off locations.
Among the data, the last four weeks are chosen as the
test set, and the others as the training set.

TABLE 3
Datasets (holidays include adjacent weekends).

Dataset TaxiBJ TaxiNYC
Data type Taxi GPS Taxi Trip
Location Beijing New York

Time Span

7/1/2013 - 10/30/2013
3/1/2014 - 6/30/2014 1/1/2011 -
3/1/2015 - 6/30/2015 12/30/2014
11/1/2015 - 4/10/2016

Time interval 1 hour 1 hour
Gird map size (16, 16) (16, 16)

Trajectory data
Average sampling rate (s) ∼ 60 \

# taxis 34,000+ \
# available time interval 11,472 35,064

External factors (holidays and meteorology)
# holidays 106 451

Weather conditions 16 types (e.g., Sunny, Rainy) \
Temperature / ◦C [−24.6, 41.0] \
Wind speed / mph [0, 48.6] \

4.1.2 Baselines
• HA: Historical Average model that uses the average of
historical values in corresponding periods.
• ARIMA: Auto-Regressive Integrated Moving Average
model.
• SARIMA: Seasonal ARIMA model.
•VAR: Vector Auto-Regressive that can capture the pairwise
relationships among all flows.
• RNN: Recurrent Neural Network [10]. We selected pre-
vious L frames to predict the next frame. Hyperparam-
eters: L is set as one of {3, 6, 12}, the hidden units
is set as one of {32, 64}, learning rate set as one of
{0.1, 0.01, 0.001, 0.0001}, .

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 4
Comparisons with baselines on TaxiBJ and TaxiNYC in node flow prediction.

Model
RMSE MAE

TaxiBJ TaxiNYC TaxiBJ TaxiNYC
inflow outflow inflow outflow inflow outflow inflow outflow

HA 21.23 22.49 417.49 401.33 13.49 13.98 85.51 86.68
ARIMA 10.83 11.41 108.83 100.42 7.03 7.28 25.14 26.46
SARIMA 11.00 11.14 96.07 85.95 6.98 7.12 21.70 23.09
VAR 10.05 10.38 104.29 93.84 6.74 6.86 24.19 22.53
RNN 8.68 8.48 118.61 108.06 5.39 5.24 29.37 30.24
LSTM 9.39 9.06 121.01 110.16 5.64 5.44 28.28 29.12
GRU 9.37 9.30 124.12 106.89 5.66 5.55 28.95 27.51
ST-ANN 8.71 8.59 73.50 68.20 5.46 5.45 19.69 20.26
ConvLSTM 8.95 8.55 66.57 55.70 5.73 5.47 18.56 19.91
ST-ResNet 8.21 7.89 69.00 55.50 5.18 5.15 19.28 18.28
MRF 7.35 7.08 87.86 76.98 4.57 4.50 18.30 18.35
MDL [ours] 7.71 7.15 53.68 47.44 4.95 4.75 13.98 14.63

• LSTM: Long-Short-Term-Memory network [15]. The set-
ting is same to RNN.
• GRU: Gated-Recurrent-Unit network [6]. The setting is
same as RNN.
• ST-ANN: Spatio-Temporal Artificial Neural Network,
which takes spatial (nearby 8 regions) and temporal (8
previous time intervals) values as input features.
• ConvLSTM: Convolutional LSTM [29], a state-of-the-art
model for precipitation nowcasting using the radar echo
dataset (image sequence). The crowd flow data used in
this paper can be viewed as a sequence of images, each of
which is crowd flows at a time interval. Previous 3 frames
are used to predict the next frame. The model consists of
two ConvLSTM layers and a convolutional layer, in which
the kernel size is (3, 3) and the filter number is 32. Other
hyperparameters are same to RNN.
• ST-ResNet: Spatio-Temporal Residual Convolutional Net-
work [33], showing state-of-the-art performance on node
flow prediction.
•MRF: Markov-Random-Field-based citywide flow predic-
tion model [14], that leverages flows in all individual regions
and transitions between regions as well as external factors
(e.g., weather).
For both datasets, we select last four weeks (i.e. 672 time
intervals) as the test set, and the others as the training
set. MDL is implemented using TensorFlow [2] and Keras
[7], and trained via backpropagation and the Adam [18]
optimization.

TABLE 5
Baselines

Model Temporal Spatial External Transition
HA X

ARIMA X
SARIMA X

VAR X
RNN X
LSTM X
GRU X

ST-ANN X X
ConvLSTM X X
ST-ResNet X X X

MRF X X X X
MDL [ours] X X X X

4.1.3 Preprocessing

In the output of the MDL, we use tanh as our final acti-
vation, whose range is between -1 and 1. Here, we use the
Min-Max normalization method to scale the data into the
range [−1, 1]. In the evaluation, we re-scale the predicted
value back to the normal values, compared with the ground
truth. For external factors, we use one-hot encoding to
transform metadata (i.e., DayOfWeek, Weekend/Weekday),
holidays and weather conditions into binary vectors, and
use Min-Max normalization to scale the Temperature and
Wind speed into the range [0, 1].

4.1.4 Hyperparameters

We here introduce the hyperparameter settings of our MDL.
By default, we set λnode = 1 and λedge = 1, which means
two tasks are equally important, and λmdl as 0.0005. p and q
are empirically fixed to one-day and one-week, respectively.
For lengths of the three dependent sequences, we set them
as: lc ∈ {1, 2, 3}, lp ∈ {1, 2, 3}, lq ∈ {1, 2, 3}. We set the
number of convolutions of FCN as 5 by default. We select
90% of the training data for training each model, and the
remaining 10% is chosen as the validation set, which is used
to early-stop our training algorithm for each model based on
the best validation score. Afterwards, we continue to train
the model on the full training data for a fixed number of
epochs (e.g., 10 epochs). Network parameters are trained
from a random start 1, using the Adam [18] optimization
to perform all weight updated with a fixed learning rate.
The batch size is 32. The learning rate is set as one of
{0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}.

4.1.5 Evaluation Metrics

We measure the accuracy of our methods and baselines by
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) 2 for both node-level (i.e., inflow/outflow) and edge-
level (i.e., transition) prediction as

RMSE =

√
1

n

∑
i

(yi − ŷi)2, MAE =
1

n

∑
i

|yi − ŷi|

1. The learnable parameters are initialized using a uniform distribu-
tion with the default parameter in Keras [7].

2. The smaller the better for RMSE and MAE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 6
Transition prediction results. RMSE/ MAE for each method.

Model TaxiBJ TaxiNYC
HA 1.05/ 0.68 45.03/ 10.14
ARIMA 0.98/ 0.69 16.06/ 4.89
SARIMA 1.26/ 0.77 16.21/ 5.06
ST-ANN 0.92/ 0.63 12.87/ 4.18
ST-ResNet 0.72/ 0.37 14.75/ 4.82
MDL [ours] 0.65/ 0.32 9.89 / 3.48

where y and ŷ are the available ground truth and the corre-
sponding predicted value, respectively; n is the number of
all available ground truths.

4.2 Results

Node Flow Prediction. We first compare various methods
on the task of predicting in/out flows in the test test, given
observed trained data. Table 4 shows the RMSE and MAE
of node flow prediction on TaxiBJ and TaxiNYC. We can
observe that, MDL and MRF consistently outperforms all
other baselines. In detail, our MDL performs apparently
better than MRF on TaxiNYC. On the dataset TaxiBJ, MDL
has a competitive result against MRF. The reason may be
that TaxiNYC is 3 times bigger (T in Table 2) than TaxiBJ.
In other words, our MDL has better performance on larger
data than MRF. We also notice that it is time-consuming
to train MRF, which takes about one week to finish the
whole training process on TaxiBJ using the code provided
in [14]. In detail, taking the inflow prediction of TaxiNYC as
an example, the results of RMSE demonstrate that MDL is
relatively 85% better than HA, 42% better than ARIMA, 34%
better than SARIMA, 39% better than VAR, 11% better than
ST-ANN, 47% better than RNN, 8% better than ST-ResNet,
and 5% better than ConvLSTM.
Results of Edge Flow Prediction. We next compare the
methods on the task of forecasting transitions. Table 6
presents the RMSE and MAE of edge flow prediction on
TaxiBJ and TaxiNYC. The experiments on the transition
prediction task is very time-consuming. We mainly run
the experiments on MDL and HA, ARIMA, SARIMA, ST-
ANN, and ST-ResNet, demonstrating that MDL outper-
forms others. The results show that our MDL significantly
outperforms 5 baselines.

4.3 Evaluation on Fusing Mechanisms

In this section, we present the empirical experiments on
different fusing mechanisms. To couple NODENET and ED-
GENET, we introduce the CONCAT fusion in Section 3.2. A
straight-forward fusion method is to use the SUM fusion by
H = Xfcn +Mfcn. Note that SUM requires two latent fea-
ture maps have the same shape. For fusing external factors,
one can choose one of the following ways: the GATED fusion
introduced in Section 3.3, SIMPLE fusion (the sum fusion in
[33]), or not use (i.e. w/o). Therefore, there are a total of
6 variants of MDL, as shown in Table 7. The same hyper-
parameter setting (e.g. number of training iterations) is used
for all variants. We can observe that the CONCAT + GATING
method outperforms other methods based on RMSE and
MAE.

TABLE 7
RMSE and MAE on the TaxiNYC test set using MDL with different

types of fusions.

Fusing type RMSE/ MAE
Bridge External inflow outflow transition

CONCAT GATING 53.68/ 13.98 47.44/ 14.63 9.89/ 3.48
CONCAT SIMPLE 55.68/ 14.48 49.03/ 15.00 10.12/ 3.55
CONCAT w/o 55.70/ 14.64 47.81/ 14.82 10.10/ 3.57

SUM GATING 55.77/ 14.24 48.32/ 14.88 10.10/ 3.54
SUM SIMPLE 55.81/ 14.50 49.53/ 15.17 10.29/ 3.62
SUM w/o 54.85/ 14.14 49.32/ 15.12 10.11/ 3.57

4.4 Evaluation on Model Hyper-parameters
4.4.1 Effect of Training Data Size
To demonstrate the effectiveness of training data size for
deep learning model, here we select 3-month, 6-month, 1-
year and 3-year data from TaxiNYC. Experiments are run
on the same MDL model with lc = 3, lp = 1, lq = 1.
Figure 8 presents the results. We can observe that more data
always has better results on both node flow and edge flow
prediction.

4.4.2 Effect of Network Depth
Figure 9 presents the effect of network depth on TaxiNYC
(3-month data). As the network goes deeper (i.e. the number
of convolutions increases), the RMSE of the model first
decreases, demonstrating that the deeper network often has
a better result because it can capture not only spatial near
dependencies but also distant ones. However, the RMSE
increases when the network becomes much deeper, showing
that the training process becomes much more difficult.

4.4.3 Effect of multi-task component
Table 8 and Figure 10 demonstrate the influence our multi-
task component on the final experiments performance.
From the table and figure, we can find that transition flow
prediction task can be improved in most cases, and when
the λnode = λedge = 1 and λmdl =0.1, our multi-task model
achieves best performance against others, under this cir-
cumstance, both tasks get better results compared with two
single tasks, which proves the effectiveness and reliability of
the fact that our multi-task part can mutually promote the
performance of each task.

TABLE 8
single-task vs multi-task

Hyper-Parameters RMSE / MAE
λnode λedge λmdl inflow outflow transition

0 1 0 / / 10.53/3.63
1 0 0 56.66/14.60 51.30/15.34 10.16/3.55
1 1 0.1 53.68/13.98 47.44/14.63 9.89/3.48

4.5 Flow Predictions
Figure 11 depicts two nodes’ predictive results of our MDL
over the next one hour against the ground truth in New York
City (NYC) in the last 4 weeks of 2014. In detail, Node (10, 1)
always have higher flow than Node (8, 3). We can observe
that our model is very accurate in tracing the ground truth

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0 10 20 30 40 50 60 70 80 90 100
# Epochs

10−4

10−3

10−2

L
os

s
Concat (train)

Sum (train)

Concat (valid)

Sum (valid)

(a) CONCAT vs SUM fusion

0 10 20 30 40 50 60 70 80 90 100
# Epochs

10−4

10−3

10−2

L
os

s

Gating (train)

Simple (train)

Gating (valid)

Simple (valid)

(b) GATING vs SIMPLE fusion

0 10 20 30 40 50 60 70 80 90 100
# Epochs

10−4

10−3

10−2

L
os

s

w/ external (train)

w/o external (train)

w/ external (valid)

w/o external (valid)

(c) With vs without external factors

Fig. 7. Training curves on TaxiNYC of various fusions. The vertical axis corresponds to training and validation (valid) losses, and the horizontal axis
corresponds to the number of epochs.

3 6 12 36
months

0

20

40

60

80

100

120

140

flo
w

Inflow
Outflow

(a) In- and out-flows

3 6 12 36
months

0

5

10

15

20

25

tra
ns

iti
on

Transition

(b) Transition

Fig. 8. Effect of training data size

1 2 3 4 5 6 7 8 9 10
Residual units varying

100
105
110
115
120
125
130
135
140
145

Inflow
Outflow

(a) In- and out-flows

1 2 3 4 5 6 7 8 9 10
Residual units varying

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0
Transition

(b) Transition

Fig. 9. Effect of network depth

0  1e-4 5e-4 1e-3 5e-3 0.01 0.02 0.05  0.1  0.2  0.4  0.5  1.0  2.0  5.0

λmdl

47

48

49

50

51

52

RM
SE

Outflow
single-task
multi-task

(a) outflow

0  1e-4 5e-4 1e-3 5e-3 0.01 0.02 0.05  0.1  0.2  0.4  0.5  1.0  2.0  5.0

λmdl

9.8

10.0

10.2

10.4

10.6

10.8

RM
SE

Transition
single-task
multi-task

(b) Transition

Fig. 10. Impact of multi-task component when λnode = λedge = 1

curves (including sudden changes) of traffic flow on both
nodes in NYC, which demonstrates the effectiveness of our
proposed model.

Fig. 11. Predictions of MDL against the ground truths.

5 RELATED WORK

5.1 Spatio-Temporal Prediction.
Many works are trying to find some patterns and correla-
tions from spatio-temporal datasets [17], [31], [32]. There are
some previously published works on predicting an individ-
ual’s movement based on their location history [9], [24], [27].
They mainly forecast millions, even billions, of individuals’
mobility traces rather than the aggregated crowd flows
in a region. Such a task may require huge computational
resources, and it is not always necessary for public safety
situations. Some other researchers aim to predict travel
speed and traffic volume on the road [1], [25]. Most of them
are predicting single or multiple road segments, rather than
citywide ones [5], [30]. Recently, researchers have started
to focus on city-scale traffic flow prediction [14], [21]. Both
work are different from ours where the proposed methods
naturally focus on the individual region not the city, and
they do not partition the city using a grid-based method
which requires a more complex method to find irregular
regions first. Deng et al. proposed a latent space model for
predicting time-varying traffic [8] on the fixed graph (i.e.
road network), which is different from ours.

5.2 Classical Models for Time Series Prediction.
Forecasting flow in a spatio-temporal network can be
viewed as a time series prediction problem. Existing time-
series models, like the auto-regressive integrated moving
average model (ARIMA, [3]), seasonal ARIMA [26], and the
vector autoregressive model [4] can capture the temporal

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

dependencies very well, yet it fails to handle spatial corre-
lations.

5.3 Neural Networks for Sequence Prediction.
Neural networks and deep learning [10] have gained nu-
merous success in the fields such as compute vision [19],
speech recognition [11], and natural language understand-
ing [20]. Recurrent neural networks (RNNs) have been
used successfully for sequence learning tasks [28]. The
incorporation of long short-term memory (LSTM) [15] or
gated recurrent unit (GRU) [6] enables RNNs to learn long-
term temporal dependency. However, these neural network
models can only capture spatial or temporal dependencies.
Recently, researchers have combined the above networks
and proposed a convolutional LSTM network [29] that
learns spatial and temporal dependencies simultaneously.
Such a network cannot model very long-range temporal
dependencies (e.g., period and trend), and training becomes
more difficult as depth increases. Zhang et al. proposed a
spatio-temporal residual network [33], capable of capturing
spatio-temporal dependencies as well as external factors,
yet it may be not suited to deal with transitions over large
dynamic graphs.

6 CONCLUSIONS

We proposed a novel multitask deep learning (MDL) frame-
work for simultaneously predicting in/out flows (node
flow) and transitions (edge flow) in a spatio-temporal net-
work. MDL can not only handle the complexity and scale
problem in the prediction, but also mutually reinforce the
prediction of each type of flow. In addition, MDL is capable
of capturing the spatial correlations (near and distant), tem-
poral correlations (closeness, period, trend), and external
factors (like events and weather). We evaluate our MDL
on two real-world datasets in Beijing and NYC, achieving
performances which are significantly better than 11 baseline
methods.

ACKNOWLEDGMENTS

The work was supported by the National Natural Science
Foundation of China (Grant No. 61672399, No. U1609217
and No. U1401258), and the China National Basic Research
Program (973 Program, No. 2015CB352400).

REFERENCES

[1] A. Abadi, T. Rajabioun, and P. A. Ioannou, “Traffic flow prediction
for road transportation networks with limited traffic data,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp.
653–662, 2015.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow:
Large-scale machine learning on heterogeneous distributed sys-
tems,” arXiv preprint arXiv:1603.04467, 2016.

[3] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[4] S. R. Chandra and H. Al-Deek, “Predictions of freeway traffic
speeds and volumes using vector autoregressive models,” Journal
of Intelligent Transportation Systems, vol. 13, no. 2, pp. 53–72, 2009.

[5] P.-T. Chen, F. Chen, and Z. Qian, “Road traffic congestion moni-
toring in social media with hinge-loss markov random fields,” in
2014 IEEE International Conference on Data Mining. IEEE, 2014, pp.
80–89.

[6] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using RNN encoder-decoder for statistical
machine translation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, 2014, pp.
1724–1734. [Online]. Available: http://aclweb.org/anthology/D/
D14/D14-1179.pdf

[7] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.
[8] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu,

“Latent space model for road networks to predict time-varying
traffic,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1525–
1534.

[9] Z. Fan, X. Song, R. Shibasaki, and R. Adachi, “Citymomentum:
an online approach for crowd behavior prediction at a citywide
level,” in Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing. ACM, 2015, pp. 559–569.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[11] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in 2013 IEEE international
conference on acoustics, speech and signal processing, 2013, pp. 6645–
6649.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2016.90

[13] ——, “Identity mappings in deep residual networks,” in
Proceedings of the 14th European Conference on Computer
Vision (ECCV), 2016, pp. 630–645. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-46493-0 38

[14] M. X. Hoang, Y. Zheng, and A. K. Singh, “FCCF: forecasting
citywide crowd flows based on big data,” in Proceedings of the
24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2016, pp. 6:1–6:10.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceed-
ings of the 32nd International Conference on Machine Learning, 2015,
pp. 448–456.

[17] T. Jindal, P. Giridhar, L.-A. Tang, J. Li, and J. Han, “Spatiotemporal
periodical pattern mining in traffic data,” in Proceedings of the 2Nd
ACM SIGKDD International Workshop on Urban Computing, ser.
UrbComp ’13. New York, NY, USA: ACM, 2013, pp. 11:1–11:8.
[Online]. Available: http://doi.acm.org/10.1145/2505821.2505837

[18] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[20] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proceedings of the 31th International Conference
on Machine Learning,, 2014, pp. 1188–1196. [Online]. Available:
http://jmlr.org/proceedings/papers/v32/le14.html

[21] Y. Li, Y. Zheng, H. Zhang, and L. Chen, “Traffic prediction in a
bike-sharing system,” in Proceedings of the 23rd SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems,
2015, pp. 33:1–33:10.

[22] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
3431–3440.

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[24] B. Prabhala and T. L. Porta, “Next place predictions based on user
mobility traces,” in 2015 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), April 2015, pp. 93–94.

[25] R. Silva, S. M. Kang, and E. M. Airoldi, “Predicting traffic volumes
and estimating the effects of shocks in massive transportation
systems,” Proceedings of the National Academy of Sciences, vol. 112,
no. 18, pp. 5643–5648, 2015.

[26] B. L. Smith, B. M. Williams, and R. K. Oswald, “Comparison of
parametric and nonparametric models for traffic flow forecasting,”

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Transportation Research Part C: Emerging Technologies, vol. 10, no. 4,
pp. 303–321, 2002.

[27] X. Song, Q. Zhang, Y. Sekimoto, and R. Shibasaki, “Prediction of
human emergency behavior and their mobility following large-
scale disaster,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2014, pp.
5–14.

[28] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural information
processing systems, 2014, pp. 3104–3112.

[29] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and
W.-c. WOO, “Convolutional lstm network: A machine learning
approach for precipitation nowcasting,” in Advances in Neural
Information Processing Systems, 2015, pp. 802–810.

[30] Y. Xu, Q.-J. Kong, R. Klette, and Y. Liu, “Accurate and interpretable
bayesian mars for traffic flow prediction,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 6, pp. 2457–2469, 2014.

[31] Q. Yuan, W. Zhang, C. Zhang, X. Geng, G. Cong, and J. Han, “Pred:
Periodic region detection for mobility modeling of social media
users,” in WSDM 2017 - Proceedings of the 10th ACM International
Conference on Web Search and Data Mining. Association for Com-
puting Machinery, Inc, 2 2017, pp. 263–272.

[32] C. Zhang, K. Zhang, Q. Yuan, H. Peng, Y. Zheng, T. Hanratty,
S. Wang, and J. Han, “Regions, periods, activities: Uncovering
urban dynamics via cross-modal representation learning,” in
Proceedings of the 26th International Conference on World Wide
Web, ser. WWW ’17. Republic and Canton of Geneva,
Switzerland: International World Wide Web Conferences Steering
Committee, 2017, pp. 361–370. [Online]. Available: https:
//doi.org/10.1145/3038912.3052601

[33] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal
residual networks for citywide crowd flows prediction,” in
Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, 2017, pp. 1655–1661. [Online]. Available: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14501

[34] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 5, no. 3, p. 38, 2014.

Dr. Junbo Zhang is currently a Data Scientist
at JD Finance Group. He is leading AI Platform
Division of Urban Computing Business Unit, JD
Finance Group. His research interests include
urban computing, machine learning, data min-
ing, and big data analytics. He has published
over 30 research papers (e.g., AI, IEEE TKDE,
KDD, AAAI, IJCAI) in refereed journals and con-
ferences, among which one paper was selected
as the ESI Hot Paper, two as the ESI Highly
Cited Paper, and two as the Best Paper Award.

Dr. Zhang received the ACM Chengdu Doctoral Dissertation Award in
2016, the Chinese Association for Artificial Intelligence (CAAI) Excellent
Doctoral Dissertation Nomination Award in 2016, the Si Shi Yang Hua
Medal (Top 1/1000) of SWJTU in 2012, and the Outstanding Ph.D.
Graduate of Sichuan Province in 2013. He is a member of IEEE, ACM,
CAAI and China Computer Federation.

Dr. Yu Zheng is a Vice President and Chief Data
Scientist at JD Finance, leading the Urban Com-
puting Business Unit and serving as the director
of the Urban Computing Lab. He is also a Chair
Professor at Shanghai Jiao Tong University and
an Adjunct Professor at Hong Kong University
of Science and Technology. Before Joining JD
Finance, he was a senior research manager at
Microsoft Research. Zheng currently serves as
the Editor-in-Chief of ACM Transactions on Intel-
ligent Systems and Technology. He has served

as chair on over 10 prestigious international conferences, e.g. as the
program co-chair of ICDE 2014 (Industrial Track) and CIKM 2017 (In-
dustrial Track). In 2013, he was named one of the Top Innovators under
35 by MIT Technology Review (TR35) and featured by Time Magazine
for his research on urban computing. In 2014, he was named one of the
Top 40 Business Elites under 40 in China by Fortune Magazine. In 2017,
Zheng is named an ACM Distinguished Scientist.

Junkai Sun is a Master student in Xidian Univer-
sity, majoring in computer science and technol-
ogy. His research interests mainly include spatio-
temporal data mining with deep learning, urban
computing. He is also an intern student in Urban
Computing Business Unit, JD Finance Group.

Dekang Qi is a Ph.D. candidate at Cloud Com-
puting & Intelligent Technology Lab, Southwest
Jiaotong University. His research focuses on
spatio-temporal data mining and urban comput-
ing.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2891537

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


