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Abstract—Urban metros have become the foremost public transit to modern cities, carrying millions of daily rides. As travel efficiency
matters to the work productivity of the city, shortening passengers’ travel time for metros is therefore a pressing need, which can bring
substantial economic benefits. In this paper, we study a fine-grained, safe, and energy-efficient strategy to improve the efficiency of
metro systems by dynamically scheduling dwell time for trains. However, developing such a strategy is very challenging because of
three aspects: 1) The objective of optimizing the average travel time of passengers is complex, as it needs to properly balance
passengers’ waiting time at platforms and journey time on trains, as well as considering long-term impacts on the whole metro system;
2) Capturing dynamic spatio-temporal (ST) correlations of incoming passengers for metro stations is difficult; and 3) For each train, the
dwell time scheduling is affected by other trains on the same metro line, which is not easy to measure. To tackle these challenges, we
propose a novel deep neural network, entitled AutoDwell. Specifically, AutoDwell optimizes the long-term rewards of dwell time settings
in terms of passengers’ waiting time at platforms and journey time on trains by a reinforcement learning framework. Next, AutoDwell
employs gated recurrent units and graph attention networks to extract the ST correlations of the passenger flows among metro
stations. In addition, attention mechanisms are leveraged in AutoDwell for capturing the interactions between the trains on the same
metro line. Extensive experiments on two real-world datasets collected from Beijing and Hangzhou, China, demonstrate the superior
performance of AutoDwell over several baselines, capable of saving passengers’ overall travel time. In particular, the model can
shorten the waiting time by at least 9%, which can boost passengers’ experience significantly.

Index Terms—Metro Systems, Spatio-temporal Data, Neural Network, Deep Reinforcement Learning, Urban Computing.
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1 INTRODUCTION

U RBAN metros have become the most important public
transit because of the convenience, safety, punctuality,

and high efficiency. For example in Beijing, a city with about
30 million people, the metro delivers an average of 10.5
million trips per day, as exhibited in Figure 1(a) 1. According
to [1], [2], travel time significantly matters people’s work
productivity [2]. That is, shortening metro passengers’ travel
time can improve the work efficiency of the city, bringing
substantial economic benefits. To this end, many approaches
have been taken by metro operators, such as increasing the
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frequency of trains and accelerating their speed. However,
these ways introduce large energy consumption with huge
costs and, more importantly, carry risks [3]. Thus, a fine-
grained, safe, and energy-efficient operation is urgently
needed for metro systems.

In the real world, the dwell time of trains for each station
is usually fixed and decided by expert experience. For exam-
ple, the dwell time of Line 14, Beijing is 62s and 74s during
peak hours and off-peak hours, respectively. However, such
a fixed schedule takes very limited information about the
dynamic and diverse distributions of incoming passengers
into consideration, and consequently there is still a large
space to improve the system efficiency. As the two cases
presented in Figure 1(b), by knowing how many people will
come, we can extend the dwell time such that upcoming
passengers do not miss the train (i.e., Case 1), or reduce
the dwell time to make the train do not cost unnecessary
waiting time at stations (i.e., Case 2). Recently, large amounts
of passengers’ check-in and -out records of metro stations
are collected, inspiring us to study the dynamic strategies
that can assign the dwell time of trains based on passengers’
demands. However, it meets several challenges.

1) The objective of optimizing the average travel time
of passengers is extremely complex. First of all, changing
the dwell time has interacted impacts on the overall travel
time from two aspects: I) the waiting time for passengers
at platforms, and II) the journey time of those people who

http://www.beijing.gov.cn/gongkai/shuju/
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Fig. 1: (a) Average # of daily trips in Beijing metro over years; (b) Comparison between two types of dwell process; (c)
Multi-line metro system of Beijing; (d) Passenger distributions of a single day’s trips in terms of the transfer behavior
(17/09/2019 in downtown of Beijing); (e) Spatial-temporal correlations of passenger flows between different stations.

are already on trains. For instance, a long dwell time can
potentially reduce people’s waiting time at the platform,
whereas it could increase the journey time of those people
who are already on the train. Therefore, the optimization
process needs to consider both factors simultaneously. Sec-
ond, changing a train’s dwell time at a station will entirely
modify the schedule of arrival time at the subsequent sta-
tions, introducing very long-term impacts on the overall
travel time. Therefore, it is non-trivial to schedule the right
dwell timing by considering the long-term impacts.

2) To accurately capture passenger states of metro sta-
tions is difficult, owing to complicated and intertwined
spatio-temporal (ST) correlations. As demonstrated in Fig-
ure 1(c) and (d), in current metro systems, there are many
metro lines intersected and many passengers have to change
many metro lines to reach their destinations. That is, the pas-
senger flow of a metro station is affected by other stations
that are geographically related to the station. In addition,
the number of incoming passengers is highly dynamic in
temporal domains. As the example shown in Figure 1(e),
large amounts of passengers got on trains at Tiantongyuan
station and will appear on subsequent transfer stations
after different periods, indicating the short-term temporal
impacts. There are also long-term impacts, e.g., the passen-
ger flow pattern during morning rush hours is similar on
consecutive workdays, repeating every 24 hours.

3) The interactions between trains on the same metro line
are dynamic. When a train arrives at a station, it would pick
up waiting passengers on the platform, changing the state
of the passenger distribution in this station and impacting
the upcoming trains’ decisions for dwell time. For instance,
if we know there is not enough space for the preceding train
of the current train, we should consider reducing the dwell
time of the train such that passengers who cannot get on the
preceding train can save their waiting time.

Recently, many works have been studied to determine
the dwell time for trains based on passengers’ demand [4]–
[7]. Given the exact number of waiting passengers at a
station, these existing studies learn a function that estimates
the dwell time required for these passengers. However, their
performances are limited due to two reasons. First, they only
consider to satisfy the demand of the current station, and
consequently can not capture these long-term impacts on
the overall travel time. Second, these prior works overlook
the interactions between trains, leading to the improvement

of the overall metro system is limited.
To tackle all aforementioned challenges, we propose a

novel deep neural network, entitled AutoDwell, which can
reduce the average passengers’ travel time by properly
scheduling the dwell time to each train for its next station.
In summary, the contributions of this paper are four-fold:
• We propose using reinforcement learning framework to

learn AutoDwell. Specifically, we design the reward of
dwell time by weighing the passengers’ waiting time
at platforms and the journey time on trains, and take
advantage of the reinforcement learning framework to
optimize the long-term impacts of the reward.

• For each train, AutoDwell makes decisions by tak-
ing into consideration the dynamic passenger states.
Particularly, a network component, named passenger
feature extractor, consisting of gated recurrent units
and graph attention networks, is adopted to embed the
passengers’ information by capturing the complex ST
correlations among stations.

• For each train, we propose to leverage the states of
its both front and rear trains on its metro line as
the additional input of AutoDwell, and use attention
mechanisms as the train feature extractor of AutoDwell
to capture the interactions between them.

• We evaluate our model using real-world datasets col-
lected from two big cities in China, i.e., Beijing and
Hangzhou. Experimental results demonstrate the ad-
vantages of our model over several baselines, capable
of saving passengers’ overall travel time. In particular,
the model can shorten the waiting time by at least 9%,
which can boost passengers’ experience significantly.

2 OVERVIEW

In this section, we first formulate the dynamic dwell time
scheduling problem. Then, the framework of our solution
for addressing the problem is introduced.

2.1 Problem Formulation

2.1.1 Preliminary
We introduce two important concepts of this paper as fol-
lows.

1) Multi-line metro system. Namely, the formulation of a
real world metro system.
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1) Line. As we known, a metro line always has two
directions in the real world. Since very few passengers
interchange between two directions of the same line,
we regard the two different directions as different lines
in the formulated system That is, there are nline lines in
the formulated metro system, which can correspond to
nline

2 lines in the real world).
2) Station. We represent a metro station by a 2-tuple,
e.g., ui = (#line,#realstation) where #line and
#realstation denotes the line ID and the station ID,
respectively. Through the 2-tuple, we can uniformly
model transfer stations and transfer stations. That is,
unlike normal stations that only belong to one line,
in transfer stations, passengers can pass multiple lines.
Specifically, we decompose a transfer station as multi-
ple stations where each station belongs to only one line
and these decomposed stations share the same station
ID. For example, given ui and uj (i 6= i), ui.#line =
uj .#linemeans the two stations belong to the same line
while ui.#realstation = uj .#realstation represents
they are two decomposed stations from the same real-
world transfer station. In sum, there are nstat stations in
the formulated system.
3) Train. In the system, we assume all trains’ type are the
same. Concretely, the passenger capacity and the speed
upper bound (determines the energy consumption of
trains [3]) of all trains are the same. The capacity is ex-
pressed as ncapa and the train speed are set according to
the real-world (see Section 4.1.2 for details). In addition,
in the formulated system, the number of trains are fixed
per unit time as the real-world system.
4) Dwell process. Accodring to the real-world setting,
the dwell time in the formulated system is within a
reasonable range [δmin, δmax], during which passengers
can get off and get on the train. We use δm,uj to denote
the dwelling time of train m at station uj where δmin ≤
δm,uj ≤ δmax. Specifically, δm,uj = δfixed +δ

alig
m,uj +δboar

m,uj
,

where δfixed is a constant for all trains and stations,
including the time for a train to enter the platform,
the time to open and close the door, and the time
for the train to leave the platform. The rest of two
items, i.e., δalig

m,uj and δboar
m,uj

, are door utilization time for
alighting and boarding passengers. In this paper, linear
models are used to simulate the alighting and boarding
procedures [8]. Concretely, we use ρalig

m,uj represents the
number of alighting passengers of train m in station uj .
Namely, given a fixed alighting velocity for trains valig,
δ

alig
m,uj is calculated by δ

alig
m,uj = ρ

alig
m,uj/v

alig. If δalig
m,uj >

δm,uj
−δfixed−δmixed, we set δalig

m,uj = δm,uj
−δfixed−δmixed

where δmixed is a very small value, simulating the real-
world situation that all alighting passengers will get
off and remains a very short time. After the end of
the alighting process, the boarding process starts. The
boarding time δboar

m,uj
= δm,uj

− δfixed − δalig
m,uj . The ideal

number of boarding passengers is ρ̄boar
m,uj

= vboar×δboar
m,uj

,
where vboar is a fixed boarding velocity for trains.
However, the actual number of passengers on board is
subjected to the number of passengers on the train and
waiting at the platform. Assuming the total number

of passengers already on the train m when it leaves
from the station ui (the last station of the station uj)
is ρtotal

m,ui
, the remaining carrying capacity of the train

ρremain
m,uj

= ncapa−ρtotal
m,ui

+ρ
alig
m,uj . In addition, the number

of waiting passengers at the platform of the station uj
can be represented as ρplat

m,uj . As a result, the number of
boarding passengers is given:

ρboar
m,uj

=


ρ̄boar
m,uj

, if ρ̄boar
m,uj

≤ ρplat
m,uj

and ρ̄boar
m,uj

≤ ρremain
m,uj

;

ρremain
m,uj

, if ρremain
m,uj

≤ ρplat
m,uj

and ρremain
m,uj

≤ ρ̄boar
m,uj

;

ρplat
m,uj

, if ρplat
m,uj

≤ ρremain
m,uj

and ρplat
m,uj

≤ ρ̄boar
m,uj

.

2) Historical passenger check-in readings. The historical
passenger check-in readings is denoted as a tensor
Xdata = [X1, ..., Xnhist ] ∈ Rn

hist×nstat
, where nhist is

the number of timestamps and nstat is the number of
regions. Given an index (i, j), where 1 ≤ i ≤ nhist and
1 ≤ j ≤ nstat, the corresponding value of tensor Xdata
at this index denotes the check-in value of the station j
at timestamp i.

2.1.2 Problem statement

Given the above multi-line metro system and historical
passenger check-in readings, we try to learn an effective
policy π, which determines trains’ dwell time by capturing
the states of dynamic passengers and their context trains,
aiming to shorten the overall passengers’ average travel
time of the system for a long time. Specifically, since the
metro system is a dynamic system, one dwell decision
may affect the whole system. That is, we can not optimize
each station dependently, e.g., to wait for passengers at the
current station, it may cause over waiting for passengers at
the next stations, resulting in an increase of the overall travel
time. Hence, we formulate the long-term optimization prob-
lem by Q-learning-based reinforcement learning, which can
be characterized with an agent and five major components
{A,S, r, π,Q}:

1) Agent & Action set A. In a multi-line system, there will
be many trains running simultaneously. Thus, optimizing all
trains together leads to a considerable solution space that is
difficult to be optimized. Hence, we propose to let the agent
be a single train and all trains share the same policy. When
an arbitrary train is going to leave from its current station,
our policy selects the action, i.e., the dwell time for the
train. It can therefore largely reduce the action space from
(naction)n

train
to naction where naction and ntrain is the number

of actions and running trains, respectively. Note that, even if
the agent is a single train, by using the policy, trains also can
cooperate to improve the system efficiency. This happens
because, for each train, the policy can consider statuses of its
related trains when performing the dwell action (see Section
3.1).
A consists of all the dwell time selections for trains. As

the dwell time ranges from a continuous range [δmin, δmax],
to further reduce the action space, we uniformly discretize
the range to naction values as our actions.

2) State set S . For a train that is going to depart, it
observes two kinds of information impacting the dwell time
action, including the passenger flow states of its following
stations and the states of other trains on the same metro
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line. Notably, the passenger flow states are extracted from
the historical passenger check-in readings. Mathematically,
we denote the passenger state and the train state as X and
C, respectively, which will be detailed in the next section.

3) Immediate reward r. After taking an action under a
state and transiting to the next one, the agent receives an
immediate reward. In this work, to optimize the average
travel time and involve the long-term impacts by the re-
inforcement learning framework, we devise the immediate
reward by considering the waiting time of passengers at
platforms and the journey time of passengers on trains.

Concretely, when train m has dwelled for a given action
δm,uj

in station uj and is going to depart, we can calculate
the immediate reward for the action by Eq. 1.

rm,uj
= ω × ψm,uj

− (1− ω)× εm,uj
(1)

where ψm,uj
and εm,uj

are two metrics obtained based on
the waiting time and journey time respectively, and ω is a
parameter to weight the importance of the two parts. Sup-
pose the number of passengers boarded, alighted, and when
leaving the station are ρboar

m,uj
, ρalig
m,uj , and ρtotal

m,uj
respectively,

the two metrics are defined as below.

Definition 1. Waiting time cost ψ. For passenger pk who
just get on the train, the waiting time, i.e., the time from
her arrival at platform to the train starts to run, is de-
noted as δwaiting

pk . Then, we define the metric as ψm,uj =∑ρboar
m,uj

k δ
waiting
pk . The larger the ψm,uj , the more number of or

the more over-waited passengers the train serves.

Definition 2. Journey time cost ε. The metric can be repre-
sented as εm,uj

= κ×δm,uj
where κ = ρtotal

m,uj
−ρboar

m,uj
denotes

the number of passengers passing this station. The smaller
the εm,uj

, the shorter time spent on the journey for passing
passengers.

4) Policy π & long-term value function Q. An agent inter-
acts with its environment in discrete time steps. At each time
step t, an agent under state st takes an action at according
to a policy π (i.e., a mapping function: S × A → π). Then,
it transits to the next state st+1, receiving an immediate
reward rt. In an episode, i.e., a specific time interval, the
cumulated reward Rt of the action from time step t can be
calculated as Eq. 2.

Rt = rt + γ × rt+1 + γ2 × rt+2 + ...+ γT−t × rT (2)

where γ is a discount parameter and T is the last period in
the episode. Then, the optimal value function Q returns the
maximum expected long-term reward of each action at as
shown in Eq. 3.

Q(st, at) = maxπE[Rt|st, at;π] (3)

After obtaining this function, the corresponding optimal
policy of the reinforcement learning can be easily inferred.
Namely, always taking the action with the maximum opti-
mal Q value under the current state: a∗t = argmaxaQ (st, at)

Bellman equation shown in Eq. 4 is usually adopted
to estimate the optimal long-term value function via an
iterative approach.

Q(st, at) = Est+1 [rt + γ ×maxat+1Q(st+1, at+1)|st, at] (4)

In this paper, due to the difficulty of specifying the
sophisticated long-term value functionQ, we design a novel
deep network, i.e., AutoDwell, to store our policy π. That is,
we try to learn the policy network to optimize the passenger
travel efficiency for a long time.

2.2 System Framework

To solve the formuated problem, we propose a deep neural
network, i.e., AutoDwell, as the scheduling policy. Figure 2
overviews the system that trains and deploys the AutoD-
well, consisting of two phases: an offline learning procedure
and an online deployment procedure.
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Fig. 2: System framework

2.2.1 Offline learning
In this procedure, we train the policy model AutoDwell,
containing three major components: a data processing mod-
ule, an emulator module, and an AutoDwell learning mod-
ule.

Data processing. We extract two kinds of knowledge
in this module, which will be used subsequently. First, we
extract settings of the real-world metro system, such as
metro structures, departure timetables, and speed upper
bounds. Second, we estimate passengers’ trajectories based
on check-in and -out records (a kind of origin-destination
(OD) data with timestamp). Specifically, a trip of passengers
from check-in to check-out can be divided into the following
parts, including entry time (walking time from station entry
to the train platform), waiting time (waiting time from
arriving at the platform to the running of the train), journey
time (the time on the train), and exit time (walking time
from the platform to the exit). In particular, line transfer
time is considered when a trip’s origin and destination
belong to different lines. As the trajectory estimation task
has been investigated [9]–[11], we adopt the authoritative
method of Beijing Metro Network Control Center that has
been reported in [9].

Emulator. Because emulation is an effective way and has
been widely used in a large number of previous works on
training deep reinforcement learning models [12]–[16], in
this work, we construct an emulator to provide the formu-
lated metro system above. Despite using emulator, we can
still train robust models because we build the emulator with
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real data (i.e., adopting the extracted real-world settings and
using the real passenger trajectories as the environment).
Specifically, in the emulator, we model the metro system
based on the real metro structures. Given the real departure
timetables, trains are sent from the initial stations of the
lines accordingly. Moreover, between every two successive
stations, we use the real maximum speed to control trains.
That is, trains will run at a speed less than or equal to the
specified maximum speed between the current two stations,
on the premise of ensuring safety. In particular, passengers
enter the emulated metro system according to their real
check-in time, and their original station, destination station,
and trajectories are all consistent with their real records.
Details of the settings of the emulator can be found in
Section 4.1.2.

AutoDwell Learning. In this component, we follow the
reinforcement learning paradigm to learn the deep policy
network by interacting with an emulated environment. The
deep network will be described in Section 3.

2.2.2 Online deployment
After the deep network is converged, we can deploy our
model in the real world. That is, given the observed input
state, we directly use the learned network, i.e., AutoDwell,
to guide the dwell time scheduling according to the maxi-
mum Q-value. In practice, the model can be embedded into
the metro control system to direct the dwell time, or can
be independent with the control system and provides dwell
time suggestions for metro operators.

3 AUTODWELL

Figure 3(a) shows the architecture of the proposed deep
network, i.e., AutoDwell, which unlocks long-term rewards
of actions according to the observed state by the guidance of
the immediate reward. Concretely, it consists of three com-
ponents: 1) a train feature extractor to capture interactions
between the current train and other trains on the same line
based on the train state C; 2) a passenger feature extractor for
embedding the upcoming passenger’ information among
the passenger state X by considering and weighing the ST
correlations among all these subsequent stations of the train,
and 3) a fusion network to fuse the two parts of knowledge
and accordingly provide Q-values for actions.
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Fig. 3: (a) Overview of AutoDwell; (b) Structure of the train
feature extractor.

3.1 Train Feature Extractor

We use the train state C to record statuses of the current
train and its context trains such that we can model their
interactions. Specifically, for the current train m that is

heading to station ui, the train state can be represented
as Cm,ui

= {dm,Dfront
m ,Drear

m }. Vector dm ∈ Rn
fea

denotes
features of the current train, including its running status,
location, passenger quantity, etc. In addition, for the train, as
two types of context trains (trains running on the same line
can impact the current train) exist, i.e., front-sequence trains
and rear-sequence trains, we use matrices Dfront

m ∈ Rn
front
m ×nfea

and Drear
m ∈ Rn

rear
m ×n

fea
to represent features of the two types

of context trains respectively, in which nfront
m and nrear

m are the
number of front trains and rear trains, respectively.

Thereafter, as depicted in Figure 3(b), we propose to use
attention mechanisms [17] to capture the interactions based
on the state for two reasons. First, the attention mechanisms
are studied to infer the importance of different parts of
the training data and let the learning algorithms focus on
the most informative parts. That is we can focus on these
important trains that have the greatest impact on the current
train. Second, with the running of the current train, the
number of these context trains is changing. Namely, later
context trains will start from the initial station to join the
system, and earlier context trains will arrive at the terminal
station and exit the system. The attention mechanisms can
handle such a situation with the length-variable data.

We respectively capture the impacts of the two types
of context trains by using the same attention network
component. In the following, we take the rear trains as a
concrete example to describe this component. Formally, the
inputs of the component are dm and Drear

m = [drear
1 , ...,drear

nrear
m

].
First, we use a shared linear transformation, parametrized
by weight matrix WTr, to apply to these trains’ feature
vector for obtaining sufficient expressive power. Then, we
attend the interaction between m and each rear train and
get a normalized importance weight by a softmax function.
For instance, the importance weight of the i-th rear train,
denoted as ai, can be obtained as follows:

ei = tanh
(
vT
(
WTrdm,W

Trdrear
i

))
; ai =

exp(ei)∑
z∈nrear

m
exp (ez)

(5)
where v is a single-layer feed-forward neural network.
Next, the output hidden representation vector, capturing the
interactions of all rear trains, is derived as:

d̂rear
m,ui

=
∑
z∈nrear

m

azW
Trdrear

z (6)

Similarly, we can obtain d̂front
m,ui

by feeding the dm and
Dfront
m into this component. To sum up, the final output

of this component, capturing both the current train’s sta-
tus and impacts from the two types of context trains, is:
d̂train
m,ui

= d̂rear
m,ui
||d̂front

m,ui
||(WTrdm), where || is the concate-

nation operator. Notably, by considering other trains’ state
when a train performs actions, AutoDwell follows a multi-
agent learning paradigm that can make trains cooperate
mutually [13].

3.2 Passenger Feature Extractor

When a train is performing an action, we aim to perform
long-term benefited actions by referring to passenger states
of all its subsequent stations. To this end, we store statuses of
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the current train’s subsequent stations in the passenger state.
Moreover, to reveal the short- and long- term ST correlations
of passengers, for each station, its passenger state is with
two kinds of information, including recent passenger flows
and external features such as hours of a day, holiday or
not, weather, and POIs. For instance, suppose train m at
station ui is going to leave and the subsequent station of ui
are uj , uk, ..., and uy , the passenger state set X therefore
includes the two kinds of state information of these subse-
quent stations. Notably, first, the subsequent station amount
is variable with the running of a train. That is, the X is
length-variable. Second, there are two types of stations for
a metro system, i.e., normal stations and transfer stations.
For a normal station, passengers are all entered from the
station itself. Whereas passengers in a transfer station are
not only entered from the station but also transferred from
other lines. Thus, for a normal station, the state just includes
flow data of itself, but for a transfer station, we record recent
flows of the transfer station itself and all its related stations.

To handle such complex data and reveal information of
upcoming passengers, as shown in Figure 4(b), we propose
the passenger feature extractor, consisting of transfer station
learners, normal station learners, and a conclusive recurrent
neural network (RNN). Specifically, we present the transfer
station learners and the normal station learners to extract
ST correlations and unlock the future flows (that affect
the dwell time decision) for transfer stations and normal
stations, respectively. Thereafter, we employ the conclusive
RNN component to integrate the impacts of these length-
variable subsequent stations. Notably, the structure of the
passenger feature extractor in Figure 4(b) is constructed
according to the train at Station 2, Line 1 of the toy metro
system exhibited in Figure 4(a). In this section, we will detail
the extractor subsequently.
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Fig. 4: (a) An example of metro system. (b) Overview of
the passenger feature extractor; (c) Structure of the transfer
station learner.

3.2.1 Transfer station learner
For a transfer station, in addition to the passengers who
swipe the card to enter this station, some passengers transfer
from other stations. These transfer behaviors cannot be
easily obtained from the check-in data and therefore are
complicated to derive the passenger transfer probabilities.
Indeed, for a transfer station, the passenger flow at other
stations impacts it on two aspects, i.e., spatial and tem-
poral. 1) Spatial impact: Given a transfer station, other

stations can affect this station as long as they are connected
by the metro lines. 2) Temporal impact: Different stations
have different trends of passenger flow at different periods.
Also, for a given transfer station, the impacts from these
related stations are various in the time dimension. In the
transfer station learner, we learn a graph attention network
to capture the spatio-temporal impacts, for the following
reasons. First, the spatial impact can be modeled by a
graph. Concretely, the metro structure can be seen as an
undirected graph where stations are connected with. That is
the impact graph of the transfer station is the subgraph of
the metro structure graph that contains the station. Note
that, for a complex system, a given transfer station will
connect with too many stations, which will lead to a large
graph (high computational complexity). To this end, we use
historical data to find the stations with the most interactions
with the given transfer station, and prune those infrequent
stations from the graph. Second, the temporal impacts can
be handled by the attention mechanism. That is the attention
mechanism can calculate different weights according to
different stations and time, i.e., different degrees of impacts.

Specifically, suppose the first subsequent station uj is
a transfer station, the passenger states of uj is (Xm,ui

)1
= (Xuj

,Guj
, fuj

) where Xuj
, Guj

, and fuj
denote the

passenger flow matrix, adjacency matrix, and external fea-
ture vector of station uj , respectively. As for the transfer
station, other stations may affect its state, we include all
these related stations’ passenger flows using Xuj

. Namely,
Xuj = [xuj ,x

uj

1 ...,x
uj

n
neig
uj

] where xuj denotes the historical

flows of the transfer station uj and the rest of vectors
represent historical flows w.r.t. nneig

uj related stations of uj .
Specifically, for an arbitrary station x∗ = xin

∗ + xtransfer
∗ ;

x∗, xin
∗ , and xtransfer

∗ ∈ Rn
hist

. Variable nhist is the number
of previous timestamps of passenger flow readings. Vector
xin
∗ and xtransfer

∗ represent passengers who entered from this
station and transferred from other lines to the station in each
timestamp, respectively. Note that for normal stations, each
entry of xtransfer

∗ equals 0. Moreover, the spatial relationship
of these stations are reserved by a graph, i.e., Guj

. These
related stations can be pre-selected according to the pas-
senger trajectory data. Namely, we choose those stations,
each of which has many passengers who entered from the
station and transferred to the transfer station in history, and
construct a graph based on their geographic relationships.

In this learner, we propose to adopt RNNs and graph
attention networks (GATs) [18] to capture the complex short-
term ST correlations from the passenger flows, as depicted
in Figure 4(c) (we use the graph of Station 3 of the metro
system in Figure 4(a) to demonstrate the learner). First,
we employ an RNN to model the short-term intra-station
temporal correlations from the given historical flows. As
the gated recurrent unit (GRU) [19] is a simple but effec-
tive structure of RNN, we introduce GRU as the specific
implementation.

GRU can be defined as ht = GRU(ct,ht−1|W∗,U∗,b∗)
formally, in which ct ∈ RD and ht ∈ RD

′
are the input

vector and the encoding state at timestamp t, respectively.
W∗ ∈ RD

′×D and U∗ ∈ RD
′×D are weight matrices; b∗ ∈

RD
′

are bias vectors (∗ ∈ {u, r, h}). Concretely, GRU derives
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the representation of the hidden state as:

u = σ(Wuct + Uuht−1 + bu); r = σ(Wrct + Urht−1 + br);

ht = u ◦ ht−1 + (1− u) ◦ tanh(Whdt + Uh(r ◦ ht−1 + bh))
(7)

where ◦ is the element-wise multiplication and σ(·) denotes
the sigmoid function.

In the learner, we use a GRU, denoted as GRUInd, to en-
code the passenger flow of each station. Given a input vector
x = [x1, ..., xnhist ], we obtain the hidden state stored in the
last states of the GRU cells, i.e., hInd

nhist = GRUInd(xnhist ,hInd
nhist−1

|WInd
∗ ,UInd

∗ ,bInd
∗ ), and use the hidden state as the embed-

dings of historical flows. For simplicity, for station uj , we
denote (hInd

nhist )uj
as x′uj

.
Then, to capture the short-term inter-station spatial cor-

relations between uj and its related stations, we propose
to employ GAT in this learner. Concretely, following GAT,
we employ a fully-connected network (FCN), denoted as
WSt, to calculate a function that provides attention scores
between passenger flow embeddings of stations. Then, we
use the softmax function to determine the impacts. For
instance, the impact weight of z-th neighbor station of uj ,
denoted as aj,z , can be obtained as follows:

ej,z = φ
(
gT
(
WStx′uj

,WStx′z

))
; aj,z =

exp(ej,z)∑
uc∈Nuj

exp(ej,c)

(8)
where Nuj

is a set of neighbors of uj in the given graph
Gm,uj

and g is a single-layer feed-forward neural network.
The mechanism therefore injects the graph structure into the
mechanism by only attending with neighbors in the graph.

Next, for the transfer station, we calculate and output
the overall impact of neighbors by linearly combining the
hidden states according to the normalized weights and
applying a nonlinearity function σ.

x̂uj
= σ

 ∑
uc∈Nuj

aj,cW
Stx′uc

 (9)

In addition to the short-term ST correlations, the future
flows also can be affected by the long-term factors, such
as hours of a day and regional functionalities. We capture
such correlations from the external features fuj

by an FCN,
denoted as WLo. Finally, we output the new embedding zuj

of the station with short- and long- term ST correlations:
zuj

= x̂uj
||
(
WLofuj

)
.

3.2.2 Normal station learner

Suppose the second subsequent station uk is a normal
station, (Xm,ui)2 = (xuk

, fuk
) is the input of the learner.

Since a normal station is not affected by other stations, the
state only has its flow vector xuk

. Also, fuk
is the external

feature vector of uk.
In this learner, we use the same GRU of the transfer

station learner, i.e., GRUInd, to capture the short-term intra-
station temporal correlations of normal stations. Given the
input xuk

to GRUInd, we also obtain and output the hidden
state stored in the last states of the GRU cells, denoted as
x̂uk

. As well, we adopt the same FCN, i.e., WLo, to embed

the external features fuk
. In sum, the output embedding of

the normal station uk is zuk
= x̂uk

||
(
WLofuk

)
.

3.2.3 Conclusive recurrent network
Because the number of subsequent stations is variable, we
propose to use a new RNN to collectively weight and inte-
grate the impacts of these stations based on these obtained
embeddings of these stations. Specifically, after learned by
the above two learners, the input of the RNN is obtained
as [zuy , ..., zuk

, zuj ]. The order of the input is based on
the reverse of distance from station ui, considering the
impacts of the distance. Also, we use GRU as the imple-
mentation of RNN, denoted as GRUCon, and output the
hidden vector of the last states of the GRU cells, i.e., ẑpassenger

m,ui

= GRUCon(zuj
,hCon

uk
|WCon
∗ ,UCon

∗ ,bCon
∗ ), as the passenger

information embedding with complex ST correlations of
these subsequent stations.

3.3 Fusion Component
To fuse the two influential aspects of knowledge and reveal
the Q-value for each action, we propose the fusion com-
ponent. Concretely, we feed the outputs of the above two
components to FCNs to model their latent correlations and
estimate the Q-value for each action. Specifically, for train
m that is heading to station ui, we denote the estimated
Q-values as qm,ui

, which can be obtained as follows.

qm,ui
= Dc(σ(...D1(σ(d̂train

m,ui
||ẑpassenger

m,ui
))...)) (10)

where {D1, ...,Dc} represents c dense layers.

3.4 Algorithm of Optimization
Following the basic deep Q-learning framework [13], [16],
[20], the network can be optimized end-to-end. Algorithm
1 shows the learning algorithm of AutoDwell. Specifically,
we first initialize the deep network. Then, for each episode,
AutoDwell assigns the dwell time for a train, and stores
the states, actions, and immediate rewards in the replay
memory (Lines 3-9). Next, AutoDwell randomly selects a
mini-batch of samples from the replay memory to train the
policy (Lines 10-13). Finally, after the network is converged,
we can obtain the scheduling policy.

4 EXPERIMENTS

The code of AutoDwell has been released2. In this section,
we conduct experiments to evaluate AutoDwell.

4.1 Experimental Settings
4.1.1 Datasets
In the experiment, we build emulators to train and evaluate
our model based on the real-world datasets collected from
Beijing and Hangzhou, China. The two real-world datasets
are described as follows. More statistics of the two datasets
are summarized in Table 1.

1) Beijing. This dataset is obtained from Beijing Metro
Network Control Center3, containing a large number of

2. https://github.com/AutoDwell/AutoDwell.git
3. https://www.bjsubway.com

https://github.com/AutoDwell/AutoDwell.git
https://www.bjsubway.com
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Algorithm 1: Training algorithm of AutoDwell
Input : A small probability ε and a discount

parameter γ
Initialize : A replay memory D and parameters θ of

AutoDwell.
1 for episode = 1, nepisode do
2 for t = 1, ndwell process do
3 generate a random value ε̂ ∈ [0, 1]
4 if ε̂ < ε then
5 select a random action at
6 else
7 select at = argmax

a
Q (st, at; θ);

st = {Ct,Xt}
8 execute at in the emulator and observe

immediate reward rt and new state
st+1 = {Ct+1,Xt+1};

9 store transaction (st, at, rt, st+1) in D;
10 sample random minibatchM of transaction

from D
11 for i ∈ {1, ..., |M|} do
12 set yit =

rit,

if sit+1 is a terminal state;

rit + γargmax
a
Q(sit+1, a

′i; θ),

if sit+1 is a non-terminal state.

13 perform a gradient descent step on
(yit −Q(sit, a

i
t; θ))

2

Output : learned AutoDwell

check-in and -out records for ten downtown lines in Bei-
jing (11 days, 9/17/2018 - 9/21/2018 and 9/25/2018 -
9/30/2018). The locations of these ten lines in the Beijing
Metro Map are depicted in Figure 5(a). The spatial and
temporal distributions of the check-in records are visualized
in Figure 5(b) and (c). Moreover, there are a lot of transfer
trips between these ten lines, and the transfer probability is
shown in Figure 5(d). In our experiment, we use the first 8
days’ data as the training environment and the last 2 days’
data as the testing environment.

2) Hangzhou. The dataset can be accessed from an open
website4. The check-in and -out records are from 1/1/2019
to 25/1/2019 for three lines of Hangzhou. We also show
the metro map, the spatial/temporal distribution of daily
records, and the transfer probability in Figure 5(e) - (h),
respectively. In this experiment, we adopt the first 20 days’
data to train our model and use the rest of the 5 days’ data
to be the testing environment.

4.1.2 Emulator Settings
We use real-world settings and trajectories to build the
emulators Specifically, the structures of the two real-world
systems are used to construct emulators, respectively. Trains
in the emulators have six carriages that can totally hold
1500 passengers (ncapa). The fixed part of the dwell process,
i.e., δfixed, is set to 46s that includes 25s for entering the
platform to stopping, 15s for leaving the platform, and 6s to
open and close doors. The minimum and maximum dwell
time are set as δmin = 58s and δmax = 74s, respectively.
For simplicity, the dwell time range, i.e., [δmin, δmax], are

4. https://tianchi.aliyun.com/competition/entrance/231708/
information

TABLE 1: Descriptions for the two real-world datasets

Statistical levels & indicators Beijing Hangzhou

Sy
st

em

# lines 10 3
# stations 182 66
# transfer stations 36 5
Transfer ratio 0.59 0.31
Total length 274.34km 89.99km

# daily records
aver. 4,215,786.91 1,154,317
SD 163,251.11 88,848.90

# stations aver. 9.84 7.54
for a trip SD 5.47 4.80

Trip time
aver. 1,923.71s 1,515.50s
SD 905.76 840.72

# lines for aver. 1.38 1.06
a transfer trip SD 0.52 0.24

Li
ne

max 45 32
# stations min 13 18
of one line aver. 21.80 23.67

SD 8.42 6.02
max 757,302 594,262

# of trips min 170,982 155,484
per day & line aver. 351,336.70 350,789.30

SD 167,671.38 182,339.6

St
at

io
n

max 84,561 93,372
# of check-in
records

min 2,051 3,418

per day & station aver. 19,304.21 16,677.12
SD 12,176.76 13,279.19

max 3.00km 3.32km
Distance between min 0.42km 0.60km
two neighbors aver. 1.31km 1.32km

SD 0.43 0.48

uniformly discretized into naction = 5 intervals, each of
which represents an action. The operation time for both
the two cities is limited from 7:00 to 21:00. A real-world
timetable is used where the departure interval ranges from
2-6 minutes for Beijing and 2.5-9 minutes for Hangzhou 5.
We adopt two settings for the maximum speed of trains. 1)
We calculate the maximum speed for each adjacent station
pair in the data and let it be the maximum speed. The setting
way is denoted as P1. 2) to better simulate the reality, the
second way, denoted asP2, uses the hourly maximum speed
for every two adjacent stations in the data. In addition,
according to [21], [22], δmixedis set to 2s, and the boarding
and alighting velocities of a train (vboar and valig) are both
equal to 12 passengers/s.

4.1.3 Evaluation Metrics
We use the following two metrics to validate the effec-
tiveness of our model on shortening the travel time of
passengers, i.e., average waiting time δwaiting and average
journey time δjourney:

δwaiting =
1

ntrip

ntrip∑
i

δwaiting
pi ; δjourney =

1

ntrip

ntrip∑
i

δjourney
pi

where ntrip is the number of trips in the testing environment.
For a trip pi, we denote the waiting time and journey time as
δ

waiting
pi and δ

journey
pi , respectively. Note that, δwaiting

pi + δ
journey
pi

is the total travel time of trip pi.

5. http://hz.bendibao.com/traffic/20181022/73829.shtm

https://tianchi.aliyun.com/competition/entrance/231708/information
https://tianchi.aliyun.com/competition/entrance/231708/information
http://hz.bendibao.com/traffic/20181022/73829.shtm
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Fig. 5: Visualization of our datasets (best viewed in color). (a) Metro map of Beijing; (b) Daily spatial distribution of check-in
records in Beijing; (c) Daily temporal distribution of check-in records in Beijing; (d) Transfer probabilities between lines
of Beijing; (e) Metro map of Hangzhou; (f) Daily spatial distribution of check-in records in Hangzhou; (g) Daily temporal
distribution of check-in records in Hangzhou; (h) Transfer probabilities between lines of Hangzhou.

4.1.4 Models

Five groups of models are compared in the experiment.
1) Fixed Dwell Time Model (FM). In the group, three

models are provided to demonstrate the performances
of the simplest scheduling strategies. That is the dwell
time of any of these models in the group is fixed for all
stations. Concretely, the three models set the dwell time
as δMin, δMax, and (δMin + δMax)/2, and are denoted as
Min, Max, and Aver, respectively.

2) Historical Data-Based Model (HM). In the group, the
dwell time of a station is determined according to the
historical passenger flows, revealing the performances
of offline scheduling strategies. We use a toy example
to describe the group’s strategy. Suppose there are
three stations on one line and they account for [20%,
30%, and 50%] of the whole line’s flow respectively
at a specific interval in the historical data. Then, we
use the min-max approach to normalize the vector to
[0.00, 0.66, 1.00] and select the dwell time as δmin,
0.34δmax+0.66δmin, and δmin for the three stations in
the specific interval of our environment, respectively.
There are two models in the group, denoted as Day
and Hour, which set the interval for a day and an hour,
respectively.

3) Optimization-Based Model (OM). Models in the group
are proposed for optimizing energy consumption and
passenger waiting time simultaneously. To adapt to
our scenario, we only retain the waiting time objective
and use our dwell settings. More specifically, each line
corresponds to a model, and every hour we use the
check-in data at the corresponding time of the previous
day to calculate the dwell time. We denote two models
of the group as BNP [23] and MLP [24], respectively.

4) Prediction-Based Model (PM). Models in this group
can dynamically schedule the dwell time by a dwell
time assessment method [7]. The assessment method
can determine the dwell time based on the current pas-

senger flows. That is we need a flow prediction method
to provide such information to the assessment method
in advance. Thus, with two different flow prediction
methods, i.e., ARIMA [25] and vanilla RNN [19], two
models are in the group, denoted as ARIMA and RNN,
respectively.

5) Prediction-Based Models for Multiple Stations
(PMM). Similar to the PMs, models in this group de-
termine the dwell time dynamically based on the dwell
time assessment method [7]. Different from PMs that
determine the dwell time by only referring to the next
station, models in the group aggregate the prediction
results according to the inverse ratio of the distance
between the train’s current station and all these sub-
sequent stations. We also use ARIMA and vanilla RNN
as prediction models, and the two models are denoted
as ARIMA and RNN, respectively.

6) AutoDwell. As there are two vital components in Au-
toDwell, in addition to the model, we also validate two
variants of AutoDwell to evaluate their effectiveness.
We denote three models in the group as w/o-T, i.e.,
AutoDwell without the train feature extractor, w/o-P,
i.e., AutoDwell without the passenger feature extractor,
and w-T&P, i.e., the AutoDwell. The parameter settings
of AutoDwell are as follows. 1) Train Feature Extractor:
WTr is a two-layer FCN with units [32, 8]. 2) Passen-
ger Feature Extractor: the length of the timestamp for
historical readings lhist is set to 60s and nhist = 60.
Besides, (a) Transfer station learner: WSt is a two-layer
FCN with units [32, 8]; (b) Transfer/Normal station
learner: the dimension of GRUInd’s hidden state hInd

is 8 and WLo is a two-layer FCN with units [32, 8];
and (c) Conclusive recurrent network: the dimension of
GRUCon’s hidden state hCon is 16. 3) Fusion Component:
D1 is a two-layer FCN with units [64, 5]. That is the
dimension of the last layer (i.e., 5) corresponds to the
number of actions. Note that, the sensitivities of the
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parameters will be discussed in Section 4.5.

4.2 Effectiveness of AutoDwell
The results of each model in terms of δwaiting and δjourney are
reported in Table 2. Overall, by capturing complex ST corre-
lations and interactions of trains, the proposed AutoDwell
shows the best performance over the other four categories
of baselines. In particular, compared with the best baseline,
i.e., PMM-RNN, the AutoDwell can save at least about 21s
and 24s travel time for every passenger in the emulation of
Beijing and Hangzhou, respectively. In other words, when
applying to the real world, it can save millions of minutes
a day for a tremendous number of passengers. Moreover,
it can be found that AutoDwell can decrease at least about
9% waiting time of passengers, which is capable of boosting
passengers’ experience significantly as travel time plays an
important role in passengers’ satisfaction [26].

More specifically, we compare our model with each
group. 1) FM. Since the dwell process is complex, directly
assigning a fixed dwell time for all trains is too simple to
obtain satisfying results. 2) HM. As historical knowledge
can reveal the general trend of the passenger flows, models
in this group can achieve better results. 3) OM. The per-
formances of the two methods are acceptable in terms of
the average waiting time. However, without considering
the long-term effects, their dwell decision will increase
the journal time, thus making their overall performance
degrades significantly. 4) PM. Compared with our model,
the performances of PM models are limited, because of two
aspects. First, the results of the dwell assessment method
are depended on the accuracy of prediction methods. Thus,
without capturing the dynamic spatial correlations, these
prediction methods deteriorate the performance of the PM
models. Second, PM models overlook the interactions of
these related trains. 5) PMM. By involving simple spatial
knowledge, models in this group perform better than that
of PM. However, our model can beat PMM models easily
because we carefully design the spatial knowledge learner
that can capture more complex spatial dependencies. 6)
AutoDwell. The results of competing between w-T&P (i.e.,
AutoDwell) with w/o-T and w/o-P show the effectiveness
of the passenger feature extractor and the train feature
extractor, respectively.

To further understand our policy, we demonstrate the
performance results w.r.t. each period by comparing our
model with the best baseline, i.e., PMM-RNN, as reported
in Table 3. The results indicate that AutoDwell outperforms
PMM-RNN in each period, in particular these peak periods
with very high passenger pressures such as 7:00 - 9:00am
(see Figure 5(c) and (g)). That is having a good dwell
timing is crucial in peak hours where the train resources
and passenger demands are extremely imbalanced, and Au-
toDwell can effectively alleviate the imbalance, indicating
the practicality of our model.

4.3 Effectiveness of Passenger Feature Learner
From Section 4.2, we learned that the passenger feature
extractor is the most effective part of the model. Thus, in
this section, we report an experiment to further understand
the extractor.

Since the aim of the passenger feature extractor is to
capture the dynamic passenger states, to a certain extent, we
can verify its effectiveness by predicting passenger flows. In
this experiment, we respectively select ten stations of Beijing
and Hangzhou, and use a slide-window-based method to
generate training and testing data. Specifically, we input the
historical flow of passengers in the previous one hour to the
below four networks (the passenger feature extractor and its
three variants) to predict the flow in the next minute. Note
that, to adapt the passenger feature extractor to this task,
we use the extractor and its variants as prefix networks and
add two dense layers as the predictor. The results in terms of
mean absolute percentage error (MAPE; 1

n

∑n
i=1 |yi− ŷi|/yi,

where n is the number of values, yi is the ground truth, and
ŷi is the prediction value) are reported in Table 4.

1) P1: The passenger feature extractor without the trans-
fer station learner; We directly use the normal station
learner to handle these transfers stations;

2) P2: The passenger feature extractor without the conclu-
sive recurrent network. To aggregate the variable length
output of the normal and transfer station learners, we
take an average of them;

3) P3: We use Hadamard-product to replace the conclusive
recurrent network;

4) P : The passenger feature extractor.
The results of comparing P1 and P indicate that the

transfer station learner can significantly improve perfor-
mance. For a transfer station, in addition to the passengers
who swipe the card to enter this station, some passengers
transfer from other stations. These transfer behaviors cannot
be obviously obtained from the check-in data and therefore
cannot be handled by the normal station learner. Hence,
by carefully introducing the RNN and graph attention net-
work, the transfer station learner is capable of capturing the
transfer probabilities and preserving complex the passenger
dynamics. The comparison between P2, P3, and P reflects
the effectiveness of the conclusive recurrent network, since
the average and Hadamard-product fusion operators fail to
capture the spatio-temporal information between stations
and thus prevent them to achieve high accuracy. In sum,
with these carefully designed network components, the pas-
senger feature extractor therefore can capture the dynamic
passenger information effectively.

4.4 Case Study
In this section, we provide two case studies, exhibited in
Figure 6, using data generated in our experiment. The case
in Figure 6(a) shows our dynamic policy that considers both
passenger flows and context trains with long-term impacts
is superior to the dwell time fixed way in the real-world.
1) Though there are only a few passengers at Station 3 and
many passengers at Station 5, our policy selects a long dwell
time for Train I . The reason is that our policy considers there
will be many upcoming passengers at Station 3 and the front
train (i.e., Train II) can serve passengers in Station 5. Thus,
the dwell decision can benefit more passengers. 2) For Train
III , Although AutoDwell can aware that Station 8 has some
upcoming passengers, the policy decides a short dwell time
at Station 8 because Station 9 has a large number of waiting
and upcoming passengers. That is, the policy can serve
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TABLE 2: Overall performances

Methods
Beijing Hangzhou

P1 P2 P1 P2

δwaiting δjourney Sum δwaiting δjourney Sum δwaiting δjourney Sum δwaiting δjourney Sum

FM
Min 181.56 1714.84 1896.39 179.77 1713.88 1893.65 205.62 1297.74 1503.35 204.43 1295.02 1499.45
Max 215.43 1723.48 1938.90 216.19 1720.15 1936.34 215.85 1303.44 1519.29 205.00 1298.36 1503.36
Aver 189.16 1715.59 1904.76 186.86 1715.54 1902.40 212.65 1300.59 1513.24 204.79 1296.28 1501.07

HM
Day 166.06 1708.72 1874.79 167.27 1705.34 1872.60 196.81 1289.93 1486.74 199.02 1285.06 1484.08
Hour 165.13 1703.13 1868.26 163.72 1701.55 1865.26 195.74 1290.25 1485.98 196.59 1286.22 1482.82

OM
BNP 158.23 1724.18 1882.41 157.47 1722.77 1880.24 184.54 1301.89 1486.43 182.79 1300.03 1482.82
MLP 153.81 1719.69 1873.50 151.08 1718.12 1869.20 181.59 1299.07 1480.66 179.52 1297.92 1477.44

PM
ARIMA 173.24 1710.59 1883.83 173.94 1707.82 1881.76 203.03 1295.03 1498.06 198.41 1287.02 1485.43

RNN 176.06 1709.13 1885.19 174.02 1707.25 1881.27 204.45 1297.25 1501.69 196.94 1286.48 1483.42

PMM
ARIMA 163.64 1701.88 1865.51 162.58 1700.85 1863.43 195.53 1286.75 1482.28 194.62 1285.56 1480.18

RNN 162.56 1701.65 1864.21 161.14 1700.92 1862.06 193.98 1285.84 1479.82 191.30 1284.89 1476.19

AutoDwell
w/o-P 173.28 1695.55 1868.82 171.11 1693.24 1864.35 209.56 1283.66 1493.22 204.74 1282.40 1487.14
w/o-T 150.24 1699.15 1849.39 146.84 1697.93 1844.77 176.19 1287.24 1463.43 173.44 1286.91 1460.34

w-P&T 148.07 1694.78 1842.86 145.70 1692.49 1838.19 174.40 1281.56 1455.97 171.14 1280.94 1452.08

TABLE 3: Performance results w.r.t. each time period

Metric Method 7:00-9:00 9:00-11:00 11:00-13:00 13:00-15:00 15:00-17:00 17:00-19:00 19:00-21:00

Be
iji

ng δwaiting
PMM-RNN 233.428 142.205 127.137 129.810 112.541 106.158 159.175
AutoDwell 210.378 133.208 126.286 129.297 112.398 103.763 153.209

δjourney
PMM-RNN 1689.196 1695.268 1715.886 1723.092 1707.954 1702.388 1711.811
AutoDwell 1682.477 1709.562 1706.726 1711.088 1698.897 1687.217 1705.147

H
an

gz
ho

u

δwaiting
PMM-RNN 276.266 172.569 140.828 142.099 141.554 133.435 198.924
AutoDwell 265.006 164.368 140.089 138.848 139.332 131.133 185.996

δjourney
PMM-RNN 1275.717 1287.449 1311.823 1308.448 1312.541 1307.333 1316.809
AutoDwell 1270.679 1283.608 1295.232 1301.165 1306.574 1299.132 1304.635

TABLE 4: Performances on flow prediction

MAPE
Beijing Hangzhou

P1 29.7%+0.8% 25.4%+0.6%

P2 23.8%+0.4% 21.3%+0.2%
P3 25.1%+1.2% 22.4%+0.9%

P 20.4%+0.6% 18.6%+0.3%

these over-waited passengers as soon as possible. As shown
in Figure 6(b), we select three different types of stations
in Beijing to compare the number of check-in passengers
with the average dwell time decided by the model among
different periods of a day. The three stations are Anheqiao,
Datunlu, and Dongdan, which locate in the residential area,
working area, and working-residential mixed area, respec-
tively. Because they are in different functional areas, these
stations show various passenger distributions in time, as
demonstrated by dot lines of Figure 6(b). The compari-
son between dot lines and their corresponding dash lines
(average dwell time) reveals our model can well capture
these different temporal patterns to decide the dwell time.
Notably, as the model determines dwell time by considering
not only the passenger flow distributions but also the status
of context trains, the trend of dwell time is not strictly
consistent with the trend of passenger flows. For example,
even the passenger flow of Dongdan is more than that of
Datunlu, the dwell time of Dongdan may be less than that
of Datunlun.

4.5 Parameter Sensitivities

In this section, we conduct experiments to analyze the
parameter sensitivities of the model. For each parameter,
we adjust it from a reasonable range with other parameters
fixed. For simplicity, we report results in terms of the sum-
mation of δwaiting and δjourney on the dataset of Beijing under
the condition of the P1, as depicted in Figure 7.

It can be seen that our model is robust to the dimensions
of the output state of WTr, the hidden state of WSt, the
output state of WSt, the hidden state of WLo, the output
state of WLo, and the hidden state of D1, as shown in Figure
7(b), (f), (g), (h), (i), and (k), respectively. For the dimension
of the hidden state of WTr, nhist, the hidden state of GRUInd,
the hidden state of GRUCon, and the hidden state of D2,
performances of our model are not sensitive to the change of
them after each of them reaches a specific value, as depicted
in Figure 7(a), (d), (e), (j), and (l), respectively. Moreover,
Figure 7(c) indicates that the performance is insensitive to
the change of lhist when it is small. When lhist is large,
more redundant information has been brought and the
performance therefore decreases.

5 RELATED WORK

To position our work in the research community, we study
two categories of related works as follows.

Scheduling in Metro System. Conventionally, many
works aimed to pre-determine the arrival and departure
time for each train at each station [27]–[29] . Then, some
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Fig. 6: Case study of our model
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Fig. 7: Results of parameter sensitivities

works tried to reschedule the timetable after some emer-
gency circumstance occurred (e.g., an accident), to quickly
resume the metro system [30]–[32]. However, these ap-
proaches take very limited information about the dynamic
and diverse distributions of incoming passengers into con-
sideration and consequently they can not be applied to
tackle our issue; Then, some researchers studied the impacts
of different dwell time on passengers’ travel time [4]–[7].
They learned a function that maps the quantity of waiting
passengers to an appropriate dwell time such that trains can
carry more passengers. Nevertheless, their performances
for shortening the average travel time of passengers are
limited as two aspects: 1) These methods only consider
the impact of the dwell process on the current station, can
not capture these long-term impacts on the overall travel
time; and 2) These prior works overlook the interactions
between trains. Recently, Yin et al. [23] and Yang et al.
[24]’s work open a new branch of optimizing both energy
consumption and passenger waiting time with considera-
tion of real-world smart-card data, which is an important
and realistic issue. However, due to the following three

aspects, their work is fundamentally different from ours.
First, unlike the bi-objective problem of the two papers, we
only optimize passengers’ travel time, including the waiting
time at platforms and the journal time on trains. Specifically,
the energy consumption of the train is mainly determined
by the speed. As a common sense, we can easily shorten
the travel time of passengers by speeding up the train,
but at the same time it brings more energy consumption.
Hence, these two articles model the two conflicting goals
as a bi-objective optimization problem, while our research
only optimize the travel time under a given speed profile
(i.e., energy consumption fixed). Second, real-world metro
systems usually consists of multiple lines, and these lines
are will affect each other. These two papers, however, only
consider the optimization of a single line, but our work can
work in such complex systems. Third, the dwell process
model in the two papers are too simple. Particularly, their
model assumes every waiting passengers can take the new
arrival train. In fact, in the real world, due to the limitation
of vehicle capacity, passengers are often unable to board the
train, especially in the morning and evening rush hours. To
this end, our work considers the vehicle capacity, such that
we can better learn the model to optimize the real-world
problem.

Being different from all the above works, our study
employs a DRL based model to optimize the long-term
impacts of dwell time settings. Furthermore, we model the
spatio-temporal correlations of incoming passengers and the
interactions between trains on the same line, which makes
our model have the more necessary information to improve
the efficiency of the metro system.

Deep Reinforcement Learning. Compared with vanilla
reinforcement learning [33], the deep reinforcement learning
[34] leverages the power of deep neural networks, thereby
leading to the improvement on the performance of many
challenging applications, such as Go [35] and Atari games
[36]. Nowadays, the DRL has achieved success in tackling
complicated issues in the field of urban computing, like bike
reposition [13], order dispatching [14], [15], supply-demand
balancing [16], ambulances redeployment [12], etc. Like-
wise, in this paper, we propose to employ DRL to address
an urban transportation issue, i.e., dwell time scheduling in
metro systems.



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3153385, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, NOV. 2020 13

6 CONCLUSION

In this paper, we explored a deep network to dynamically
schedule trains’ dwell time for the efficiency improvement
of a metro system. We optimized AutoDwell by a rein-
forcement learning framework by weighing the passengers’
waiting time on platforms and journey time on trains and
capturing the long-term impacts. Moreover, in AutoDwell,
we devised a passenger feature extractor to capture com-
plex spatio-temporal correlations of passenger flows, and a
train feature extractor to model interactions between trains,
respectively, providing necessary information to guide the
action selection. Finally, we evaluated our model on two
real-world datasets and the results showed that our model
achieves better performance beyond several baselines, capa-
ble of saving passengers’ overall travel time.
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