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Abstract—Predicting urban traffic is of great importance to intelligent transportation systems and public safety, yet is very challenging
in three aspects: 1) complex spatio-temporal correlations of urban traffic, including spatial correlations between locations along with
temporal correlations among timestamps; 2) spatial diversity of such spatio-temporal correlations, which varies from location to location
and depends on the surrounding geographical information, e.g., points of interests and road networks; and 3) temporal diversity of such
spatio-temporal correlations, which is highly influenced by dynamic traffic states. To tackle these challenges, we proposed a deep meta
learning based model, entitled ST-MetaNet", to collectively predict traffic in all locations at the same time. ST-MetaNet* employs a
sequence-to-sequence architecture, consisting of an encoder to learn historical information and a decoder to make predictions step by
step. Specifically, the encoder and decoder have the same network structure, consisting of meta graph attention networks and meta
recurrent neural networks, to capture diverse spatial and temporal correlations, respectively. Furthermore, the weights (parameters) of
meta graph attention networks and meta recurrent neural networks are generated from the embeddings of geo-graph attributes and the
traffic context learned from dynamic traffic states. Extensive experiments were conducted based on three real-world datasets to
illustrate the effectiveness of ST-MetaNet™ beyond several state-of-the-art methods.

Index Terms—Urban traffic, spatio-temporal data, neural network, meta learning

1 INTRODUCTION

ECENT advances in data acquisition technologies and
mobile computing lead to a large collection of traffic
data (e.g., vehicle trajectories), enabling us to conduct urban
analysis and works on downstream applications [2]. Urban
traffic prediction, such as traffic speed prediction [3] and
citywide flow prediction [4], has become a mission-critical
work for intelligence city efforts, as it can provide insights
for urban planning and traffic management to improve the
efficiency of public transportation, as well as to raise early
warnings for public safety emergency management [5].
However, forecasting urban traffic is very challenging
due to the complex spatio-temporal (ST) correlations. Spe-
cifically, the complexity of ST correlations lies in the follow-
ing two aspects:
o Complex Composition of ST Correlations
Urban traffic is highly dynamic-varying in both temporal
and spatial domains. In the temporal domain, the current
traffic readings of a certain location, such as traffic speed
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reported by loop detectors, are strongly correlated with its
precedents. Fig. 1a illustrates an example to support this
fact. Suppose there is a car accident at S, at 9:00 am, it will
result in a heavy traffic jam at Sy, and decrease the nearby
traffic speed for a long time. On the other hand, in the spa-
tial domain, the traffic of some locations is mutually corre-
lated. As shown in Fig. 1a, since traffic has strong spatial
dependencies [3] on road networks, the traffic congestion at
Sy will quickly diffuse to its neighbors, i.e., S| and S;, and
impact their traffic condition.

As urban traffic broadcasts in the spatial domain (e.g.,
along road networks), and changes over time, we employ a
geo-graph to describe the spatial structure, containing nodes
and edges to represent locations and the relationships
between pairs of locations, respectively. In general, a node can
be a sensor on a road or a big region within a city, which is
determined by the prediction target, such as road speed
detected by sensors or citywide flows of urban regions. In the
meantime, a widely used scheme to build edges is directly
based on road connection between pairs of nodes, because
traffic moves along road networks. As shown in Fig. 1b, the
red and blue arrows represent the spatial correlations between
locations and temporal correlations within each location,
respectively. As both types of correlations interact with each
other and affect urban traffic, it is necessary to simultaneously
capture such spatial and temporal correlations.

e Diversity of ST Correlations

1. Spatial Diversity of ST Correlations. ST correlations of
urban traffic are different, across nodes and edges in the spa-
tial domain, i.e., geo-graph. In urban areas, characteristics of
nodes and their mutual relationships are diverse, depending
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Fig. 1. Complex composition of ST correlations.

on their own geo-graph attributes: 1) node attributes: the condi-
tion of a node, such as the distribution of nearby points of
interests (POIs) and density of road networks (RNs); 2) edge
attributes: the relationships between two nodes, such as the
features of road segments (e.g., the number of lanes, speed
limit, etc.) and the geospatial distance between them. As the
example shown in Fig. 2a, R1 and R3 are business districts,
consisting of numerous office buildings, while R2 is a resi-
dence district, which has many apartments. These districts
are distinguished by their distributions of POIs and road net-
work structures, resulting in the different characteristics of
them. Besides, it can be easily seen in Fig. 2b that the trends of
their inflows are diverse, revealing that districts with different
characteristics always have different types of ST correlations.

Nonetheless, an important fact to adhere to is that nodes
with similar combinations of geo-graph attributes can lead to
similar characteristics and analogous types of ST correlations.
As the example shown in Fig. 2a, in general citizens usually
commute from home to their workplaces in the morning,
while opposite at night. Thus, business districts R1 and R3
witness similar upward trends of inflows in the morning,
while the residential district R2 meets a completely different
rush hour in the evening, as shown in Fig. 2b. Therefore, it is
essential to model such diversity by considering the inherent
relationships between geo-graph attributes and the types of
ST correlations.

2. Temporal Diversity of ST Correlations. The types of ST cor-
relations change over time, depending on the context
included in dynamic traffic states. As the example shown in
Fig. 3a, on an expressway with large amounts of vehicle flows,
traffic usually quickly passes through, as vehicles can keep
high speed. In this case, large amounts of vehicle flows would
not impact future traffic conditions. However, sometimes
there is a traffic jam blocking the expressway, as shown in
Fig. 3b. Consequently, the vehicle flows would intensify the
traffic jam, which shows a different type of ST correlations.
Therefore, effectively modeling the relationships between
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Fig. 2. Spatial diversity of ST correlations.
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Fig. 3. Temporal diversity of ST correlations.

dynamic traffic states and the types of ST correlations is
extremely important in traffic prediction.

Recently, although there has been significant growth of
works in ST prediction (including urban traffic prediction),
the aforementioned challenges are still not completely solved.
For instance, several studies [3], [4], [6], [7], [8], [9], [10] focus
on modeling ST correlations by a single model for all loca-
tions. However, these methods cannot explicitly model the
inherent relationships between geo-graph attributes and vari-
ous types of ST correlations, as a result, such relationships are
hard to be learned without any prior knowledge. Another
group of works [11], [12], [13] adopt multi-task learning tech-
niques, which build multiple sub-models for each location
and all of them are trained together under the presence of sim-
ilarity constraints between locations. These methods depend
heavily on the prior knowledge (i.e., the location similarity) or
over-strong assumption of the specific tasks. Naturally, the
main drawback of this kind of methods lies in the lack of
ground truth to reflect such similarity and assumption. There-
fore, such side information can only provide relatively weak
supervision, producing unstable & tricked, even ruinous
results in complex real-world applications.

To tackle all the above challenges, we propose a deep meta
learning based framework, entitled ST-MetaNet", for urban
traffic prediction. The key insight is to regard geo-graph attrib-
utes and dynamic traffic states as the metadata of ST neural
networks for capturing ST correlations. Therefore, to capture
the relationships between ST correlations and these metadata,
a direct solution is to employ the weight generation-based
meta learning method.

More concretely, as shown in Fig. 4a, we first combine
spatial and temporal models to capture these two types of
correlations, simultaneously.
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Fig. 4. Insights of our framework.
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Then, since ST correlations are implicitly affected by the
characteristics of nodes (locations) and edges (inter-location
relationships), as well as dynamic traffic states, we have to
further capture such relationships, as presented in Figs. 4b
and 4c. Intuitively, the characteristic of an edge relies on its
attributes, e.g., the road connectivity and the distance between
nodes. Likewise, the characteristic of a node is influenced by
its attributes, like the GPS location and the distribution of
nearby POls. Besides, traffic states contain implicit informa-
tion about traffic context, which impacts ST correlations.
Based on these insights, ST-MetaNet" first extracts the meta
knowledge (i.e., characteristics) of nodes and edges from their
attributes respectively, as well as the dynamic traffic context
from traffic states. After that, the extracted information (i.e.,
the meta knowledge and the traffic context) are simply aggre-
gated by a data fusion module and then used to model the ST
correlations, namely, generating the weights of the spatial
and temporal models. The main contributions of our study
are four folds:

e We design a novel framework based on deep meta
learning, entitled ST-MetaNett, to forecast urban
traffic. ST-MetaNet" leverages the meta knowledge
extracted from geo-graph attributes and dynamic
traffic context learned from traffic states to generate
the parameter weights of graph attention networks
and recurrent neural networks within a sequence-to-
sequence architecture. As a result, it can capture the
inherent relationships between diverse types of ST
correlations and geo-graph attributes along with
dynamic traffic states.

e An improved meta graph attention network (Meta-
GAT") is proposed to model the spatial correlations.
The attention mechanism can capture the dynamic
mutual relationships between locations, with regard
to their current states. In addition, the weights of the
graph attention networks are generated by the meta
knowledge of nodes and edges extracted from geo-
graph attributes, as well as dynamic traffic context of
nodes extracted from traffic states, such that it can
model diverse spatial correlations.

e We propose an improved meta gated recurrent neural
network, entitled Meta-GRU™, which generates all
weights of a normal gated recurrent unit from the
meta knowledge and traffic context of each node. Thus
each location has a unique model for its own type of
temporal correlation under different traffic states.

e We evaluate our framework on three typical traffic
prediction tasks in the real world. The experiment
results verify that ST-MetaNet' can significantly
improve the predictive performance, and learn better
traffic-related knowledge from the given geo-graph
attributes.

2 PRELIMINARIES

In this section, we introduce the definitions and problem
statement. All frequently used notation is shown in Table 1.

Suppose there are N; locations, which report D; types of
traffic information (e.g., traffic flows and speed) on NV, time-
stamps respectively.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 3, MARCH 2022

TABLE 1
Notation Table
Notation Description
N, N; Number of locations/timestamps.
Tins Tout Timestamps for historical/future traffic
¢ The traffic readings at all timestamps.
v The node attributes of location i.
el The edge attributes between node i and j.
N Neighborhoods of location 1.
NMK(+) The function to learn node meta knowledge.
EMK(+) The function to learn edge meta knowledge.
CL(-) The context learner to learn traffic context.
g0() The function to learn parameter weights 6.

Definition 1. Urban traffic is denoted as a tensor X = [Xy,
Xy, ] € R¥ND: phere Xy = [V, 2i™)) denotes all
locations’ traffic information at timestamp t.

Definition 2. Geo-graph is a directed graph that represents loca-
tions and their mutual relationships, denoted as G = {V,E,V,
EY}. Specifically, V = {1,..., N} represents node indices, while
E={(i,7) |1 <1i,j < N;} represents directed edges, where each
pair (i,7) denotes node j impacts node i. In addition, nodes and
edges are associated with attribute vectors, denoted as V =
[0, ..o and € = {el) | (i, ) € E}, to represent the geo-
graphical features of nodes and relationships between nodes,
respectively. Moreover, we use N'; = {j|(i,j) € E} to denote
the neighbors of node i.

With above two definitions, here we present the formal
definition of the research problem in this work.

Problem 1. Given previous Ty, traffic information [Xy,..., X4, |
and geo-graph G, predict the traffic for all locations in the next
Tout timestamps, denoted as [Yl, . Y,OUJ

3 METHODOLOGIES

In this section, we describe the architecture of ST-MetaNet™",
as shown in Fig. 5a. Leveraging the sequence-to-sequence
architecture [14], ST-MetaNet™ is composed of two separate
modules: the encoder (blue part) and the decoder (green
part). The former one is used to encode the sequence of
the input, i.e., the historical information of urban traffic
[X1,...,Xq,], producing the output hidden states, which
are used as the initial states of the decoder that further pre-
dicts the output sequence [Yi,..., Y, ]. More specifically,
the encoder and the decoder have the same network struc-
ture, consisting of three types of components:

1) Meta-knowledge learner. As shown in Fig. 5b, we use
two fully connected networks (FCNs), named node-
meta-knowledge learner (NMK-Learner) and edge-
meta-knowledge learner (EMK-Learner), to respec-
tively learn the meta-knowledge of nodes (NMK) and
edges (EMK) from node attributes (e.g., POIs and
GPS locations) and edge attributes (e.g., road connec-
tivity and the distance between nodes). Then the
learned meta knowledge is further used to learn the
weights of another two types of networks, i.e., graph
attention network (GAT) and recurrent neural
network (RNN). Taking a certain node as an exam-
ple, the attributes of the node are fed into the
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Fig. 5. Overview of ST-MetaNet™.

NMK-Learner, and it outputs a vector, representing
the meta knowledge of that node.

2)  Meta-GAT'  (meta graph attention network™), the
improved version of Meta-GAT proposed in [1], is com-
prised of a context learner, a fusion gate, a meta learner,
and a GAT, as shown in Fig. 5c. In this component, the
traffic context is learned from the input states by an
FCN, namely, the context learner. Then the fusion gate
combines the meta knowledge of nodes and edges, and
the learned traffic context. After that, we propose to
employ an FCN as the meta learner, which takes the
output of the fusion gate as the input, and calculates
the parameter weights of GAT. Meta-GAT" can cap-
ture diverse spatial correlations by individually broad-
casting nodes” hidden states along edges.

3) Meta-RNN™ (meta recurrent neural network™), the
improved version of Meta-RNN proposed in [1], is
comprised of a context learner, a fusion gate, a meta
learner, and an RNN, as shown in Fig. 5d. Similar to
Meta-GAT™, the traffic context is learned from the
input traffic states by the context learner, and is
fused with the node meta knowledge by the fusion
gate. Then we use the meta learner to generate the
weights of RNN for each node from the output of
the fusion gate. Meta-RNN™ can capture diverse
temporal correlations associated with nodes’ geo-
information and dynamic traffic states.

In the following subsections, we will respectively illus-
trate each component of ST-MetaNet™ in details.

3.1 Meta-Knowledge Learner

In urban areas, characteristics of locations and their
mutual relationships are diverse, depending on geo-
graphical information, e.g., POIs and RNs. Such diverse
characteristics bring about various types of ST correla-
tions within urban traffic. Hence, we propose two meta-
knowledge learners, i.e.,, NMK-Learner and EMK-
Learner, to learn traffic-related node and edge embed-
dings (meta knowledge) from geographical information,
respectively. As shown in Fig. 5b, two meta-knowledge
learners respectively employ different FCNs, in which
the input is the attributes of a node or an edge, and the
corresponding output is the embedding (vector represen-
tation) of that node or edge. Since such embeddings are

used for generating weights of GAT and RNN to capture
ST correlations of urban traffic, the learned embeddings
can reflect traffic-related characteristics of nodes and
edges. For simplicity, we use NMK (v) and EMK (e())
to denote the learned meta knowledge (embedding) of a
node and an edge, respectively.

3.2 Meta Graph Attention Network™

Urban traffic has spatial correlations that some locations are
mutually affected. In addition, such correlations are diverse
across nodes and edges, and related to geographical informa-
tion and dynamic traffic states. Inspired by graph attention
network [15], we propose to employ attention mechanisms
into the framework to capture diverse spatial correlations
between nodes. However, it is inappropriate to directly apply
GAT because all nodes and edges would use the same atten-
tion mechanism, ignoring the relationships between spatial
correlations and geographical information along with
dynamic traffic states.

To capture such diverse spatial correlations, we propose
an improved meta graph attention network (Meta-GAT™)
as shown in Fig. 6, which employs an attention network
whose weights are generated from the meta knowledge (the
embeddings of geographical information) and the traffic
context (the embeddings of input traffic states) by the meta
learner. Consequently, the attention mechanisms for spatial
correlation modeling are different across nodes and edges,
and depending on geographical information and dynamic
traffic states.

Formally, suppose the inputs of Meta-GAT" are H =
(WY RN € RNPh (e, the inputs of traffic states at a
single timestamp) and geo-graph G, while the output is
H= [H(l), o H(M)} € RV*D,, where D;, and D) are the
dimension of nodes” hidden states. The meta graph atten-
tion mechanism for each node contains two main steps: 1)
attention score calculation for each edge; and 2) hidden state
aggregation. As shown in Fig. 6, we give an example to
show the structure of Meta-GAT™, that calculates the impact
on the red node from its neighborhoods (the purple, orange,
and green node) along edges. The details of Meta-GAT* are
as follows.

Attention Score Calculation

First, the input H is projected to a new space by a single
fully connected layer, denoted as H' = [n'), ... W(N)] €
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RV*Pi, Then the attention scores are calculated based on H'’
and the meta knowledge of geo-graph.

As we discussed, the attention score of edge (i,j) is
related to the hidden states of node i and node j, the node
and edge meta knowledge learned from geographical infor-
mation, and the dynamic traffic context of these nodes. As
shown in Fig. 6, for edge (i, j), we fetch the hidden states of
nodes by index, i.e., #’() and /', and the meta knowledge
MK, which is a composition of meta knowledge of nodes
and edge

MK = NMK( ) I NMK( W) I EMK(EW)), 1)
where NMK(v!?), NMK (vm), and EMK (e<"'47)) are one
dimensional vectors, while || is vector concatenation opera-
tor. After that, using the traffic hidden states as the inputs,
the dynamic traffic context (TC) of each edge can be calcu-
lated by

TCH = CLaar (W) || CLoar (W), )
where CL A7 (+) is the context learner, a learnable FCN shar-
ing parameters across all nodes We set the output dimension
of CLgaT(+) such that TC has the same dimension as
MK 7). Then we can apply a function to calculate the attention
score based on these vectors, denoted as
W) = (WD 1D MK@, TCH)) € R, (3)
where w@ is a D’ dimension vector, denoting the impor-
tance of how A'V) 1mpacts R at each channel. Like GAT
shown in Fig. 6b, we employ a single fully connected layer
to calculate function a(-). However, different pairs of nodes
have different meta knowledge and dynamic traffic context,
resulting in different attention mechanisms. To model such

diversity, we employ an edge-specific fully connected layer,
followed by activation of LeakyReLU [16]:

a(h/u)’ KO MKW, TCW))
ot . y 4)
— LeakyReLU (WW [h’“) I h’<f>] + bW))

where W) € R 2P, i) € R are edge-specific parame-
ters of the fully connected layer. In particular, these parame-
ters are generated from the fusion information (FI) of the
meta knowledge MK and the traffic context TC®),
shown in Fig. 6b. The insight is that MK can show stat1c
properties of this edge, while TC”) can indicate how each
static property takes effect under the specific traffic state. So
inspired by the gating function used in long-short term
memory [17], here we apply a fusion gate to calculate the
fusion information, which can be formulated as

FIG) — ¢(MK(U’)) ® U(Tcm'))’ 5)
where ® is Hadamard product, o(-) is s1gm01d functlon and
¢(-) is tanh function. In this formula, o(TC"/) shows the
importance of each dimension in MK(” , making the fusion
information reflect the dynamic attention mechanism of
edge (4, 7).

After getting the fusion information FI'¥), we employ a
meta learner, consisting of two FCNs gy and ¢, which share
parameters across all edges, to generate W7 and b,
respectively. Then, for any edge (i, j)

W) = gy (FI(ij)> € RPh*2D;,
g y ©)
b = g, <FI<”>> €R.

Note that the output of an FCN is a vector, so we need to
reshape the output to the corresponding parameter shape.
And finally, we can use the resulting W) and 5" to calcu-
late attention function a(-).

Hidden State Aggregation

Like GAT, we first normalize the attention scores for a
node across all its neighborhoods by softmax

exp(wi9)

(j) — -t
“ o, eo(w )

(7)
Then for each node, we calculate the overall impact of
the neighborhoods by linear combinations of the hidden
states corresponding to the normalized weights, and then

apply a nonlinearity function ReLU, which is expressed
as ReLU(Y - a@HW). In addition, we add a shortcut
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connection to make network easily train. And finally, the
hidden state for node i with consideration of spatial correla-
tions can be expressed as

PO = Un? 4+ ReLU (- @), ®)

where Uh!Y denotes the shortcut path, and U € R2Ph is a
trainable matrix projecting h(") to R,

Since we extract the meta knowledge from the features of
nodes and edges, as well as the dynamic traffic context from
the input traffic states, and then use both information to gen-
erate the weights of graph attention network, Meta-GAT"
can model the inherent relationships between diverse spatial
correlations and geo-graph attributes along with dynamic
traffic states.

3.3 Meta Recurrent Neural Network™"

Conventionally, RNN layers are employed to model the
temporal correlations of urban traffic. However, as temporal
correlations of urban traffic vary from node to node and
from time to time, a simple shared RNN is not sufficient to
simultaneously capture diverse temporal correlations for all
nodes and all timestamps at once. To model such diversity,
we adopt the similar idea of Meta-GAT", which generates
the weights of RNN from the node embeddings learned
from node attributes (e.g., POIs and RNs), and the dynamic
traffic context learned from traffic states.

There are various types of RNN implementation for time
series analysis. Among them, as gated recurrent unit (GRU)
[18] is a simple but effective structure, we introduce GRU as
a running example to illustrate Meta-RNN+. Formally, a
GRU is defined as

hi = GRU(z, hy—1 | Wa, Ua, ba), 9

where z € R? and h, € R” are the input vector and the
encoding state at timestamp ¢, respectively. Wq € R”*P
and Ug € R”*P are weight matrices. by € R are biases
(Q € {u,r,h}). GRU derives the vector representation of a
hidden state, which is expressed as

u=0(Wyz + U,hi—1 + by,),
r=c(W,z +U,hy_1 +b,),

h =¢(Whyz + Up(r @ hi_1) + bp)
hi=u®@hi 1+ (1—u)@HK,

(10

where ® is Hadamard product, o(-) is sigmoid function, and
¢(+) is tanh function.

In urban traffic prediction, we collectively encode all
nodes’ traffic. As the temporal correlations are diverse from
node to node and related to dynamic traffic states, we adopt
the parameter generation technique within Meta-GRU™ like
Meta-GAT*. Formally, we define Meta-GRU™ as

H, = Meta-GRU™(Z,, H,_1, V), (an

where 7, = [zt . zt]\l ] and H, = [n",. ..,hiNl)] are the
inputs and the hldden states at timestamp ¢, respectively,
and V = [V, ..., "] is the node attributes.

The structure of Meta-GRU" is shown in Fig. 7. For any
node i, we first obtain the dynamic traffic context b
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Fig. 7. Structure of Meta-GRU™.

TC" = CLary (zﬁ“), (12)
where CLggry(+) is the context learner, a learnable FCN shar-
ing parameters across all nodes. Next, we use the fusion gate
to calculate the fusion information by the following equation:

FI' = ¢ (NMK (v“)) ) ®o (ch)) . (13)
Finally, the output hidden states can be calculated by
VVt(?) = 9wy (Flgl))v
Uf(if)l = 9ugq (FI£7))7
(14)

A = GRU (7, 1, [ U0,

where WrQ ,U(}) and th are the node-specific dynamic
parameters generated from the fusion information by the
meta learner, which consists of several FCNs gw,, 9, 95,
(Q € {u,r,h}). As a result, all nodes have their individual
and dynamic RNNs respectively, and the models represent
the diverse temporal correlations related to node attributes
and dynamic traffic states.

3.4 Optimization Algorithm

Suppose we employ a differentiable loss function Ly, to
measures the difference between the prediction values and
the ground truth. Then, we can train ST-MetaNet™ end-to-
end by backpropagation like common neural networks. Spe-
cifically, there are two types of trainable parameters.

e The trainable parameters w; in common neural net-
works, e.g., the first fully connected layer and short-
cut connection in Meta-GAT". The gradient of w,
denoted as V., Liin, can be directly calculated by
chain rule like a normal neural network.

e The trainable parameter w, in the meta-knowledge
learners, context learners, and meta learners, which
generates parameters 6 in the normal GATs and
RNNSs. The gradient of w, can be calculated by chain
rule, because all meta-knowledge learners, context
learners, and meta learners are differentiable neural
networks

vwz Lirain = VQLLrainvaQ- (15)
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TABLE 2

Details of the Datasets
Tasks Flow prediction Speed prediction
Name TAXI-BJ METR-LA PEMS-BAY
Region Beijing Los Angles Bay Area
Prediction target Flows Speed Speed
Start time 2/1/2015 3/1/2012  1/1/2017
End time 6/2/2015 6/30/2012 6/30/2017
Time interval 1 hour 5 minutes 5 minutes
# timestamps 3,600 34,272 52,116
#nodes 1,024 207 325
# edges 4,114 3,312 5,200
# node features 989 18 18
# edge features 32 2 2

We employ a general sequence-to-sequence training pro-
cess, which is similar to [1].

4 EXPERIMENTS

In this section, we conduct experiments based on three real-
world traffic prediction tasks to evaluate ST-MetaNet™. In
particular, we answer the following questions:

Q1. CanST-MetaNett outperform the state-of-the-art mod-

els in the traffic prediction tasks?

Q2. Do the meta learning components take effect? How
large is the improvement of the meta learning method?

Q3. How do the settings of ST-MetaNet?t, such as the
number of hidden units of each meta learned layer,
impact the prediction results?

Q4. How about the stability and the convergence of ST-
MetaNet" in the training phase?

Q5. Do the embeddings learned from geo-graph attrib-
utes by the meta knowledge learners reflect the prop-
erties of nodes (locations)?

4.1 Experimental Settings

4.1.1 Task Descriptions

We first introduce three traffic prediction tasks, and then
illustrate the details of the datasets shown in Table 2.

Taxi Flow Prediction

We partition Beijing city (lower-left GPS coordinates:
39.83°, 116.25°; upper-right GPS coordinates: 40.12°, 116.64°)
into 32 x 32 grids, and adopt grid-based flow prediction task
to evaluate our framework, where grids are regarded as
nodes. The details of the dataset are as follows:

e Taxi flow. We obtain taxi flows from TDrive dataset
[19], which contains a large number of taxicab trajec-
tories from Feb. 1st 2015 to Jun. 2nd 2015. For each
grid, we extract the hourly inflows and outflows
from these trajectories by counting the number of
taxis entering or exiting the grid.

o  Geo-graph attributes. We obtain geo-graph attributes
from POIs and RNs in Beijing city. Specifically, we
have 982,829 POlIs that belong to 668 categories, and
690,242 roads with 8 attributes, including length,
width, the number of lanes, etc. The node attributes

of a §rid consist of many features of POIs and RNs
Authorize,
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within it, including the number of POIs in each cate-
gory, the number of roads and lanes, etc. The edge
attributes are the features of roads connecting pairs
of grids, such as the number of roads and lanes.

In this task, we use the previous 12-hour flows to predict
the next 3-hour flows. We split the traffic data along the
time axis into non-overlapping training, evaluation, and test
data, by the ratio of 8:1:1.

Traffic Speed Prediction

The second and third tasks are traffic speed predictions.
In these two tasks, we predict the traffic speed on road net-
works. The details of the datasets are as follows:

e Traffic speed. We adopt two real-world datasets to eval-
uate traffic speed prediction: 1) METR-LA [20], which
contains traffic speed readings of 207 sensors in the
highway of Los Angeles County; and 2) PEMS-BAY,
which contains traffic speed readings of 325 sensors
collected by California Transportation Agencies Per-
formance Measurement System (PeMS). The readings
of both datasets are aggregated into 5-minute sliding
windows, and then released by [3].

o  Geo-graph attributes. In traffic speed prediction tasks,
we do not have any POI information. Thus, we only
make use of GPS locations and road networks as the
features of geo-graph. The node attributes consist of
GPS points of nodes, and road structure information
for each node, i.e., a vector reflecting the road distance
between the node and its k-nearest neighbors. The
edge attribute is simply defined as the road distance
between nodes. For the efficiency of model training
and testing, we only keep the edges between each
node and its k-nearest neighbors. Since the traffic cor-
relations are directional on road networks [3], we col-
lect node attributes and edges on both directions.

In these two tasks, we set k = 8, and use the historical
60-minute traffic speed to predict the traffic speed over the
next 60 minutes. We partition the traffic speed dataset along
the time axis into non-overlapping training, evaluation, and
test data, by the ratio of 7:1:2. Our settings are exactly the
same as the experiment in [3].

4.1.2 Metrics

We use Mean Absolute Error (MAE) and Rooted Mean
Square Error (RMSE) to evaluate the models involved

1 n . 1 n 2
MAE:E;‘%_W’ RMSE = E;(yi_yi)a

where n is the number of instances, y; is the prediction
result and y; represents the ground truth.

4.1.3 Baselines
We compare ST-MetaNet™ with the following baselines:

e HA. Historical Average. Urban traffic is modeled as the
seasonal process, whose period is one day. We take the
average of the previous seasons as the prediction result.

e ARIMA. Autoregressive Integrated Moving Average
is a widely-used model for time series prediction,
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which combines moving average and autoregres-
sion. In the experiments, we train an individual
ARIMA model for each node, and predict the future
readings separately.

e GBRT. Gradient Boosting Regression Tree is a non-
parametric statistical learning method for regression
problem. For each future step (e.g., next 1 hour or
next 2 hour), we train a single GBRT, and predict the
urban traffic, where the input consists of previous
traffic information and node attributes.

e Seq2Seq [14]. We implement a sequence-to-sequence
network with two stacking GRU layers for urban
traffic prediction. The features of nodes, i.e., node
attributes, are first embedded by an FCN, and then
fused with the outputs of the decoder. Finally, the
fused vectors are linearly projected into the predic-
tion results. All nodes share a model with the same
parameter values.

o GAT-Seq2Seq. We combine graph attention networks
and sequence-to-sequence architecture to model spa-
tial and temporal correlations, respectively. It applies
a similar structure as ST-MetaNet ", which consists of
two GAT layers and two GRU layers. Similar to
Seq2Seq, the node attributes are first embedded by
an FCN and then fused with the outputs of the
decoder. Finally, the output vectors are linearly pro-
jected into the prediction results.

e ST-ResNet [4]. The model is widely used in grid-
based flow prediction task. It models the spatio-
temporal correlations by stacked residual units. To
make the comparison fair, we only use the same
input timestamps in our model, i.e., keeping only the
closeness part in ST-ResNet. Finally, we fuse the out-
puts with node attributes, i.e., features of grids, and
then make predictions by linear projection.

e STDN [21]. The model is used in grid-based flow
prediction. It employs CNNs to capture spatial corre-
lations, LSTMs to capture temporal correlations, and
a periodically shifted attention mechanism to model
long-term periodic temporal shifting. We also fuse
the outputs with node attributes, and make predic-
tions by linear projection.

e DCRNN [3]. It employs diffusion convolution opera-
tors within sequence-to-sequence architecture to
capture spatial and temporal correlations, respec-
tively. Besides, we embed the node attributes, and
add them into the input traffic vectors as the addi-
tional input features.

e  Graph WaveNet [9]. It employs WaveNet and graph
convolution to capture temporal and spatial correla-
tions, respectively. The authors also proposed a self-
adaptive adjacency matrix to automatically uncover
unseen graph structures from data without the guid-
ance of any prior knowledge. Like DCRNN, we also
add embeddings of node attributes into the input
traffic vectors as the additional features.

e ST-MetaNet [1]. It is the prior version of this work.
The main difference between them is that ST-Meta-
Net does not model the relationships between ST
correlations and dynamic traffic states within Meta-
GATs and Meta-GRUs.
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For all neural network baselines, we conduct grid search
on the number of hidden units in each layer, and select the
best models according to the validation results. Besides, all
neural networks, including our ST-MetaNet", use the same
network structure to embed geo-graph attributes, i.e., a
two-layer FCN with [32, 32] hidden units.

4.1.4 Framework Settings and Training Details
The settings of ST-MetaNet™ contain three parts:

e The structures of NMK-Learner and EMK-Learner.
We simply employ two FCNs (2 layers with the
same number of hidden units) as NMK-Learner and
EMK-Learner respectively, to learn the meta knowl-
edge of nodes and edges. We conduct grid search on
the number of hidden units over {8, 16, 32, 64}.

e The dimension of hidden states in sequence-to-
sequence architecture. For simplicity, we use the
same number of hidden units in all components
(Meta-GAT", Meta-GRU") within the encoder and
decoder, and conduct grid search on this number
over {16, 32, 64}.

e Weight generation of meta learners. For each gener-
ated parameters in Meta-GAT" and Meta-GRU",
ie, W, p0), W), U') and b, we simply build
an FCN with hidden units [d,, n] to generate parame-
ter weights from the meta knowledge, where n is the
number of parameters in the target. We search on d,
over {1,2,4,8}.

ST-MetaNet" is trained by Adam optimizer. The batch
size is set as 32. We train the framework for 1,000 iterations
by random sampling in every epoch. The initial learning
rate is le-2, and it is divided by 10 every 10 epochs. We also
apply gradient clipping where the maximum gradient norm
is set as 5. To tackle the discrepancy between training and
inference in sequence-to-sequence architecture, we employ
inverse sigmoid decay for scheduled sampling [22]

,
~r4exp(i/r)’

€
where r is a constant and set as 2000.

4.2 Performance Comparison (Q1)

The performance of the competitive baselines and ST-
MetaNet" are shown in Tables 3, 4, and 5. In addition, we also
list the trainable parameters involved in deep models to
show the model complexity. All models are trained and tested
for five times, and the results are presented in the format:
“mean =+ standard deviation”.

In all three tasks, the statistical models, i.e., HA and
ARIMA, turn out to be the worst models as they only con-
sider the statistical features of the input data. While GBRT,
which is a popular non-parametric model, has a relatively
better performance. However, it does not learn any high-
level temporal or spatial features. Accordingly, it still has
large predicting errors.

For deep learning models, Seq2Seq is an encoder-decoder
based model, capable of effectively capturing temporal corre-
lations. However, spatial correlations are ignored in this case,
resulting in low accuracy in these tasks. GAT-Seq2Seq further
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TABLE 3
Predictive Performance on TAXI-BJ Dataset
Overall 1 hour 2 hour 3 hour
Models [# params]
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HA 26.24+0.00 56.5+0.00 26.24+0.00 56.5+0.00 26.24+0.00 56.54+0.00 26.2+0.00 56.540.00
ARIMA 40.04+0.00 86.8+£0.00 27.1+0.00 58.3+0.00 41.2+0.00 77.0+0.00 51.840.00 108.040.00
GBRT 28.84+0.04 60.9+0.15 22.340.01 47.7+£0.01 29.94+0.06 62.74+0.14 34.3+0.11 70.54+0.23
Seq2Seq [333k] 21.3+0.06 42.64+0.14 17.8+£0.05 35.14+0.07 22.0£0.06 43.6+0.16 24.2+0.09  48.1+0.20
GAT-Seq2Seq [407k] 18.34+0.13 35.6+0.23 16.3+0.12 31.94+0.21 18.7+0.12 36.3+0.20 19.94+0.14 38.440.30
ST-ResNet [445k] 18.7+£0.53 36.14+0.59 16.8+£0.50 31.94+0.69 18.9+£0.57 36.4+0.71 20.3+0.52  39.5+0.46
STDN [198k] 23.442.49 4324295 21.543.24 3744334 2474343 4444371 24.14+1.27 46.9+3.11
DCRNN [405k] 17.8+£0.13 36.14+0.15 15.8+£0.05 32.3+0.08 18.2+£0.15 36.9+0.17 19.4+0.19 38.9+0.24
Graph WaveNet [996k] 17.1£0.06 35.0+0.14 152+0.08 31.1+0.27 17.4+0.09 35.7+0.30 18.6+0.11 37.8+0.25
ST-MetaNet [129k] 16.7+0.13 33.64+0.15 14.8+0.05 29.6+0.08 17.1+£0.15 34.3+0.17 18.2+0.19 36.5+0.24
ST-MetaNet™ [166k] 16.54+0.16 33.2+0.35 14.74+0.18 29.74+0.40 16.9+0.16 33.94+0.35 17.840.17 35.840.53
TABLE 4
Predictive Performance on METR-LA Dataset
Overall 15 min 30 min 60 min
Models [# params]
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HA 4.7940.00 8.724+0.00 4.794+0.00 8.72+0.00 4.79+0.00 8.72+0.00 4.794+0.00  8.72+0.00
ARIMA 4.0340.00 7.9440.00 3.274+0.00 6.14+0.00 3.99+0.00 7.7840.00 5.1840.00 10.10+0.00
GBRT 3.86+0.01 7.49+0.01 3.16+£0.00 6.05+0.00 3.85+0.00 7.504+0.00 4.864+0.01 9.10+0.02
Seq2Seq [81k]  3.554+0.01 7.274+0.01 2.98+0.01 5.88+0.01 3.57+0.01 7.264+0.01 4.384-0.01 8.88+0.02
GAT-Seq2Seq [113k] 3.284+0.00 6.66+0.01 2.83+0.01 5.474+0.01 3.314+0.00 6.684+0.00 3.93+0.01  8.03+0.02
DCRNN [372k] 3.04+0.01 6.27+0.03 2.67+0.00 5.1840.01 3.0840.01 6.314+0.03 3.56+0.01 7.534+0.04
Graph WaveNet [297k] 3.05+0.01 6.16+0.03 2.70+£0.01 5.16+0.01 3.08+0.01 6.20+£0.03 3.554+0.12  7.3540.05
ST-MetaNet [124k] 3.05+0.04 6.22+0.06 2.68+0.02 5.154+0.05 3.03+0.10 6.254+0.05 3.49+0.12 7.474+0.08
ST-MetaNet™ [162k] 3.00+£0.01 6.16+£0.02 2.65+0.01 5.114+0.01 3.044+0.01 6.164+0.02 3.48+0.02 7.374+0.04
TABLE 5
Predictive Performance on PEMS-BAY Dataset
Overall 15 min 30 min 60 min
Models [# params]
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HA 3.844+0.00 7.164+0.00 3.84+0.00 7.16+0.00 3.84+0.00 7.16+0.00 3.84+0.00 7.16%0.00
ARIMA 2.1940.00 5.054+0.00 1.624+0.00 3.30+0.00 2.194+0.00 4.86+0.00 3.05+0.00 6.90+0.00
GBRT 1.96+£0.02 4.48+0.00 1.4940.01 3.214+0.00 1.994+0.02 4.504+0.01 2.61+0.04 5.76+0.02
Seq2Seq [81k]  1.7740.00 4.1840.01 1.38+0.00 2.99+0.01 1.814+0.01 4.20+0.01 2.31+0.01 5.3640.01
GAT-Seq2Seq [113k] 1.7440.00 4.0840.01 1.38+0.01 2.94+0.01 1.7940.00 4.10+0.01 2.26+0.01 5.22+0.04
DCRNN [372k]  1.5940.00 3.704+0.02 1.31+£0.00 2.76+0.01 1.654+0.01 3.7840.02 1.97+0.00 4.60+0.02
Graph WaveNet [297k] 1.59+0.01 3.66+0.04 1.31+£0.01 2.75+0.01 1.65+0.01 3.73+£0.04 1.98+0.03 4.56+0.06
ST-MetaNet [124k] 1.714+0.04 3.964+0.11 1.36+0.01 2.88+0.04 1.774+0.06 4.00+0.08 2.19+0.08 5.03+0.20
ST-MetaNet ™" [162k] 1.604+0.01 3.724+0.02 1.31+£0.00 2.78+0.01 1.664+0.01 3.81+0.01 1.99+0.01 4.62+0.04

employs graph attention to handle spatial correlations, which
upgrades the predictive performance. However, GAT-Seq2-
Seq still has a large margin for improvement because it does
not consider the relationships between ST correlations and
geographical information along with dynamic traffic states. In
TAXI-BJ dataset, we also have two additional baselines, i.e.,
ST-ResNet and STDN, to make grid-based taxi flow predic-
tions. As shown in Table 3, ST-ResNet and STDN have unsta-
ble and very low prediction accuracy. The reason is that TAXI-
BJ dataset has 1,024 grids and the functions of grids are very
different, but both models use the same parameters to make
predictions for all grids (e.g., the same convolutional kernel
and the same LSTM model). Thus, they cannot effectively cap-
ture such discrepancy of ST correlations among grids.

DCRNN and Graph WaveNet are two powerful base-
lines using road distance to generate the adjacent matrix of
graph convolution, such that the spatial correlations can be
modeled. However, the graph convolution based method
needs prior knowledge, e.g., the function of road distance,
to construct the graph. Such an assumption is relatively
weak, for example, we cannot fully make use of some other
important features like POIs and road network structures.
As a result, in TAXI-B] dataset, ST-MetaNet" outperforms
DCRNN and Graph WaveNet by at least 3.5 percent MAE
and 5.4 percent RMSE respectively. In METR-LA and
PEMS-BAY datasets, our ST-MetaNet™ still shows competi-
tive results. However, as these two datasets do not have
many geographical information (only GPS locations and
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Fig. 8. Ablation studies on taxi flow prediction.

road distance are provided), the improvement over base-
lines is less.

Next, we compare ST-MetaNett with its prior version ST-
MetaNet. ST-MetaNet" significantly outperforms its basic
version in all three tasks, as it further tackles the inherent rela-
tionships between ST correlations and dynamic traffic states.
Thus, by making the meta learners generate different parame-
ter values at different timestamps, ST-MetaNet" can boost the
expressiveness of the spatial and temporal networks, namely
GAT and GRU, in advance.

Finally, we discuss the model complexity. In Meta-GAT*
and Meta-GRU™, we generate the parameter weights defined
in GAT and GRU, which would intuitively introduce much
more trainable parameters. However, as the number of
parameters shown in Tables 3, 4, and 5, the parameters of
ST-MetaNet" is acceptable, compared with state-of-the-art
models, i.e., ST-ResNet, STDN, DCRNN, and Graph Wave-
Net. This fact is related to the good expressiveness of
ST-MetaNet" that small dimensional hidden states in Meta-
GAT" and Meta-GRU™ can already have good representa-
tion of urban traffic states, which verifies the advantage of
meta learning in modeling the relationships between ST cor-
relations and geographical information along with dynamic
traffic states.

4.3 Ablation Studies on Meta Learning (Q2)

To illustrate the effectiveness of meta learning, we conduct
ablation studies of ST-MetaNet™ on these three datasets. In
each dataset, we compare the prediction accuracy based on
two settings: 1) we set RNN components as Meta-GRU,
and test the prediction results under different choices of
graph neural network (GNN), i.e., normal GAT, Meta-GAT
(no dynamic traffic context), and Meta-GAT"; and 2) we set
GNN components as Meta-GAT*, and test the prediction
results under various choices of RNN, i.e., normal GRU,
Meta-GRU (no dynamic traffic context), and Meta-GRU .
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Fig. 9. Ablation studies on traffic speed prediction.
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Fig. 10. Evaluation of parameter settings on TAXI-BJ.

The comparison results of TAXI-B] dataset are shown in
Fig. 8. Notice that the basic meta learning method used in
Meta-GAT and Meta-GRU significantly improve the predic-
tion accuracy of GAT and GRU respectively. The reason is
that TAXI-B] dataset has large amounts of geo-graph attrib-
utes, enabling the meta knowledge learners to learn meaning-
ful embeddings and successfully build the relationships
between such embeddings and diverse ST correlations. In
addition, Meta-GAT" and Meta-GRU* take dynamic traffic
states into account, and further improve the performance.
This fact verifies that modeling the relationships between
dynamic traffic states and diverse ST correlations is necessary.

The prediction results of METR-LA and PEMS-BAY data-
sets are shown in Fig. 9. Different from the results of TAXI-B]
dataset, the improvement of Meta-GAT over GAT is much
less. The reason is that these two datasets do not have plenty of
edge attributes (only road distance is provided), which does
not reveal all kinds of characteristics related to diverse spatial
correlations. Instead, Meta-GRU still significantly outperforms
GRU, as the road structures around each node are considered,
leveraging different temporal models for nodes to capture
diverse temporal correlations. Notice that Meta-GAT* and
Meta-GRU™" have a large improvement over Meta-GAT and
Meta-GRU, respectively, which demonstrates the effectiveness
of modeling traffic context in meta learning.

4.4 Evaluation on Framework Settings (Q3)
ST-MetaNet* has many settings, including the dimension of
meta knowledge (outputs of NMK-Learner and EMK-
Learner), the number of hidden units within RNN and
GAT, and the number of hidden units for weight genera-
tion. To investigate the robustness of ST-MetaNet™, for each
setting, we fix other parameters and we present the results
under different parameter choices of that setting.

First, as shown in Figs. 10a, 11a, and 12a, increasing the
value of meta knowledge dimension enhances the perfor-
mance significantly in three datasets. As the dimension of
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Fig. 11. Evaluation of parameter settings on METR-LA.
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Fig. 12. Evaluation of parameter settings on PEMS-BAY.

meta knowledge does not impact the number of parameters
in the generated RNNs and GATs, this fact illustrates that
the meta knowledge learned from geo-graph attributes
essentially takes effect.

Next, Figs. 10b, 11b, and 12b show that increasing the num-
ber of hidden units in the generated GATs and RNNs can
lower the MAE before overfitting. Note that ST-MetaNet"
uses only 32 hidden units in each layer to achieve better per-
formance than GAT-Seq2Seq (it uses the same network struc-
ture but no meta learning), that uses much more hidden units.
Thus, ST-MetaNet™ have a more compacted hidden represen-
tation for traffic states.

Finally, we discuss the prediction results under different
numbers of hidden units for weight generation in GAT
and GRU. This parameter represents the rank of the para-
meters for all nodes or edges, and is very related to the
number of trainable parameters. As shown in Figs. 10c, 11c,
and 12¢, with only 2 hidden units for weight generation,
ST-MetaNet* can achieve good accuracy, and the perfor-
mance is not very sensitive to the number of hidden units
for weight generation when this number is further incre-
ased. This fact illustrates that though different nodes or
edges have different sets of parameters, they can have a
low-rank representation by several hidden units, showing
similarity among nodes or edges.

4.5 Convergence Discussion (Q4)
In this subsection, we present the framework convergence
during the training process, and compare ST-MetaNett with
two variants, i.e.,, GAT-Seq2Seq and ST-MetaNet, which use
the same sequence-to-sequence and graph-attention based
architecture, as well as the same training strategies, including
the learning rate settings, the scheduled sampling, etc.

As shown in Fig. 13, there are three curves in each chart,
presenting the validation losses of GAT-Seq2Seq, ST-MetaNet,
and ST-MetaNet" in the training procedure. In the beginning

T GAT-Seq2Seq 447 GAT-Seq2Seq 4.5 GAT-Seq2Seq
60 = ST-MewNet | ®  ST-MetaNet ®  ST-MetaNet
% = ST-MeaNet- ® ST-MetaNetr 07 B ST-MetaNetr
38 3.54
240 2364 £30-
= s> 33
3.4+
30 A 2.5
3.2y V “ J
20 3.0 \/\\/\\_ 20 ¥4
.. =S 28 :—\x\’““'_| L5 —
0 5,000 10,000 0 20,000 ' 0 20,000 40,000
Iterations Iterations Iterations
(a) TAXI-BJ (b) METR-LA (c) PEMS-BAY

Fig. 13. Framework convergence on validation datasets.

TABLE 6
Evaluation on Traffic Similarity Between Each Node and its
k-Nearest Neighbors in the Embedding Space (k = 8)

Metric Model TAXI-B] METR-LA PEMS-BAY
GAT-5eq2Seq 0.62 0.7 0.38

CORR ST-MetaNet 0.71 0.73 0.38
ST-MetaNet™ 0.7 0.72 0.4
GAT-5eq2Seq 0.39 0.48 0.14

CORT ST-MetaNet 0.48 0.51 0.16
ST-MetaNet™" 0.46 0.5 0.18

10,000 iterations, all models’ loss values fluctuate due to the
scheduled sampling strategy, that the decoder has a large
probability to use ground truth as the inputs, instead of the
previous decoding values. Consequently, it causes a discrep-
ancy between the training and testing procedure. After that,
with the decreasing of such probability, the validation curves
tend to be stable and converged.

Comparing with GAT-Seq2Seq, ST-MetaNett converges
to a much lower MAE with faster speed in all datasets,
showing the effectiveness of meta learning method, that can
quickly learn genetic information of ST models. Moreover,
ST-MetaNet™ has much lower convergence loss values than
ST-MetaNet, showing the advantage of modeling the rela-
tionships between ST correlations and dynamic traffic
states.

4.6 Evaluation on Meta Knowledge (Q5)

A good meta knowledge learner should obtain the represen-
tation of geographical information that can reflect traffic
similarity for nodes. To validate the effectiveness of such
representation, for each node we first find its k-nearest
neighbors in the node embedding space of geographical
information, and then evaluate the similarity of traffic
sequences between the node and its neighbors. We employ
Pearson correlations and the first order temporal correla-
tions [23], denoted as CORR and CORT respectively, to
measure the similarity between two traffic sequences. The
similarity functions can be expressed as

CORR(x,y) = >ilzi —2)(yi — )
\/Z (zi — ) \/Z (yi —
CORT(x,y) = i@ —xio1)(yi — yi- 1) |

VI sz S — i)’

where x,y are two temporal sequences, and z,y are their
mean values. Note that the larger the criteria are, the more
similar the two sequences are, and both criteria lie in [—1, 1].

We choose k£ = 8 nearest neighbors for each node and cal-
culate traffic similarity on the test dataset between each
node and its neighbors. We compare the meta learning
based frameworks with GAT-Seq2Seq, which uses the same
sequence-to-sequence and graph attention architecture but
adopts the data fusion strategy to incorporate geographical
and traffic information. As shown in Table 6, the node
embeddings of ST-MetaNet” and ST-MetaNet in the taxi
flow prediction task shows significant improvement over
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Fig. 14. The inflows of the representative grids. The left maps show the
selected grids with special functions, i.e., business district, residential
district, and viaduct. The right charts show the inflow trends of the
selected grids R0 and its k-nearest neighbors Rk (k > 0) in the embed-
ding space produced by GAT-Seq2Seq and ST-MetaNet™.

embeddings of GAT-Seq2Seq, which implies that the meta
learning method learns a better geographical representation
that reflects traffic-related characteristics of nodes. While in
the traffic prediction tasks, the improvement is less. The rea-
son is that we have much less geographical information in
METR-LA and PEMS-BAY datasets. Nonetheless, the result
still shows that the meta learning based frameworks can
effectively learn better traffic-related representations.

4.7 Case Study
Similarity of Geographical Information

We further show the property of embeddings learned from
node attributes by ST-MetaNet" through a case study. Intui-
tively, a good embedding space should have the characteristic
that nearby grids have similar traffic sequences. Thus, we
compare ST-MetaNet" with GAT-Seq2Seq by the taxi inflows
of three representative grids in Beijing: Zhongguancun (busi-
ness district), Huilongyuan (residential district), and Sihui
Bridge (viaduct). We present these grids on Bing Maps,' and
show their inflow trends, as shown in Fig. 14.

The selected grids’ inflows of GAT-Seq2Seq are distinct
from the flows of their neighborhoods in the embedding
space. While ST-MetaNet™ obtains an embedding space that
nearby grids have very similar flows. Specifically, in this
embedding space, the neighbor grids of Zhongguancun
(business district) have inflow rush hours in the morning;
the neighbor grids of Huilongyuan (residential district)

1. Bing Maps: https:/ /cn.bing.com/maps
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have inflow rush hours in the evening; while the neighbor
grids of Sihui Bridge (viaduct) have two inflow rush hours
in the morning and evening. This case demonstrates that
ST-MetaNet" learns a reasonable representation of nodes,
and captures the inherent relationships between geographi-
cal information and ST correlations of urban traffic.

Effectiveness of Traffic Context

Intuitively, traffic context can give the model more infor-
mation about the dynamic impact on ST correlations than
geographical information. Thus, ST-MetaNet" should have
better predictions than ST-MetaNet when traffic meets a
sudden change, such as the traffic condition at peak hour.

To show how traffic context impacts traffic prediction,
we select the traffic of a node in METR-LA dataset as an
example, and discuss the improvement of ST-MetaNet"
over ST-MetaNet. We plot the node (blue pin) and its neigh-
bors (red pins) on Google Maps” in Fig. 15a, and the predict-
ing traffic speed (next 30 minutes) of the selected node in
Fig. 15b. In this case, when traffic meets a sudden change,
i.e., at a peak hour, ST-MetaNet" successfully predicts the
severe deceleration of traffic (traffic jam), while ST-MetaNet
fails, as shown in Fig. 15b. The reason is that in off-peak
hours, the traffic has high speed and has analogous types of
ST correlations, however, when traffic starts changing at
peak hour, the type of ST correlations is also changed. Since
ST-MetaNet does not consider the relationships between ST
correlations and such dynamic traffic states, it cannot give a
good prediction in predicting such sudden change.

Next, we want to further illustrate how dynamic traffic
state impacts spatial correlations. As traffic jam usually
starts from ramp road (exits or bridges), the traffic speed
near ramp road should have a large impact than the traffic
speed on common roads when traffic jam occurs. To verify
it, we also present the heatmap of graph attention scores for
each hidden state’s channel at peak hour in Fig. 15c, where
the z-axis stands for the channel IDs of the hidden state,
and the y-axis denotes the neighbors’ IDs of the selected
node. Notice that N6, N7, and N8 are near exits or bridges
in Fig. 15a, and they have the largest attention scores in
Fig. 15¢, showing biggest impacts to the selected node. This
fact verifies our assumptions, and demonstrates the effec-
tiveness of modeling the relationships between ST correla-
tions and dynamic traffic states.

5 RELATED WORK

Urban Traffic Prediction

There are some previously published works on predict-
ing an individual’s movement based on their location his-
tory [24], [25]. They mainly forecast millions of individuals’
mobility traces rather than the aggregated traffic flows in a
region. Some other researchers aim to predict travel speed
or traffic volumes on single or multiple road segments [26],
[27], rather than citywide ones. Recently, researchers have
started to focus on city-scale traffic prediction. In the begin-
ning, some researchers proposed non-deep models [28], [29]
to predict traffic. With the development of deep learning,
[4], [21], [30], [31], [32], [33] proposed to predict traffic on
regular urban grids by convolution neural network (CNN)

2. Google Maps: https:/ /www.google.com/maps
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Fig. 15. Case study for a sudden change of traffic speed on METR-LA dataset.

and recurrent neural network based models, such that the
high-level ST correlations can be captured effectively. In
addition, [3], [6], [9], [10] employed graph convolution com-
ponents in neural networks to predict urban traffic on non-
grid spatial structure, e.g., road networks.

Being different from all above works, we aim to model
the diverse ST correlations in urban traffic. To the best of
our knowledge, we are the first to study the inherent rela-
tionships between ST correlations and geographical infor-
mation along with dynamic traffic states.

Deep Learning for Spatio-Temporal Modeling

Deep learning has powered many applications in spatio-
temporal areas. In specific, the architectures of CNNs were
widely used in modeling grid data, e.g., taxi demand infer-
ence [32] and precipitation nowcasting [34]. Besides, RNNs
[18] became popular due to their success in modeling tempo-
ral sequence, however, separately modeling sequences by
RNNs discards the unique characteristics of spatio-temporal
data, i.e., spatial correlations. To tackle this issue, several stud-
ies were proposed, such as video prediction [35] and travel
time estimation [36]. Very recent studies [8], [37] have indi-
cated that attention mechanism can enable RNNs to capture
dynamic ST correlations in geo-sensory data.

By contrast, our work introduces a new perspective, that
the ST models can be generated by related meta knowledge.
Particularly, our meta learning framework can be also
applied on the above deep ST models, e.g., by generating
weights of CNNs, RNNs, and attention networks.

Deep Meta Learning

The most related deep meta learning method is network
weight generation. [38] first proposed to predict network
parameters for modeling temporal data. [39] used a net-
work called learnet to predict the parameters of a pupil net-
work for few-shot learning. [40] employed hypernetworks to
generate network weights, which can be regarded as weight
sharing across layers. [41] proposed meta multi-task learning
for NLP tasks, which also employ weight generation method
to learn task-specific semantic functions by a meta network.
[42] proposed to embed neural architecture and adopt hyper-
networks to generate its weights, to amortize the cost of neu-
ral architecture search.

There are also other types of meta learning methods as
well as related studies on graph structure. [43] proposed to
use parametric functions to update network parameters.
[44] proposed to maintain meta-gradients for fast model
adaption. [45], [46], [47] proposed to build graphs for
describing relationships between tasks or data samples, and
then propagate information on graphs for few shot learning.

Our work is distinct from all above methods, as it aims to
tackle a different category of problem, i.e., modeling corre-
lations on ST graphs which depends on static attributes and
dynamic states.

6 CONCLUSION AND FUTURE WORK

We propose a novel deep meta learning framework, entitled
ST-MetaNet", for spatio-temporal data with applications to
urban traffic prediction, capable of learning traffic-related
embeddings of nodes and edges from geo-graph attributes
and traffic context from dynamic traffic states, so as to
model diverse spatial and temporal correlations, respec-
tively. We evaluate ST-MetaNet" over three real-world
tasks. Compared with state-of-the-art baselines, our model
demonstrates very competitive performance. We visualize
the similarity of meta-knowledge learned from geographi-
cal information, and the impact of dynamic traffic states, to
show the interpretation of ST-MetaNet™. In the future, we
will extend our framework to a much broader set of urban
ST prediction tasks and explore the usage of such represen-
tation learned from geographical attributes in other traffic-
related tasks.
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