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The advances in location-acquisition and mobile computing techniques have generated massive 

spatial trajectory data, which represent the mobility of a diversity of moving objects, such as people, 

vehicles and animals. Many techniques have been proposed for processing, managing and mining 

trajectory data in the past decade, fostering a broad range of applications. In this article, we conduct 

a systematic survey on the major research into trajectory data mining, providing a panorama of the 

field as well as the scope of its research topics. Following a roadmap from the derivation of trajectory 

data, to trajectory data preprocessing, to trajectory data management, and to a variety of mining tasks 

(such as trajectory pattern mining, outlier detection, and trajectory classification), the survey explores 

the connections, correlations and differences among these existing techniques. This survey also 

introduces the methods that transform trajectories into other data formats, such as graphs, matrices, 

and tensors, to which more data mining and machine learning techniques can be applied. Finally, 

some public trajectory datasets are presented. This survey can help shape the field of trajectory data 

mining, providing a quick understanding of this field to the community.  
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Trajectory Indexing and retrieval, Trajectory pattern mining, Trajectory outlier detection, Trajectory uncertainty, 

Trajectory classification, Urban computing.  

1. INTRODUCTION  

A spatial trajectory is a trace generated by a moving object in geographical spaces, usually 

represented by a series of chronologically ordered points, e. g. 𝑝1 → 𝑝2 → ⋯ → 𝑝𝑛, where 

each point consists of a geospatial coordinate set and a timestamp such as 𝑝 = (𝑥, 𝑦, 𝑡).  
       The advance in location acquisition technologies has generated a myriad of spatial 

trajectories representing the mobility of various moving objects, such as people, vehicles, 

and animals. Such trajectories offer us unprecedented information to understand moving 

objects and locations, fostering a broad range of applications in location-based social netw-

orks [140], intelligent transportation systems, and urban computing [142]. The prevalence 

of these applications in turn calls for systematic research on new computing technologies 

for discovering knowledge from trajectory data. Under the circumstance, Trajectory Data 

Mining has become an increasingly important research theme, attracting the attention from 

numerous areas, including computer science, sociology, and geography.  
_________________________________________________________________________________________ 
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mining. However, we are lack of a systematic review that can well shape the field and 

position existing research. Facing a huge volume of publications, the community is still not 

very clear about the connections, correlations and difference among these existing 

techniques. To this end, we conduct a comprehensive survey that thoroughly explores the 

field of trajectory data mining, according to the paradigm shown in Figure1:  

 

 

Figure 1 Paradigm of trajectory data mining 

 

 Firstly, in Section 2, we classify the sources generating trajectory data into four groups, 

listing a few key applications that trajectory data can enable in each group.  

      Secondly, before using trajectory data, we need to deal with a number of issues, such 

as noise filtering, segmentation, and map-matching. This stage is called trajectory pre-

processing, which is a fundamental step of many trajectory data mining tasks. The goal of 

noise filtering is to remove from a trajectory some noise points that may be caused by the 

poor signal of location positioning systems (e.g. when traveling in a city canyon). 

Trajectory compression is to compress the size of a trajectory (for the purpose of reducing 

overhead in communication, processing, and data storage) while maintaining the utility of 

the trajectory. A stay point detection algorithm identifies the location where a moving 

object has stayed for a while within a certain distance threshold. A stay point could stand 

for a restaurant or a shopping mall that a user has been to, carrying more semantic meanings 

than other points in a trajectory. Trajectory segmentation divides a trajectory into fragments 

by time interval, or spatial shape, or semantic meanings, for a further process like clustering 

and classification. Map-Matching aims to project each point of a trajectory onto a corres-

ponding road segment where the point was truly generated. We detail trajectory pre-

processing in Section 3. 
  Thirdly, many online applications require instantly mining of trajectory data (e.g. 

detecting traffic anomalies), calling for effective data management algorithms that can 

quickly retrieve particular trajectories satisfying certain criteria (such as spatio-temporal 

constraints) from a big trajectory corpus. There are usually two major types of queries: the 

nearest neighbors and range queries. The former is also associated with a distance metric, 

e.g. the distance between two trajectories. Additionally, there are two types (historical and 
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recent) of trajectories, which need different managing methods. We will introduce 

trajectory indexing and retrieval in Section 4. 

  Fourthly, based on the first two steps, we can then conduct mining tasks, like trajectory 

pattern mining, trajectory uncertainty, outlier detection, and classification.  

 Trajectory Uncertainty: Objects move continuously while their locations can only be 

updated at discrete times, leaving the location of a moving object between two updates 

uncertain. To enhance the utility of trajectories, a series of research tried to model and 

reduce the uncertainty of trajectories. On the contrary, a branch of research aims to 

protect a user’s privacy when the user discloses her trajectories. We review uncertainty 

of trajectory in Section 5.  

 Trajectory Pattern Mining: The huge volume of spatial trajectories enables opportun-

ities for analyzing the mobility patterns of moving objects, which can be represented 

by an individual trajectory containing a certain pattern or a group of trajectories sha-

ring similar patterns. In Section 6, we survey the literature that is concerned with four 

categories of patterns: moving together patterns, trajectory clustering, periodic patter-

ns, and frequent sequential patterns. 

 Trajectory Classification: Using supervised learning approaches, we can classify 

trajectories or segments of a trajectory into some categories, which can be activities 

(like hiking and dining) or different transportation modes, such as walking and driving. 

We show examples of trajectory classification in Section 7. 

 Trajectory Outlier Detection: Different from trajectory patterns that frequently occur 

in trajectory data, trajectory outliers (a.k.a. anomalies) can be items (a trajectory or a 

segment of trajectory) that is significantly different from other items in terms of some 

similarity metric. It can also be events or observations (represented by a collection of 

trajectories) that do not conform to an expected pattern (e.g. a traffic congestion caused 

by a car accident). Section 8 introduces outlier/anomaly detection from trajectory data. 

  Finally, besides studying trajectories in its original form, we can transform trajectories 

into other formats, such as graph, matrix and tensor (see the right part of Figure 1). The 

new representations of trajectories expand and diversify the approaches for trajectory data 

mining, leveraging existing mining techniques, e.g. graph mining, collaborative filtering 

(CF), matrix factorization (MF), and tensor decomposition (TD). In Section 9, we present 

representative examples of the transformation.  

   The contribution of this paper lies in four folds. First, the paper presents a framework 

for trajectory data mining, defining the scope and roadmap for this field. The framework 

provides a panorama with which people can quickly understand and step into this field. 

Second, individual research works are well positioned, categorized and connected in each 

layer of this framework. Professionals can easily locate the methods they need to solve a 

problem, or find the unsolved problems. Third, this paper proposes a vision to transfer 

trajectories into other formats, to which a diversity of existing mining techniques can be 

applied. This expands the original scope of trajectory data mining, advancing the method-

ologies and applications of this field. Fourth, we collect a list of sources from which people 

can obtain various public trajectory datasets for research. We also introduce the conferences 

and journals that are concerned with the research on trajectory data.  

2. TRAJRCTORY DATA 

In this section, we classify the derivation of trajectories into four major categories, 

briefly introducing a few application scenarios in each category. Trajectory data repre-

senting human mobility can help build a better social network [6][140][141] and travel 

recommendation [152][154][156].  
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1) Mobility of people: People have been recording their real-world movements in the form 

of spatial trajectories, passively and actively, for a long time.  

 Active recording: Travelers log their travel routes with GPS trajectories for the purpose 

of memorizing a journey and sharing experiences with friends. Bicyclers and joggers 

record their trails for sports analysis. In Flickr, a series of geo-tagged photos can 

formulate a spatial trajectory as each photo has a location tag and a timestamp 

corresponding to where and when the photo was taken. Likewise, the “check-ins” of a 

user in a location-based social network can be regarded as a trajectory, when sorted 

chronologically. 

 Passive recording: A user carrying a mobile phone unintentionally generates many 

spatial trajectories represented by a sequence of cell tower IDs with corresponding 

transition times. Additionally, transaction records of a credit card also indicate the 

spatial trajectory of the cardholder, as each transaction contains a timestamp and a 

merchant ID denoting the location where the transaction occurred. 

 

2) Mobility of transportation vehicles: A large number of GPS-equipped vehicles (such as 

taxis, buses, vessels, and aircrafts) have appeared in our daily life. For instance, many taxis 

in major cities have been equipped with a GPS sensor, which enables them to report a time-

stamped location with a certain frequency. Such reports formulate a large amount of spatial 

trajectories that can be used for resource allocation [127][129], traffic analysis [104][125], 

and improving transportation networks [151].   

  

3) Mobility of animals: Biologists have been collecting the moving trajectories of animals 

like tigers and birds, for the purposes of studying animals’ migratory traces, behavior and 

living situation [51][57].  

 

4) Mobility of natural phenomena: Meteorologists, environmentalists, climatologists and 

oceanographers are busy collecting the trajectories of some natural phenomena, such as 

hurricanes, tornados, and ocean currents. These trajectories capture the change of the envir-

onment and climate, helping scientists deal with nature disasters and protect the natural 

environment we live in. 

 

3. TRAJECTORY DATA PREPROCESSING 
This section introduces four folds of basic techniques that we need to process a trajectory 

before starting a mining task, consisting of noise filtering, stay point detection, trajectory 

compression, and trajectory segmentation.  

3.1 Noise Filtering 

Spatial trajectories are never perfectly accurate, due to sensor noise and other factors, such 

as receiving poor positioning signals in urban canyons. Sometimes, the error is acceptable 

(e.g. a few GPS points of a vehicle fall out of the road the vehicle was actually driven), 

which can be fixed by map-matching algorithms (introduced in Section 3.5). In other 

situations, as shown in Figure 2, the error of a noise point like 𝑝5 is too big (e.g. several 

hundred meters away from its true location) to derive useful information, such as travel 

speed. So, we need to filter such noise points from trajectories before starting a mining 

task. Though this problem has not been completely solved, existing methods fall in three 

major categories: 

http://www.bing.com/dict/search?q=canyon&FORM=BDVSP6
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Figure 2. Noise points in a trajectory 

      Mean (or Median) filter: For a measured point 𝒛𝑖, the estimate of the (unknown) true 

value is the mean (or median) of 𝒛𝑖 and its n−1 predecessors in time. The mean (median) 

filter can be thought of as a sliding window covering n temporally adjacent values of 𝒛𝑖. In 

the example shown in Figure 2, 𝑝5. 𝒛 = ∑ 𝑝𝑖 . 𝒛
5
𝑖=1 /5, if we use a mean filter with a sliding 

window size of 5. Median filter is more robust than the mean filter when handling extreme 

errors. The mean (median) filters are practical for handling individual noise points like 𝑝5 

in a trajectory with a dense representation. However, when dealing with multiple consecu-

tive noise points, e.g. 𝑝10, 𝑝11  and 𝑝12 , a larger size of sliding window is needed. This 

results in a bigger error between the calculated mean (or median) value and a point’s true 

position. When the sampling rate of trajectory is very low (i.e. the distance between two 

consecutive points could be longer than several hundred meters), the mean and median 

filters are not good choices anymore. 

      Kalman and Particle filters: The trajectory estimated from the Kalman filter is a 

tradeoff between the measurements and a motion model. Besides giving estimates that obey 

the laws of physics, the Kalman filter gives principled estimates of higher order motion 

states like speed. While the Kalman filter gains efficiency by assuming linear models plus 

Gaussian noise, the particle filter relaxes these assumptions for a more general, but less 

efficient, algorithm. A tutorial-like introduction to using the Kalman and Particle filters to 

fix noisy trajectory points can be found in [53]. 

      The initialization step of the particle filtering is to generate P particles 𝒙𝑖
(𝑗)
, 𝑗 = 1,2, . . 𝑃 

from the initial distribution. For example, these particles would have zero velocity and be 

clustered around the initial location measurement with a Gaussian distribution. The second 

step is “importance sampling,” which uses the dynamic model 𝑃(𝒙𝑖|𝒙𝑖−1) to probabilisti-

cally simulate how the particles change over one time step. The third step computes “imp-

ortance weights” for all the particles using the measurement model 𝜔𝑖
(𝑗)
= 𝑃(𝑧𝑖|𝒙�̂�

(𝑗)) . 

Larger importance weights correspond to particles that are better supported by the measure-

ment. The important weights are then normalized so they sum to one. The last step in the 

loop is the “selection step” when a new set of P particles 𝒙𝑖
(𝑗)

 is selected from the 𝑥�̂�
(𝑗) 

proportional to the normalized importance weights 𝜔𝑖
(𝑗)

. Finally, we can compute a weight 

sum by 𝒙�̂� = ∑ 𝜔𝑖
(𝑗)
𝒙�̂�
(𝑗)𝑃

𝑖=1 . 

      The Kalman and particle filters, model both the measurement noise and the dynamics 

of the trajectory. However, they depend on the measurement of an initial location. If the 

first point in a trajectory is noisy, the effectiveness of the two filters drops significantly.  

     Heuristics-Based Outlier Detection: While the above mentioned filters replace a noise 

measurement in a trajectory with an estimated value, the third category of methods removes 

noise points directly from a trajectory by using outlier detection algorithms. The noise 

filtering method, which has been used in T-Drive [123][124][125] and GeoLife [145][153] 

projects, first calculates the travel speed of each point in a trajectory based on the time 

interval and distance between a point and its successor (we call this a segment). The segm-

ents, such as 𝑝4 → 𝑝5, 𝑝5 → 𝑝6, and 𝑝9 → 𝑝10 (illustrated by the dotted lines in Figure 2),  

with a speed larger than a threshold, e.g. 300km/h, are cut off. Given that the number of 
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noise points is much smaller than common points, the separated points like 𝑝5 and 𝑝10 can 

be regarded as outliers. Some distance-based outlier detection can easily find the number 

of 𝑝5’s neighbors within a distance d is smaller than p proportion of the points in the entire 

trajectory. Likewise, 𝑝10, 𝑝11 and 𝑝12 can be filtered. While such algorithms can handle the 

initial error in a trajectory and data sparsity problems, setting the threshold d and p is still 

based on heuristics. 

3.2 Stay Point Detection 

Spatial points are not equally important in a trajectory. Some points denote locations where 

people have stayed for a while, such as shopping malls and tourist attractions, or gas stati-

ons where a vehicle was refueled. We call this kind of points “Stay Points”. As shown in 

Figure 3 A), there are two types of stay points occurring in a trajectory. One is a single 

point location, e.g. Stay Point 1, where a user remains stationary for a while. This situation 

is very rare, because a user’s positioning device usually generates different readings even 

in the same location. The second type, like Stay Points 2 shown in Figure 3 A), is more 

generally observed in trajectories, representing the places where people move around (e.g. 

as depicted in Figure 3 B) and C)) or remain stationary but with positioning readings 

shifting around.   

 
Figure 3. Stay points in a trajectory 

      With such stay points, we can turn a trajectory from a series of time-stamped spatial 

points 𝑷 into a sequence of meaningful places 𝑺, 

𝑷 = 𝑝1 → 𝑝2 → ⋯ → 𝑝𝑛,  ⇒   𝑺 = 𝑠1
∆𝑡1
→ 𝑠2

∆𝑡2
→ ,… ,

∆𝑡𝑛−1
→   𝑠𝑛 , 

therefore facilitating a diversity of applications, such as travel recommendations [152] 

[154], destination prediction [116], taxi recommendation [127][129], and gas consumption 

estimation[132][133].  On the other hand, in some applications, e.g. estimating the travel 

time of a path [104] and driving direction suggestion [125], such stay points should be 

removed from a trajectory during the preprocessing. 

      Li and Zheng et al. [54] first proposed the stay point detection algorithm. This algorithm 

first checks if the distance between an anchor point (e.g. 𝑝5 ) and its successors in a 

trajectory larger than a given threshold (e.g. 100 meter). It then measures the time span 

between the anchor point and the last successor (i.e. 𝑝8) that is within the distance thres-

hold. If the time span is larger than a given threshold, a stay point (characterized by 𝑝5, 𝑝6, 
𝑝7, and 𝑝8) is detected; the algorithm starts detection the next stay point from 𝑝9. Yuan and 

Zheng et al. [127][130] improved this stay point detection algorithm based on the idea of 

density clustering. After finding 𝑝5 to 𝑝8 is a candidate stay point (using 𝑝5 as an anchor 

point), their algorithm further checks the successor points from 𝑝6 . For instance, if the 

distance from 𝑝9 to 𝑝6 is smaller than the threshold, 𝑝9 will be added into the stay point.  

3.3 Trajectory Compression 
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Basically, we can record a time-stamped geographical coordinate every second for a mov-

ing object. But, this costs a lot of battery power and the overhead for communication, com-

puting and data storage. In addition, many applications do not really need such a precision 

of location. To address this issue, two categories of trajectory compression strategies (based 

on the shape of a trajectory) have been proposed, aiming to reduce the size of a trajectory 

while not to compromise much precision in its new data representation [53]. One is the 

offline compression (a.k.a. batch mode), which reduces the size of trajectory after the traj-

ectory has been fully generated. The other is online compression, compressing a trajectory 

instantly as an object travels.  

     Distance Metric: Besides the two strategies, there are two distance metrics to measure 

the error of a compression: Perpendicular Euclidean Distance and Time Synchronized Euc-

lidean Distance. As illustrated in Figure 4, supposing we compress a trajectory with 12 

points into a representation of three points (i.e. 𝑝1, 𝑝7, and 𝑝12), the two distance metrics 

are the summation of the lengths of the segments connecting 𝑝𝑖  and 𝑝𝑖 ′, in Figure 4 A) and 

B), respectively. The latter distance assumes a constant speed traveling between 𝑝1 and 𝑝7, 

calculating the projection of each original point on 𝑝1𝑝7̅̅ ̅̅ ̅̅  by time intervals.  

 

 

Figure 4. Distance metric measuring the compression error 

     Offline Compression: Given a trajectory that consists of a full series of time-stamped 

points, a batched compression algorithm aims to generate an approximated trajectory by 

discarding some points with a negligible error from the original trajectory. This is similar 

to the line simplification problem, which has been studied in the computer graphics and 

cartography research communities [68]. 

     A well-known algorithm, called Douglas-Peucker [28], is used to approximate the 

original trajectory. As demonstrated in Figure 5 A), the idea of Douglas-Peucker is to 

replace the original trajectory by an approximate line segment, e.g. 𝑝1𝑝12̅̅ ̅̅ ̅̅ ̅ . If the 

replacement does not meet the specified error requirement (Perpendicular Euclidean 

Distance is used in this example), it recursively partitions the original problem into two 

sub-problems by selecting the point contributing the biggest error as the splitting point (e.g. 

𝑝4). This process continues until the error between the approximation and the original 

trajectory is below a specified error. The complexity of the original Douglas-Peucker 

algorithm is 𝑂(𝑁2), where 𝑁  is the number of points in a trajectory. Its improvement 

achieves 𝑂(𝑁𝑙𝑜𝑔𝑁) [39]. To ensure that the approximated trajectory is optimal, Bellman’s 

algorithm [7] employs a dynamic programming technique with a complexity of 𝑂(𝑁3). 

 
Figure 5. Illustration of Douglas-Peucker algorithm 
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Online Data Reduction: As many applications require to transmit trajectory data in a 

timely fashion, a series of online trajectory compression techniques have been proposed to 

determine whether a newly acquired spatial point should be retained in a trajectory. There 

are two major categories of online compression methods. One is the window-based algori-

thms, such as the Sliding Window algorithm [46] and Open Window algorithm [67]. The 

other is based on speed and direction of a moving object.  

     The idea of the Sliding Window algorithm is to fit the spatial points in a growing sliding 

window with a valid line segment and continue to grow the sliding window until the appro-

ximation error exceeds some error bound. As illustrated in Fig 5 B), 𝑝5 will be first reser-

ved as the error for 𝑝3 exceeds the threshold. Then, the algorithm starts from 𝑝5 and reserve 

𝑝8. Other points are negligible. Different from the Sliding Window algorithm, the Open 

Window algorithm [67] applies the heuristic of the Douglas-Peucker algorithm to choose 

the point with the maximum error in the window (e.g. 𝑝3 in Figure 5 B) to approximate the 

trajectory segment. This point is then used as a new anchor point to approximate its 

successors. 

     Another category of algorithms consider speed and directions as key factors when doing 

online trajectory compression. For instance, Potamias et al. [84] use a safe area, derived 

from the last two locations and a given threshold, to determine whether a newly acquired 

point contains important information. If the new data point is located within the safe area, 

then this location point is considered as redundant and thus can be discarded; otherwise, it 

is included in the approximated trajectory. 

     Compression with Semantic Meaning: A series of research [87][17] aims to keep the 

semantic meanings of a trajectory, when compressing the trajectory. For instance, in a 

location-based social network [140], some special points where a user stayed, took photos, 

or changed direction greatly, would be more significant than other points in presenting 

semantic meanings of a trajectory. Chen et al. [17] proposed a trajectory simplification 

algorithm (TS), which considers both the shape skeleton and the aforementioned special 

points. TS first divides a trajectory into walking and non-walking segments using a traject-

ory segmentation algorithm [147] (see Section 3.4). A point is weighted by its heading 

change degree and the distance to its neighbors.  

    Another branch of research [45][90] considers trajectory compression with the cons-

traints of transportation networks. For example, we can reduce the redundant points on the 

same road segment. We can even discard all the newly acquired points after an anchor 

point, as long as the moving object is traveling on the shortest path from the anchor point 

to its current location. This branch of work usually needs the support of map-matching 

algorithms (refer to Section 3.5). In 2014, PRESS [90] was proposed to separate the spatial 

representation of a trajectory from its temporal representation. PRESS consists of a hybrid 

spatial compression algorithm and an error bounded temporal compression algorithm, 

compressing the spatial and temporal information of trajectories respectively. The spatial 

compression combines frequent sequential pattern mining techniques with Huffman Cod-

ing to reduce the size of a trajectory; i.e. a frequently traveled path can be represented by a 

shorter code, therefore saving storages.   

3.4 Trajectory Segmentation 

In many scenarios, such as trajectories clustering and classification, we need to divide a 

trajectory into segments for a further process. The segmentation does not only reduce the 

computational complexity but also enable us to mine richer knowledge, such as sub-

trajectory patterns, beyond what we can learn from an entire trajectory. In general, there 
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are three types of segmentation methods.  

The first category is based on time interval. For example, as illustrated in Figure 6 A), 

if the time interval between two consecutive sampling points is larger than a given 

threshold, a trajectory is divided into two parts at the two points, i.e. 𝑝1 → 𝑝2 and 𝑝3 →
⋯ → 𝑝9. Sometimes, we can divid a trajectory into segments of the same time length.  

The second category of methods is based on the shape of a trajectory. For example, as 

demonstrated in Figure 6 B), we can partition a trajectory by the turning points with 

heading direction changing over a threshold.  Alternative, we can employ the line 

simplification algorithms, such as Douglas-Peucker algorithm, to identify the key points 

maintaining a trajectory’s shape, as depicted in Figure 6 C).  The trajectory is then 

partitioned into segments by these key points.  Similarly, Lee et al [51] proposed to partition 

a trajectory by using the concept of Minimal Description Language (MDL), which is 

comprised of two components: 𝐿(𝐻)  and 𝐿(𝐷|𝐻) . 𝐿(𝐻)  is the length, in bits, of the 

description of the hypothesis 𝐻; and 𝐿(𝐷|𝐻) is the length, in bits, of the description of the 

data when encoded with the help of the hypothesis. The best hypothesis 𝐻 to explain 𝐷 is 

the one that minimizes the sum of 𝐿(𝐻) and 𝐿(𝐷|𝐻). More specifically, they use 𝐿(𝐻) to 

denote the total length of partitioned segments (like 𝑝1𝑝7̅̅ ̅̅ ̅̅  and 𝑝1𝑝9̅̅ ̅̅ ̅̅ ), while let 𝐿(𝐷|𝐻) to 

represent the total (perpendicular and angle) distance between the original trajectory and 

the new partitioned segments. Using an approximation algorithm, they find a list of chara-

cteristic points that minimize 𝐿(𝐻) + 𝐿(𝐷|𝐻) from a trajectory. The trajectory is partit-

ioned into segments by these characteristic points.   

 
Figure 6. Methods of trajectory segmentation 

The third category of methods is based on the semantic meanings of points in a 

trajectory. As illustrated in Figure 6 D), a trajectory can be divided into segments, i.e. 𝑝1 →
𝑝2 → 𝑝3 and 𝑝8 → 𝑝9, based on the stay points it contains. Whether we should keep the 

stay points in the divided results depends on applications. For example, in a task of travel 

speed estimation, we should remove the stay points (from a taxi’s trajectory) where a taxi 

was parked to wait for passengers [125]. On the contrary, to estimate the similarity between 

two users [52], we can only focus on the sequences of stay points, while skipping other raw 

trajectory points between two consecutive stay points.  

Another semantic meaning-based trajectory segmentation is to divide a trajectory into 

segments of different transportation modes, such as driving, taking a bus, and walking. For 

example, Zheng et al. [144][146][149] proposed a walk-based segmentation method. The 

key insight is that people have to walk through the transition between two different transpo-

rtation modes. Consequently, we can first distinguish Walk Points from non-Walk Points in 

a trajectory, based on a point’s speed (𝑝. 𝑣) and acceleration (𝑝. 𝑎). The trajectory can then 

be divided into alternate Walk Segments and non-Walk Segments, as illustrated in Figure 7 

A). In reality, however, as shown in Figure 7 B), a few points from non-Walk Segments 

may be detected as possible Walk Points, e.g., when a bus moves slowly in traffic 

p1

p2
p3

p5

p6

p7

p4

p8
p9 p1

p2
p3

p5

p6
p7

p4

p8
p9

p1

p2
p3

p5

p6
p7

p4

p8
p9 p1

p2
p3

p5

p6

p7

p4

p8
p9

A) Time interval-based B) Turning point-based

C) Key shape point-based D) Stay point-based



1: 10 ● Y. Zheng 
 

 

ACM Trans. Intelligent systems and technologies, Vol. 6, No. 3, Article 1, Pub. date: Sept. 2015. 
 

congestion. On the other hand, due to the locative error, a few points from Walk Segments 

might exceed the upper bound of travel speed (𝑣𝑡), therefore being recognized as non-Walk 

Points. To address this issue, a segment is merged into its backward segment, if the distance 

or time span of the segment is less than a threshold. After that, a segment is regarded as a 

Certain Segment if its length exceeds a threshold, as presented in Figure 7 C). Otherwise, 

it is deemed as an Uncertain Segment. As common users do not frequently change their 

transportation modes within a short distance, Uncertain Segments are merged into one non-

Walk Segment if the number of consecutive Uncertain Segments exceeds a certain threshold 

(3 in this example). Later, features are extracted from each segment to determine its exact 

mode. 

 

Figure 7. Change point-based segmentation method 

3.5 Map Matching  

Map matching is a process to convert a sequence of raw latitude/longitude coordinates to 

a sequence of road segments. Knowledge of which road a vehicle was/is on is important 

for assessing traffic flow, guiding the vehicle’s navigation, predicting where the vehicle is 

going, and detecting the most frequent travel path between an origin and a destination, etc. 

Map matching is not an easy problem, given parallel roads, overpasses, and spurs [49]. 

There are two approaches to classify map matching methods, based on the additional 

information used, or the range of sampling points considered in a trajectory. 

     According to the additional information used, map matching algorithms can be 

categorized into four groups: geometric [36], topological [22][118], probabilistic [75] [83] 

[86] and other advanced techniques [63][73][126].  Geometric map matching algorithms 

consider the shape of individual links in a road network, for example, matching a GPS 

point to the nearest road. Topological algorithms pay attention to the connectivity of a road 

network. Representative algorithms are those that use the Fréchet distance to measure the 

fit between a GPS sequence and candidate road sequence [9]. To deal with noisy and low-

sampling rate trajectories, probabilistic algorithms [75][83][86] make explicit provisions 

for GPS noise and consider multiple possible paths through the road network to find the 

best one. More advanced map matching algorithms have emerged recently that embrace 

both the topology of the road network and the noise in trajectory data, exemplified by [63] 

[73][126]. These algorithms find a sequence of road segments that simultaneously come 

close to the noisy trajectory data and form a reasonable route through the road network.   

      According to the range of sampling points considered, map matching algorithms can 

be classified into two categories: local/incremental and global methods. The local/ 

incremental algorithms [26][16] follow a greedy strategy of sequentially extending the 
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solution from an already matched portion. These methods try to find a local optimal point 

based on the distance and orientation similarity. Local/incremental methods run very 

efficiently, often adopted in online applications. However, when the sampling rate of a 

trajectory is low, the matching accuracy degrades. Instead, Global algorithms [4][9] aim to 

match an entire trajectory with a road network, e.g. considering the predecessors and 

successors of a point. Global algorithms are more accurate, but less efficient, than local 

methods, usually applied to offline tasks (e.g. mining frequent trajectory patterns), where 

entire trajectories have already been generated.  

       Advanced algorithms [63][73] [126] embrace local and global information (or geome-

tric, topological, and probability) to deal with the mapping of a low-sampling-rate trajec-

tory. As shown in Figure 8 A), the algorithm proposed in [54] first finds the local candidate 

road segments that is within a circle distance to each point in a trajectory. For instance, 

road segments 𝑒𝑖
1,𝑒𝑖

2 and 𝑒𝑖
3 are within the circle distance to 𝑝𝑖 , and 𝑐𝑖

1,𝑐𝑖
2 and 𝑐𝑖

3 are the 

candidate points on these road segments. The distance between 𝑝𝑖  and a candidate point 

𝑑𝑖𝑠𝑡(𝑐𝑖
𝑗
,  𝑝𝑖) indicates the probability 𝑁(𝑐𝑖

𝑗
) that 𝑝𝑖  can be matched to the candidate point. 

This probability can be regarded as the local and geometric information, which is modeled 

by a normal distribution:  

𝑁(𝑐𝑖
𝑗
) =

1

√2𝜋𝜎
𝑒
−
𝑑𝑖𝑠𝑡(𝑐

𝑖
𝑗
, 𝑝𝑖)

2

2𝜎2 . 

     The algorithm also considers the transition probability between the candidate points of 

each two consecutive trajectory points. For example, as depicted in Figure 8 B), 𝑐𝑖
2 is more 

likely to be the true match of 𝑝𝑖 , considering 𝑝𝑖−1  and 𝑝𝑖+1 . The transition probability 

between two candidate points is denoted by the ratio between their Euclidian distance and 

the road network distance. The transition is actually based on the topologic information of 

a road network. Finally, as shown in Figure 8 C), combining the local and transition 

probabilities, the map matching algorithm finds a path (on a candidate graph) that 

maximizes the global probability of matching. The idea is similar to Hidden Markov Model 

where emission and transition probabilities are considered to find the most possible 

sequence of status given a sequence of observations [73]. 

 

Figure 8. An advanced map-matching algorithm 

 
4. TRAJECTORY DATA MANAGEMENT 

Mining massive trajectories is very time consuming, as we need to access different samples 

of the trajectories or different parts of a trajectory many times. This calls for effective data 

management techniques that can quickly retrieve the trajectories (or parts of a trajectory) 

needed.  Different from moving object databases that are concerned with the current 

location of a moving object, the trajectory data management introduced in this section deals 
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with the traveling history of a moving object. A more comprehensive survey on trajectory 

data manage can be found in [27]. 

4.1 Trajectory Indexing and Retrieval 

There are two major types of queries: K-Nearest Neighbor (KNN) queries and Range 

queries, as depicted in Figure 9. 

 

Figure 9. Two categories of queries for trajectory data 

Range queries retrieve the trajectories falling into (or intersecting) a spatial (or spatio-

temporal) range. For example, as shown in Figure 9 A), a range query can help us retrieve 

the trajectories of vehicles passing a given rectangular region R between 2pm-4pm in the 

past month. The retrieved trajectories (or segments) can then be used to derive features, 

such as the travel speed and traffic flow, for data mining tasks like classification and pred-

iction. There are three approaches to answering such kind of spatio-temporal range queries.  

       The first approach regards the time as the third dimension besides the 2D geographical 

space, building a 3D-Rtree based on trajectories, as depicted in Fig 10 A). A spaito-

temporal range query is then formulated as a 3D query box. So, answering such a query 

means finding the nodes on a 3D-Rtree within the 3D query box. The 3D-Rtree works well 

for indexing trajectories generated in the near recent (e.g. in the past few hours). When the 

time span of the trajectories to be indexed last for a long period (i.e. more segments of 

newly generated trajectories will be inserted into a 3D-Rtree index), however, the overlap 

among 3D boxes bounding segments of different trajectories occurs more often. This 

results in a frequent update of indexing structure and a significant increase of node accesses 

when retrieving a trajectory. Though ST-R-tree and TB-tree [82] have been proposed to 

address this issue, the overlap among different 3D boxes still keeps on increasing as time 

goes by.  

       The second approach divides a time period into multiple time intervals, building an 

individual spatial index like R-tree for the trajectories generated in each interval. The part 

of indexing structure that does not change over time is shared by two time slots. 

Representative indexing structures are multiple version R-tree, such as Rt-Tree [110], HR-

Tree [92] and H+R-Tree [93], as illustrated in Figure 10 B).  Given a spatio-temporal range 

query, such an index first finds the time slots falling in the temporal range and then retrieve 

the trajectories intersecting the spatial query range from each spatial index of these time 

slots.  

       The third approach partition a geographical space into grids and then build a temporal 

index for the trajectories falling in each grid. As shown in Figure 10 C), CSE-tree [103] 

divides a trajectory into several segments by the grids. Each segment falling in a grid is 

represented by a 2D point whose coordinates are the starting time and ending time of the 

segment. These points are then indexed by a hybrid B+tree. When retrieving trajectories 

satisfying a spatio-temporal query, CSE-tree first finds the grids intersecting the spatial 

range of the query and then searches the hybrid B+tree of these grids for the segments of 
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trajectories falling in the temporal range of the query. Finally, CSE-tree merges the IDs of 

trajectory segments (and their starting and ending times) retrieved from different grids.  

 

Figure 10. Three approaches answering range queries 

KNN queries retrieve the top K trajectories with the minimum aggregate distance to a few 

points (entitled the KNN point query [21][94][95]) or a specific trajectory (entitled the 

KNN trajectory query [117][3]).  

       As depicted in Figure 9 B), an example of the KNN point query is to retrieve the 

trajectories of vehicles that are close to two given restaurants (e.g. 𝑞1 and 𝑞2). Sometimes, 

the order between the query points is also considered [21], e.g. finding the top-k nearest 

trajectories first passing 𝑞1 and then 𝑞2. Without the order, 𝑇𝑟1 is the nearest trajectory to 

the two points. However, 𝑇𝑟2 becomes the nearest after considering the order. The KNN 

point queries concern more about whether a trajectory provides a good connection to query 

locations rather than whether the trajectory is similar to the query in shape. Additionally, 

the number of query points is usually very small and can be far away from each other in 

applications. As a result, we cannot connect these query points sequentially to formulate a 

trajectory and then call the solution designed for the KNN trajectory query to solve it.  

       As illustrated in Figure 9 C), a KNN trajectory query can find the GPS logs of people 

traveling through a specific route. To answer such a query, the first step is to define a 

similarity/distance function between two trajectories. Then efficient query processing 

algorithms are designed to address the problem of searching over a large set of candidate 

trajectories. Sometimes, we need to retrieve the trajectories of vehicles traversing a specific 

path. There are two ways to achieve the goal.  

 

Figure 11. Suffix-tree-like index for maintaining trajectories 

       One is to regard a path on a road network as a trajectory and use the KNN trajectory 

query to detect the trajectories that are close to the path. The other way is first to convert a 

trajectory into a sequence of road segments by using a map matching algorithm. Some 

indexing structures are then built to manage the relationship between paths and the 

trajectories passing them. Figure 11 presents a suffix tree-based indexing structure [104] 

that manages the four trajectories 𝑇𝑟1, 𝑇𝑟2, 𝑇𝑟3, and 𝑇𝑟4 traversing a road network. Here, 

each node in the indexing tree stands for a road segment; each path on the tree corresponds 

to a route on the road network. Each node stores the IDs and travel times of the trajectories 
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that traverse the path from the root to the node. For example, 𝑡𝑟1→𝑟2→𝑟3  stands for the time 

for traveling path 𝑟1 → 𝑟2 → 𝑟3.  By searching for the tree, we can easily get the IDs of 

trajectories passing a path and retrieve the points of each trajectory through a hash table 

(as shown in the bottom-right part of Figure 11). The detailed content of each trajectory 

can be stored on disk if the memory is not big enough. Because the size of the index grows 

quickly as the number of trajectories increases, such index is only suitable for managing 

trajectories generated recently. 

4.2 Distance/Similarity of Trajectories  

When answering KNN queries or clustering trajectories, we need to calculate the distance 

(alternatively we can say similarity) between a trajectory and a few points, or the distance 

between two trajectories.  

      The distance between a point 𝒒 and a trajectory 𝐴 is usually measured by the distance 

from 𝑞  to its nearest point in 𝐴 , denoted as 𝐷(𝑞, 𝐴) = 𝑚𝑖𝑛𝑝∈𝐴𝐷(𝑝, 𝑞); e.g. 𝑞1  and 𝑝2 

shown in Figure 9 B). An approach extending the distance from a single point 𝑞 to multiple 

query points 𝑄  is 𝐷(𝑄, 𝐴) = ∑ 𝑒𝐷(𝑞,𝐴)𝑞∈𝑄 , or 𝑆(𝑄, 𝐴) = ∑ 𝑒−𝐷(𝑞,𝐴)𝑞∈𝑄 , written in a 

similarity fashion. The intuition of using the exponential function is to assign a larger 

contribution to a closer matched pair of points while giving much lower value to those far-

away pairs. Chen et al. [21] define the Best Connect Distance which can measure the 

distance between a trajectory and a few points with or without an order.  

      The Distance between two trajectories is usually measured by some kind of 

aggregation of distances between trajectory points. Closest-Pair Distance uses the minimal 

distance between the points in two trajectories (𝐴, 𝐵)  to represent the similarity of 

trajectories, i.e. 𝐶𝑃𝐷(𝐴, 𝐵) = 𝑚𝑖𝑛𝑝∈𝐴,𝑝′∈𝐵𝐷(𝑝, 𝑝′). Assuming that two trajectories are of 

the same length, Sum-of-Pairs Distance uses the sum of corresponding points from the two 

trajectories to denote the distance, i.e. 𝑆𝑃𝐷(𝐴, 𝐵) = ∑ 𝐷(𝑝𝑖 , 𝑝′𝑖)
𝑛
𝑖=1 . As the assumption 

may not hold in reality, Dynamic Time Wrapping (DTW) distance was proposed to allow 

‘repeating’ some points as many times as needed in order to get the best alignment [3]. As 

some noise points from a trajectory may cause a big distance between trajectories, the 

concept of the Longest Common Sub-Sequence (LCSS) is employed to address this issue. 

The LCSS-based Distance allows to skip some noise points when calculating the distance 

of trajectories, using a threshold 𝛿 to control how far in time we can go in order to match 

one point from a trajectory to a point in another trajectory. Another threshold 𝜀 is used to 

determine whether two points (from two different trajectories) are matched. Chen et al. [18] 

proposed the EDR distance, which is similar to LCSS in using a threshold 𝜀 to determine 

a match, while assign penalties to the gaps between two matched sub-trajectories. In [19], 

Chen et al. also proposed the ERP distance aiming to combine the merits of DTW and EDR, 

by using a constant reference point for computing distance. Note that none of DTW, LCSS 

and EDR is not a metric distance function, as they do not satisfy the triangle inequality. 

ERP is metric, thus can be used to prune unnecessary trajectories [18]. 

     Basically, LCSS and Edit Distance were proposed for matching strings. When used to 

match two trajectories, there is a threshold 𝜀 need to set; this is not easy. K-BCT [21] is a 

parameter-free similarity metric for trajectories, combining the merits of DTW and LCSS. 

During the matching process, K-BCT can repeat some trajectory points and skip un-

matched trajectory points including outliers.  

     The distance between two trajectory segments: A distance measure for trajectory 

segments is based on the Minimum Bounding Rectangles (MBR) of segments [43]. As 
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demonstrated in Figure 12 A), the MBRs of two segments (𝐿1, 𝐿2) are (𝐵1, 𝐵2), each of 

which is described by the coordinates of the low bound point (𝑥𝑙 , 𝑦𝑙) and upper bound point 

(𝑥𝑢 ,  𝑦𝑢 ). The MBR-Based distance 𝐷𝑚𝑖𝑛(𝐵1, 𝐵2)  is defined as the minimum distance 

between any two points from (𝐵1, 𝐵2), calculated as:  

√(∆([𝑥𝑙 , 𝑥𝑢], [𝑥
′
𝑙 , 𝑥

′
𝑢]))

2 + (∆([𝑦𝑙 , 𝑦𝑢], [𝑦
′
𝑙
, 𝑦′

𝑢
]))2; 

Where the distance between two intervals is defined as: 

∆([𝑥𝑙 , 𝑥𝑢], [𝑥
′
𝑙 , 𝑥

′
𝑢]) = {

0
𝑥′𝑙 − 𝑥𝑢
𝑥𝑙 − 𝑥′𝑢

[𝑥𝑙 , 𝑥𝑢] ∩ [𝑥′𝑙 , 𝑥′𝑢] ≠ ∅

 𝑥′𝑙 > 𝑥𝑢
𝑥𝑙 > 𝑥′𝑢

; 

In the two examples shown in Figure 12 A), the distance between 𝐿1 and 𝐿2 is 0 and 𝑦′𝑙 −
𝑦𝑢, respectively. 

     As depicted in Figure 12 B), Lee et al. [51] proposed a distance function, entitled 

Trajectory-Hausdorff Distance (𝐷𝐻𝑎𝑢𝑠), which is a weighted sum of three terms: 1) The 

aggregate perpendicular distance ( 𝑑⊥ ) that measures the separation between two 

trajectories; 2) The aggregate parallel distance (𝑑//) that captures the difference in length 

between two trajectories; 3) The angular distance ( 𝑑𝜃 ) that reflects the orientation 

difference between two trajectories. Formally,  

𝐷𝐻𝑎𝑢𝑠 = 𝑤1𝑑⊥ + 𝑤2𝑑// + 𝑤3𝑑𝜃,  

where 𝑑⊥ =
𝑑⊥,𝑎

2+𝑑⊥,𝑏
2

𝑑⊥,𝑎+𝑑⊥,𝑏
, 𝑑// = min (𝑑//,𝑎, 𝑑//,𝑏), 𝑑𝜃 = ||𝐿2|| ∙ 𝑠𝑖𝑛𝜃 , and 𝑤1 , 𝑤2 , and 𝑤3 

are weights depending on applications.  

 

Figure 12. Distance metrics for trajectory segments 

 

5. UNCERTAINTY IN A TRAJECTORY 

As the location of a moving object is recorded at a certain time interval, the trajectory data 

we obtain is usually a sample of the object’s true movement. On one hand, the movement 

of an object between two consecutive sampling points becomes unknown (or called 

uncertain). To this end, we expect to reduce the uncertainty of a trajectory. On the other 

hand, in some applications, to protect a user’s privacy that could be leaked from her 

trajectories, we need to make a trajectory even more uncertain. 

5.1 Reducing Uncertainty from Trajectory Data 

Many trajectories have been recorded with a very low sampling rate, leading to an object’s 

movement between sampling points uncertain; we call them uncertain trajectories. For 

instance, as shown in Figure 13 A), the GPS coordinates of a taxi (𝑝1, 𝑝2, 𝑝3) were recorded 

every few minutes to reduce communication loads, resulting in multiple possible paths 

between two consecutive sampling points. As illustrated in Figure 13 B), people’s check-

in records in a location-based social networking service like FourSqure can be regarded as 
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trajectories if we connect them chronologically. As people do not check in very often, the 

time interval (and distance) between two consecutive check-ins may be hours (and several 

kilometers). Consequently, we have no idea how a user traveled between two check-ins. 

As demonstrated in Figure 13 C), to save energy, the GPS logger installed on a migratory 

bird can only send a location record every half day. As a result, the path that a bird flied 

over two particular locations is quite uncertain.  

          5.1.1 Modeling Uncertainty of a Trajectory for Queries             Several models of 

uncertainty paired with appropriate query evaluation techniques [81][23] have been 

proposed for moving object databases to answer queries, e.g. “is it possible for an object 

to intersect a query window”. As illustrated in Fig 13 B), we do not know whether the 

trajectory formulated by the three blue check-ins should be retrieved or not by the range 

query R, without modeling the uncertainty of the trajectory. Many of these techniques aim 

at providing conservative bounds for the positions of uncertain objects between two 

sampling points. This is usually achieved by employing geometric objects, such as 

cylinders [101][100] or beads [99], as trajectory approximations. These models concern 

more little about data mining, therefor are not the focus of our paper. Recent approaches 

use independent probability density functions at each point of time [24], or stochastic 

processes [85][109][30][74] (e.g. Markov chains), to better model the uncertain positions 

of an object and answer different queries.  

 

Figure 13. Examples of uncertain trajectories 

             5.1.2 Path Inference from Uncertain Trajectories         Different from the 

aforementioned models aiming at the retrieval of existing trajectories by different queries, 

a new series of techniques infers (or say ‘constructs’) the most likely k-route(s) that a 

moving object could travel (i.e. the missing sub-trajectory) between a few sample points 

based on a bunch of uncertain trajectories. The major insight is that trajectories sharing (or 

partially sharing) the same/similar routes can often supplement each other to make 

themselves more complete. In other words, it’s possible to interpolate an uncertain 

trajectory by cross-referring other trajectories on (or partially on) the same/similar route, 

i.e. “uncertain + uncertain  certain”. For example, given the uncertain trajectories of 

many taxicabs (marked by different colored points in Figure 13 A)), we could infer that the 

blue path is the most likely route traversing (𝑝1, 𝑝2, 𝑝3). Likewise, based on check-in data 

of many users, as depicted in Fig 13 B), we could find the blue curve the most possible 

travel path between the three blue check-ins. Similarly, given the uncertain GPS traces of 

many birds, we can identify the path that birds fly over a few locations. Reducing the 

uncertainty of trajectories can support scientific studies and enable many applications, such 

as travel recommendation and traffic management. There are two categories of methods to 

complement an uncertain trajectory: 

      One is designed for the trajectories generated in a road network setting [134]. What set 

this category of methods apart from map-matching algorithms lies in two aspects. First, the 

methods for reducing the uncertainty of trajectories leverage the data from many other 
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trajectories, while map-matching algorithms only use the geometric information from a 

single trajectory and the topological information of road networks. Second, the sampling 

rate of trajectories handled by the uncertainty methods can be very low, e.g. more than 10 

minutes. This seems nearly impossible for a map matching algorithm. 

     The other is for a free space, where moving objects (like flying birds or people hiking a 

mountain) do not follow paths in road networks [105], as illustrated in Figure 13 B) and 

C). The major challenges are two folds. One is to determine those trajectories which may 

be relevant to a series of query points. The other is to construct a route that can approximate 

a bunch of relevant trajectories. As shown in Figure 14 A), the method proposed in [105] 

first partitions a geo-space into uniform grids (the size of a grid depends on the required 

inference accuracy) and then maps trajectories onto these grids. Some grids can be 

connected to form a region if the trajectories passing them satisfy one of the following two 

rules: 1): If the starting points (𝑝1
1, 𝑝1

2) of two trajectory segments are located in two grids 

(𝑔1, 𝑔2) that are geospatial neighbors, and the ending points (𝑝2
1, 𝑝2

2) of the two segments 

are located in the same grid, and the travel times (∆𝑡1, ∆𝑡2) of the two segments are similar, 

then the two grids (𝑔1, 𝑔2) can be connected. 2): If the starting points (𝑝2
1, 𝑝2

2) are located 

in the same grid, and ending points (𝑝3
1, 𝑝3

2) fall in the grids (𝑔4, 𝑔5) that are neighbors, 

travel times (∆𝑡1′ ,  ∆𝑡2′) of the two segments are similar, then grids (𝑔4 , 𝑔5 ) can be 

connected.  

 

Figure 14. The most-likely route based on uncertain trajectories 

     After turning disjoint grids into connected region(s), as demonstrated in Figure 14 B), 

we can build a routable graph where a node is a grid. The direction and travel time between 

two adjacent grids in the graph is inferred based on the trajectories passing the two grids. 

Finally, as depicted in Figure 14 C), given three query points, we can find the most likely 

route on the graph based on a routing algorithm. To find a more detailed path, a regression 

can be performed over the trajectories passing the identified route. 

      Su et al. [91] proposed an anchor-based calibration system that aligns trajectories to a 

set of fixed anchor points. The approach considers the spatial relationship between anchor 

points and trajectories. It also trains inference models from historical trajectories to 

improve the calibration. 

5.2 Privacy of Trajectory Data 

Instead of making a trajectory more certain, a series of techniques aim to protect a user 

from the privacy leak caused by the disclosure of the user’s trajectories [1][111][25]. This 

kind of technology tries to blur a user’s location, while ensuring the quality of a service or 

the utility of the trajectory data. There are two major scenarios that we need to protect a 

user’s trajectory data from the privacy leak.  

      One is in real-time continuous location-based services, e.g. tell me the traffic conditions 

that is 1km around me. In this scenario, a user may not want to exactly disclose her current 

location when using a service. Different from the simple location privacy, the spatio-
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temporal correlation between consecutive samples in a trajectory may help infer the exact 

location of a user. Techniques trying to protect the privacy leak in this scenario include, 

spatial cloaking [69], mix-zones [8], Path confusion [40], Euler histogram-based on short 

IDs [108], dummy trajectories [47], etc.   

     The second is the publication of historical trajectories. Collecting many trajectories of 

an individual may allow attackers to infer her home and work places, therefore identifying 

who the individual is.  Major techniques for protecting users’ privacy in such scenario 

include, clustering-based [1], generalization-based [72], suppression-based [98], and grid-

based approach [35]. A comprehensive survey on trajectory privacy can be found in [25]. 

 

6. TRAJECTORY PATTERN MINING 

In this section, we study four major categories of patterns that can be discovered from a 

single trajectory or a group of trajectories. They are moving together patterns, trajectory 

clustering, sequential patterns, and periodic patterns.  

6.1 Moving Together Patterns 

A branch of research is to discover a group of objects that move together for a certain time 

period, such as flock [37][38], convoy [42][44], swarm [55], traveling companion [96][97], 

and gathering [135][136]. These patterns can help the study of species’ migration, military 

surveillance, and traffic event detection, etc. These patterns can be differentiated between 

each other based on the following factors: the shape or density of a group, the number of 

objects in a group, and the duration of a pattern.  

       Specifically, a flock is a group of objects that travel together within a disc of some 

user-specified size for at least k consecutive timestamps. A major concern with flock is the 

pre-defined circular shape, which may not well describe the shape of a group in reality, 

therefore may result in the so-called lossy-flock problem. To avoid rigid restrictions on the 

size and shape of a moving group, the convoy is proposed to capture generic trajectory 

pattern of any shape by employing the density-based clustering. Instead of using a disc, a 

convoy requires a group of objects to be density-connected during k consecutive time points. 

While both flock and convoy have a strict requirement on consecutive time period, Li et al. 

[55] proposed a more general type of trajectory pattern, called swarm, which is a cluster of 

objects lasting for at least k (possibly non-consecutive) timestamps. While convoy and 

swarm need to load entire trajectories into memory for a pattern mining, the traveling 

companion [96] uses a data structure (called traveling buddy) to continuously find 

convoy/swarm-like patterns from trajectories that is being streamed into a system. So, the 

traveling companion patterns can be regarded as an online (and incremental) detection 

fashion of convoy and swarm.  

      To detect some incidents, such as celebrations and parades, in which objects join in and 

leave an event frequently, the gathering pattern [135] [136] further looses the constraints 

of the aforementioned patterns by allowing the membership of a group to evolve gradually. 

Each cluster of a gathering should contain at least 𝑚𝑝 participators, which are the objects 

appearing in at least 𝑘𝑝 clusters of this gathering. As the gathering pattern is used to detect 

events, it also requires the geometric property (like location and shape) of a detected pattern 

relative stable.  

       Figure 15 A) illustrates these patterns. If set the requirement of timestamps k = 2, a 

group < 𝑜2, 𝑜3, 𝑜4 > is a flock from 𝑡1 to 𝑡3. Though 𝑜5 is a companion of the group, it 

cannot be included due to the fixed size of the disc employed by the flock definition. On 
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the other hand, a convoy can include 𝑜5 into the group, since < 𝑜2, 𝑜3, 𝑜4, 𝑜5 >  is density-

based connected from 𝑡1  to 𝑡3 . The five objects also form a swarm during the non-

consecutive time period 𝑡1 and 𝑡3. As demonstrated in Figure 15 B), if we set 𝑘𝑝=2 and 

𝑚𝑝=3, then < 𝐶1, 𝐶2, 𝐶4 > is a gathering. < 𝐶1, 𝐶3, 𝐶5 > is not a gathering as 𝐶5 is too far 

away from 𝐶2 and 𝐶3. 

 

Figure 15. Examples of moving together patterns 

     The aforementioned pattern mining algorithms usually use a density-based distance 

metric (in a Euclidian Space) to find a cluster of moving objects. Christian et al. [41] extend 

the distance metric by considering semantic factors, such as heading directions and speed, 

of a moving object. 

6.2 Trajectory Clustering 

To find representative paths or common trends shared by different moving objects, we 

usually need to group similar trajectories into clusters. A general clustering approach is to 

represent a trajectory with a feature vector, denoting the similarity between two trajectories 

by the distance between their feature vectors. However, it is not easy to generate a feature 

vector with a uniform length for different trajectories, as different trajectories contain 

different and complex properties, such as length, shape, sampling rate, number of points 

and their orders. In addition, it is difficult to encode the sequential and spatial properties of 

points in a trajectory into its feature vector. 

     Given the challenges mentioned above, a series of technique works have been done. 

Since the distance metrics between trajectories have been introduced in Section 4.2, we 

hereafter focus on the clustering methods proposed for trajectories. Note that the clustering 

methods discussed in this section are dedicated for trajectories in free spaces (i.e. without 

a road network constraint). Though there are a few publications (e.g. [48]) discussing the 

trajectory clustering in a road network setting, this problem can actually be solved by the 

combination of map-matching and graph clustering algorithms. That is, we can first use 

map-matching algorithms to project trajectories onto a road network and then employ 

graph clustering algorithms to find a subgraph (i.e. a collection of roads) on the road 

network.  

      Gaffney et al. [13][33] proposed to group similar trajectories into clusters by using a 

regression mixture model and the EM algorithm. This algorithm clusters trajectories with 

respect to the overall distance between two entire trajectories. However, moving objects 

rarely travel together for an entire path in the real world. To this end, Lee et al. [51] 

proposed to partition trajectories into line segments and to build groups of close trajectory 

segments using the Trajectory-Hausdorff Distance, as illustrated in Figure 16 A). A 

representative path is later found for each clusters of segments. Since trajectory data are 
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often received incrementally, Li et al. [56] further proposed an incremental clustering 

algorithm, aiming to reduce the computational cost and storage of received trajectories. 

Both Lee [51] and Li [56] adopted a Micro-and-Macro-clustering framework, which was 

proposed by Aggarwal et al. [2] to cluster data streams. That is, their methods first find 

mirco-clusters of trajectory segments (as demonstrated in Figure 16 B), and then group 

micro-clusters into macro-clusters (as shown in Figure 16 C). A major insight of Li’s work 

[56] is that new data will only affect the local area where the new data were received rather 

than the far-away areas.  

     

 
Figure 16. Trajectory clustering based on partial segments [56] 

6.3 Mining Sequential Patterns from Trajectories 

A branch of research is to find the sequential patterns from a single trajectory or multiple 

trajectories. Here, a sequential pattern means a certain number of moving objects traveling 

a common sequence of locations in a similar time interval. The locations in a travel 

sequence do not have to be consecutive. For instance, two trajectories 𝐴 and 𝐵,                            

𝐴: 𝑙1
1.5ℎ
→  𝑙2

1ℎ
→ 𝑙7

1.2ℎ
→  𝑙4.     𝐵: 𝑙1

1.2ℎ
→  𝑙2

2ℎ
→ 𝑙4, 

share a common sequence 𝑙1 → 𝑙2 → 𝑙4, as the visiting orders and travel times are similar 

(though 𝑙2  and 𝑙4  is not consecutive in trajectory 𝐴 ). When the occurrence of such a 

common sequence in a corpus, usually called support, exceeds a threshold, a sequential 

trajectory pattern is detected. Finding such kind of patterns can benefit travel 

recommendation [154][34], life pattern understanding [116], next location prediction [71], 

estimating user similarity [107][54], and trajectory compression [90].  

      To detect the sequential patterns from trajectories, we first need to define a (common) 

location in a sequence. Ideally, in trajectory data, like user check-in sequences from a social 

networking service, each location is tagged with a unique identity (such as the name of a 

restaurant). If two locations share the same identity, they are common. In many GPS 

trajectories, however, each point is characterized by a pair of GPS coordinates, which do 

not repeat themselves exactly in every pattern instance. This makes the points from two 

different trajectories are not directly comparable. In addition, a GPS trajectory may consist 

of thousands of points. Without handled properly, these points will result in a huge 

computational cost. 

           6.3.1 Sequential Pattern Mining in a Free Space                Line-simplification-based 

methods:  An early solution aiming to deal with the aforementioned issues was proposed 

in 2005 [11]. The solution first identifies key points shaping a trajectory, by using a line 

simplification algorithm like DP [28]. It then groups the fragments of a trajectory that are 

close to each simplified line segment so as to count the support of each line segment. The 

travel time between two points in a trajectory is not considered.   

      Clustering-based methods: Recently, a more general way to solve the above-

mentioned problems is to cluster points from different trajectories into regions of interests. 

A point from a trajectory is then represented by the cluster ID the point belongs to. As a 

consequence, a trajectory is re-formed as a sequence of cluster IDs, which are comparable 

A) Clusters of segments B) Micro-clusters C) Macro-clusters
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among different trajectories. For example, as shown in Figure 17 A), the three trajectories 

can be represented as:  

𝑇𝑟1: 𝑙1
∆𝑡3
→ 𝑙3 , 𝑇𝑟2: 𝑙1

∆𝑡1
→ 𝑙2

∆𝑡2
→ 𝑙3, 𝑇𝑟3: 𝑙1

∆𝑡′1
→  𝑙2

∆𝑡′2
→  𝑙3, 

where 𝑙1 ,  𝑙3  and 𝑙3  are clusters of points. After the transformation, we can mine the 

sequential patterns from these sequences by using existing sequential pattern mining 

algorithms, such as PrefixSpan [80] and CloseSpan [112], with time constraints. In this 

example, setting the support threshold to 3, we can find 𝑙1 → 𝑙3 is a sequential pattern if  

|∆𝑡3−(∆𝑡1+∆𝑡2)|

max(∆𝑡3,∆𝑡1+∆𝑡2)
< 𝜌, and  

|∆𝑡3−(∆𝑡′1+∆𝑡′2)|

max(∆𝑡3,   ∆𝑡′1+∆𝑡′2)
< 𝜌 

where 𝜌 is a ratio threshould guaranteeing that two travel times are similar. Likewise, 

setting the threshold of support to 2, 𝑙1 → 𝑙2 → 𝑙3 is a sequential pattern, if ∆𝑡1is similar to 

∆𝑡′1 and ∆𝑡2 is similar to ∆𝑡′2. Towards this direction, Giannotti et al. [34] divide a city 

into uniform grids, grouping these grids into regions of interests based on the density of 

GPS points fallen in each grid. An Apriori-like algorithm is then proposed to detect the 

sequential patterns of the region of interests.  

 
Figure 17. Sequential pattern mining in trajectory data 

      With respect to the applications caring more about the semantic meaning of a location, 

we can first detect stay points from each trajectory, turning a trajectory into a sequence of 

stay points (see Section 3.2). Later, we can cluster these stay points to formulate regions 

of interests and use the cluster ID that a stay point belongs to represent a trajectory. 

Following this strategy, Ye and Zheng et al. [116] proposed to mine life patterns from an 

individual’s GPS trajectories. Xiao et al. [106][107] proposed a graph-based sequence 

matching algorithm to find the sequential pattern shared by two users’ trajectories. These 

patterns are then used to estimate the similarity between two users. 

 

           6.3.2 Sequential Pattern Mining in a Road Network       When the sequential pattern 

mining problem is applied to a road network setting, we can first map each trajectory onto 

a road network by using map-matching algorithms. A trajectory is then represented by a 

sequence of road segment IDs, which can be regarded as strings. As a result, some 

sequential pattern mining algorithms, such as LCSS and Suffix Tree, designed for strings 

can be adapted to finding sequential trajectory patterns. Figure 17 B) presents a suffix tree 

that represents the four trajectories depicted in Figure 11. Here, a node is a road segment, 

and the path from the root to a node corresponds to a suffix of the string representing a 

trajectory. For example, 𝑇𝑟1 is represented by a string 𝑟1 → 𝑟2 → 𝑟6, where 𝑟2 → 𝑟6 and 𝑟6 

are suffixes of the string. The number associated with each link denotes the number of 

trajectories traversing the path, i.e. the support of the string pattern. For instance, there are 

two trajectories (𝑇𝑟1 and 𝑇𝑟2) traversing 𝑟1 → 𝑟2 and one trajectory traversing 𝑟1 → 𝑟2 →
𝑟6. After building such a suffix tree, we can find the frequent patterns (i.e. the paths on the 

tree) with a support greater than a given threshold, with a complexity of 𝑂(𝑛). Note that 

the size of a suffix tree can be much bigger than the original trajectories. So, when the size 
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of a trajectory dataset is very large, we need to set a constraint on the depth of its suffix 

tree. Additionally, the sequential patterns derived from the suffix tree have to be 

consecutive. Though the temporal constraint is not explicitly considered, two objects’ 

travel times on the same path should be similar, given the speed constraint of a path.  

      Towards this direction, Song et al. [90] use suffix tree to detect frequent trajectory 

patterns, which are then leveraged to compress trajectories in conjunction with Huffman 

Encoding. Wang and Zheng et al. [104] employ suffix tree to find frequent trajectory 

patterns, which are used to reduce the candidates of combination of sub-trajectories when 

estimating the travel time of a query path. 

6.4 Mining Periodical Patterns from Trajectories 

Moving objects usually have periodic activity patterns. For example, people go shopping 

every month and animals migrate yearly from one place to another. Such periodic 

behaviors provide an insightful and concise explanation over a long moving history, 

helping compress trajectory data and predict the future movement of a moving object.  

       Periodic pattern mining has been studied extensively for time series data. For example, 

Yang et al. tried to discover asynchronous patterns [113], surprising periodic patterns [114], 

and patterns with gap penalties [115], from (categorical) time series. Due to the fuzziness 

of spatial locations, existing methods designed for time series data are not directly 

applicable to trajectories. To this end, Cao et al. [12] proposed an efficient algorithm for 

retrieving maximal periodic patterns from trajectories. This algorithm follows a paradigm 

that is similar to frequent pattern mining, where a (global) minimum support threshold is 

needed. In the real world, however, periodic behaviors could be more complicated, 

involving multiple interleaving periods, partial time span, and spatiotemporal noises and 

outliers.  

      To deal with these issues, Li et al. [57] proposed a two-stage detection method for 

trajectory data. In the first stage, the method detects a few reference spots, where a moving 

object has visited frequently, by using a density-based clustering algorithm, such as KDE. 

The trajectory of a moving object is then transformed into several binary time series, each 

of which indicates the “in” (1) and “out” (0) status of the moving object at a reference spot. 

Through applying Fourier Transform and autocorrelation methods to each time series, the 

values of periods at each reference spot can be calculated. The second stage summarizes 

the periodic behaviors from partial movement sequences by using a hierarchical clustering 

algorithm. In 2012, Li et al. [58] further extend the research [57] to mining periodic patterns 

from incomplete and sparse data sources.  

 

7. TRAJECTORY CLASSIFICATION 

Trajectory classification aims to differentiate between trajectories (or its segments) of 

different status, such as motions, transportation modes, and human activities. Tagging a 

raw trajectory (or its segment) with a semantic label raises the value of trajectories to the 

next level, which can facilitate many applications, such as trip recommendation, life 

experiences sharing, and context-aware computing.  

       In general, trajectory classification is comprised of three major steps: 1) Divide a 

trajectory into segments using segmentation methods. Sometimes, each single point is 

regarded as a minimum inference unit. 2) Extract features from each segment (or point). 3) 

Build a model to classify each segment (or point). As a trajectory is essentially a sequence, 

we can leverage existing sequence inference models, such as Dynamic Bayesian Network 

(DBN), HMM and Conditional Random Field (CRF), which incorporate the information 
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from local points (or segments) and the sequential patterns between adjacent points (or 

segments).  

       Using a sequence of 802.11 radio signals, LOCADIO [50] employs a Hidden Markov 

Model to classify the motion of a device into two status: Still and Moving. Based on a 

trajectory of GSM signals, Timothy et al. [102] attempted to classify the mobility of a user 

into three status, consisting of stationary, walking and driving.  Zhu et al. [158] aim to infer 

the status of a taxi, consisting of Occupied, Non-occupied, and Parked, according to its 

GPS trajectories. They first seek the possible Parked places in a trajectory, using a stay 

point-based detection method. A taxi trajectory is then partitioned into segments by these 

Parked places (refer to Figure 6 D) for an example). For each segment, they extract a set 

of features incorporating the knowledge of a single trajectory, historical trajectories of 

multiple taxis, and geographic data like road networks and POIs. After that, a two-phase 

inference method is proposed to classify the status of a segment into either Occupied or 

Non-occupied. The method first uses the identified features to train a local probabilistic 

classifier and then globally considers travel patterns via a Hidden Semi-Markov Model. 

       Zheng et al. [149][147]classify a user’s trajectory by transportation modes, which is 

comprised of Driving, Biking, Bus, and Walking. As people usually change transportation 

modes in a single trip, a trajectory is first partitioned into segments based on the Walk-

based segmentation method (refer to Figure 7 for details). A set of features, such as the 

heading change rate, stop rate and velocity change rate, are extracted, being fed into a 

Decision Tree Classifier. Based on the inference results, a graph-based post-processing 

step is conducted to fix the possibly wrong inference, considering the transition probability 

between different transportation modes at different places.  

 

Figure 18. Trajectory classification for activity recognition 

       Lin et al. [59][79] proposed a hierarchical inference model for location-based activity 

recognition and significant place discovery, as shown in Figure 18 A). A GPS trajectory is 

first divided into 10-meter segments, each of which is then projected onto corresponding 

street patches by using a CRF-based map matching algorithm. Based on the features 

extracted from these street patches, the model classifies a sequence of GPS points into a 

sequence of activities like 𝑎1, 𝑎2, … , 𝑎𝑛 (such as Walk, Driving and Sleep) and identifies a 

person’s significant places like 𝑃1 and 𝑃2 (e.g. home, work, and bus stops), simultaneously.  

Yin et al. [119] proposed a DBN-based inference model to infer a user’s activities as well 

as high level goals, according to a sequence of WiFi signals. Figure 18 B) presents the 

structure of the DBN, where the bottom layer contains the input of raw WiFi signals; the 

second layer is a list of locations where these signals are received; the top level corresponds 

to user activities. Finally, the high-level goal is inferred based on the sequence of inferred 

activities.  

 

8. ANOMALIES DETECTION FROM TRAJECTORIES 
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Trajectory outliers (a.k.a. anomalies) can be items (e.g. a trajectory or a segment of 

trajectory) that is significantly different from other items in terms of some similarity metric. 

It can also be events or observations (represented by a collection of trajectories) that do not 

conform to an expected pattern (e.g. a traffic congestion caused by a car accident). A survey 

on general anomaly detection methods can be found in [14]. 

8.1 Detecting Outlier Trajectories 

An outlier trajectory is a trajectory or a part of a trajectory that is significantly different 

from others in a corpus in terms of a distance metric, such as shape and travel time. The 

outlier trajectories could be a taxi driver’s malicious detour [61][131] or unexpected road 

changes (due to traffic accidents or constructions). It can also remind people when traveling 

on a wrong path. 

      A general idea is to leverage existing trajectory clustering or frequent pattern mining 

methods. If a trajectory (or a segment) cannot be accommodated in any (density-based) 

clusters, or not frequent, it may be an outlier. Lee et al. [52] proposed a partition-and-

detection framework to find anomalous segments of trajectories from a trajectory data set. 

This method can be an extension of the trajectory clustering proposed in [51].  

8.2 Identifying Anomalous Events by Trajectories 

Another direction is to detect traffic anomalies (rather than trajectory itself) by using many 

trajectories. The traffic anomalies could be caused by accidents, controls, protests, sports, 

celebrations, disasters and other events. 

      Liu et al. [62] partition a city into disjointed regions with major roads and glean the 

anomalous links between two regions according to the trajectories of vehicles traveling 

between the two regions. They divide a day into time bins and identify for each link three 

features: the number of vehicles traveling a link in a time bin, proportion of these vehicles 

among all vehicles entering the destination region, and that departing from the origin 

region. The three features of a time bin were respectively compared with those in the 

equivalent time bins of previous days to calculate the minimum distort of each feature. 

Then, the link of the time bin can be represented in a 3-dimension space, with each 

dimension denoting the minimum distort of a feature. Later, the Mahalanobis distance is 

used to measure the extreme points (in the 3D space), which are regarded as outliers. 

Following the aforementioned research, Sanjay et al. [15] proposed a two-step mining and 

optimization framework to detect traffic anomalies between two regions and explain an 

anomaly with the traffic flows passing the two regions (see Section 10 for details).  

       Pan and Zheng et al. [76] identify traffic anomalies according to drivers’ routing 

behavior on an urban road network. Here, a detected anomaly is represented by a sub-graph 

of a road network where drivers’ routing behaviors significantly differ from their original 

patterns. They then tried to describe the detected anomaly by mining representative terms 

from the social media that people have posted when the anomaly was happening.   

      Pang et al. [77][78] adapt likelihood ratio test, which have previously been used in 

epidemiological studies, to describe traffic patterns. They partitioned a city into uniform 

grids and count the number of vehicles arriving in a grid over a time period. The objective 

is to identify contiguous set of cells and time intervals which have the largest statistically 

significant departure from expected behavior (i.e., the number of vehicles). The regions 

whose log-likelihood ratio statistic value drops in the tail of χ2 distribution are likely to be 

anomalous [14].  

 



Trajectory Data Mining: An Overview 
 

 
ACM Trans. Intelligent Systems and Technology, Vol. 6, No. 3, Article 1, Pub. date: Sept. 2015. 

9. TRANSFER TRAJECTORY TO OTHER REPRESENATIONS 

9.1 From Trajectory to Graph 

Trajectories can be transformed into other data structures, besides being processed in its 

original form. This enriches the methodologies that can be used to discover knowledge 

from trajectories. Turning trajectories into graphs is one of the representative types of 

transformation. When conducting such a transformation, the main effort is to define what 

a node and an edge is in the transformed graph. The methods for transforming trajectories 

into a graph differentiate between one another, depending on whether a road network is 

involved in the transformation.  

 

                 9.1.1    In a Road Network Setting        A road network is essentially a directed 

graph, where a node is an intersection and an edge denotes a road segment. Consequently, 

the most intuitive approach to turning trajectories into a graph is to project trajectories onto 

a road network. We can then calculate some weights, such as speed and traffic volume, for 

the edges based on the projected trajectories. Later, given the weighted graph, we can find 

the most-likely route (traveled by people) between a few query points [134], identify the 

most popular route between a source and a destination [64], detect traffic anomalies [76], 

and update maps automatically. 

      The second approach is to build a landmark graph. For example, Yuan and Zheng et al. 

[125][124] proposed an intelligent driving direction system, entitled T-Drive, based on the 

GPS trajectories generated by a large number of taxicabs. After the map matching process, 

T-Drive regards the top k road segments frequently traversed by taxicabs as landmark 

nodes (i.e. the red points shown in Figure 19 A). The trajectories traversing two landmarks 

consecutively are aggregated into a landmark edge (denoted by a blue line), being used to 

estimate the travel time between two landmarks. A two-stage routing algorithm is proposed 

to find the fastest driving path. The algorithm first searches the landmark graph for a rough 

route (represented by a sequence of landmarks), and then finds a detailed route connecting 

consecutive landmarks on the original road network.  

                
A) A landmark graph                      B) A region graph 

Figure 19.  Transforming trajectories into graphs  

      The third approach is to build a region graph, where a node denotes a region and an 

edge stands for the aggregation of commutes between the two regions. For instance, as 

illustrated in Figure 19. B), using an image segmentation-based algorithm [128], Zheng et 

al. [151] partition a city into regions by major roads so as to detect the underlying problems 

in a city’s road network. A region bounded by major roads is then represented by a node, 

and two regions are connected with an edge if there are a certain number of commutes 

between them. After the transformation, they glean the region pairs (i.e. edges) that are not 

well connected, i.e. with a huge traffic volume, a slow travel speed, and a long detour 

between them, using a skyline algorithm. The region graphs are also employed to detect 
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traffic anomalies [62][15] and urban functional regions [122][130]. 

 

               9.1.2 In Free Spaces                  Another branch of research transfers trajectories 

into a graph without using a road network, according to two major steps: 1) Identify key 

locations as vertexes from raw trajectories by using clustering methods; 2) Connect the 

vertexes to formulate a routable graph based on trajectories passing two locations. 

      Travel recommendation: Zheng et al. [155][152] proposed to find the interesting 

locations and travel sequences from trajectories generated by many people. In the method, 

they first detect stay points from each trajectory and then cluster the stay points from 

different people into locations, as shown in Figure 20 A). Based on these locations and raw 

trajectories, they build a user-location bipartite graph as illustrated in Figure 20 B), as well 

as a routable graph between locations, as depicted in Figure 20 C).   

 

 Figure 20. mining interesting locations and travel sequences  

      In the bipartite graph, a user and a location are regarded as two different types of nodes. 

An edge is built between a user node and a location node if the user has visited the location. 

A HITS (Hypertext Induced Topic Search)-based model is then employed to infer the 

interest level of a location (i.e. the authority score) and the travel knowledge of a user (i.e. 

the hub score). According to the inferred scores, we can identify the top-k most interesting 

locations and travel experts in a city. Jie et al. [5] apply the similar idea in a collaborative 

filtering framework to conduct the travel recommendation, concerned with a user’s 

preferences, social environment and current location.  

      In the location graph, as shown in Figure 20 C), an edge denotes the aggregation of raw 

trajectories traveling through two locations. To calculate the importance (or the represe-

ntativeness) of an edge in this graph, three factors are considered: 1) The authority score 

of the source location (of the edge) weighted by the probability of people’s moving out by 

this edge; 2) The authority score of a destination location (in the edge) weighted by the 

probability of people’s moving in by this edge; 3) The hub scores of the users who have 

traveled this edge. The score of a path is calculated by summing up the score of the edges 

the path contains.  

      Inspired by [152], a series of research was conducted to identify the popular routes 

from massive trajectories since 2010. Specifically, Yoon et al. [120][121] suggest the best 

travel route, consisting of a sequence of locations with a typical stay time interval at each 

location, to a user, given the user’s source and destination as well as the time period the 

user has. Chen et al. [20] identify turning points from each raw trajectory, clustering these 

turning points into groups. These clusters are then used as vertexes to build a transfer 

network. Afterwards, the probability that people would travel from one vertex to another 

is calculated based on the counts of trajectories passing the two vertexes. Finally, given a 

source and a destination, the path with the maximum production of probabilities is found 

in the transfer network as the most popular route. However, the proposed method is not 

applicable to low-sampling-rate trajectories. To this end, Lin and Zheng et al. [105] divide 
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a geographical space into uniform grids and then construct routable graph based on the 

grids and raw trajectories. Refer to Section 5.1.2 for details.   

      Another branch of research is to detect the community of places based on the graph that 

is learned from trajectories, using some community discovery methods. A community of 

places is a cluster of locations with denser connections between locations in the cluster 

than between clusters. For example, Rinzivillo et al. [88] aim to find the borders of human 

mobility at the lower spatial resolution of municipalities or counties. They mapped vehicle 

GPS tracks onto regions to formulate a complex network in Pisa. A community discovery 

algorithm, namely Infomap, was then used to partition the network into non-overlapped 

sub-graphs. More semantic meanings of a trajectory, such as a user’s travel speed and 

experiences, have been considered in [60][156] to estimate the strength of interaction 

between two locations.  

 

       Estimating user similarity: Another series of research transfers users’ trajectories into 

hierarchical graphs so as to compute the similarity between different users. This is a 

foundation of many social applications, such as friend recommendation and community 

discovery.  

       As illustrated in Figure 21, Zheng et al. [154] deposit together the stay points detected 

from different users’ trajectories, clustering them divisively by using a density-based 

clustering algorithm iteratively. As a result, a tree-based hierarchy is built, where a node 

on a higher level is a coarse-grained cluster (of stay points) and the nodes on a lower level 

are fine-grained clusters. The hierarchy is shared by different users as it is derived from all 

users’ stay points. By projecting a user’s trajectories onto this shared hierarchy, an 

individual hierarchical graph can be constructed for a user. As demonstrated in the bottom 

left and bottom right part of Figure 21, two users’ location histories are transformed from 

a collection of trajectories (which are not comparable between one another) to two 

individual graphs with common nodes. By matching the two graphs, common sequences 

of clusters are found on each level of the graphs. For example, 𝑐32 → 𝑐31 → 𝑐34  is a 

common sequence shared by the two users on the third level. Considering the popularity 

of a cluster in a common sequence, the length and the level (on the hierarchy) of the 

common sequences, a similarity score is calculated for a pair of users.           

 
Figure 21. Hierarchical graph-based user similarity estimation 
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       Xiao et al. [107] extend the similarity computing from physical locations to a semantic 

space, aiming to facilitate the similarity estimation between users living in different cities 

or countries. A stay point detected from a trajectory is represented by the distribution of 

POIs (across different categories) within the scope of the stay point. The stay points from 

different users are then clustered into a hierarchy according to their distributions on 

different POI categories, in a similar way to that of Figure 21.  

9.2 From Trajectory to Matrix  

Another form that we can transform trajectories into is a matrix. Using existing techniques, 

such as Collaborative Filtering and matrix factorization, a matrix can help complement 

missing observations. A matrix can also be used as an input to identify anomalies. The key 

of the transformation lies in three aspects: 1) What does a row mean; 2) what is a column; 

and 3) what does an entry denote?   

       Travel recommendation: Zheng et al. [155][154] transform users’ GPS trajectory into 

a user-location matrix, where a row stands for a user and a column denotes a location (such 

as a cluster shown in Figure 21). The value of an entry means the number of visits of a user 

to a location. The matrix is very sparse, as a user can visit a very few locations. A 

collaborative filtering model is then applied to the matrix to predict a user’s interests in an 

unvisited location.   

       Zheng et al. [138] proposed a coupled matrix factorization method to enable location-

activity recommendation, using activity-tagged GPS trajectories. As illustrated in Figure 

22, a location-activity matrix X is built, with a row stands for a venue (e.g. a cluster of GPS 

points) and a column representing a user-labeled activity (like shopping and dinning). An 

entry in matrix X denotes the frequency of an activity that has been observed in users’ 

labels in a particular location. Intuitively, this is a sparse matrix. A simple method to fill 

the missing entries is to decompose a matrix into the production of two low-rank matrices 

(𝑈 and 𝑉) based on non-zero entries. After that, the missing entries can be filled by 𝑋 =
𝑈𝑉𝑇. Once this location-activity matrix is completely filled, given an activity, the top k 

locations, with a relatively high frequency from the column that corresponds to that activity, 

can be recommended. So does the activity recommendation for a location. To make a better 

recommendation, two context matrices, consisting of a location-feature matrix Y and an 

activity-activity matrix Z, are built based on additional data sources. The main idea is to 

propagate the information among 𝑋, 𝑌 and 𝑍 by requiring them to share low-rank matrices 

𝑈 and 𝑉 in a collective matrix factorization model. 

 
Figure 22. Matrix factorization for recommendation 

      Traffic condition estimation: Shang and Zheng et al. [89] proposed a coupled-matrix 

factorization method to instantly estimate the travel speed on each road segment throughout 

an entire city, based on the GPS trajectory of a sample of vehicles (such as taxicabs). As 

shown in Figure 23 A), after map matching the GPS trajectories onto a road network, they 

formulate a matrix 𝑀′𝑟  with a row denoting a time slot (e.g., 2pm-2:10pm) and a column 

standing for a road segment. Each entry in 𝑀′𝑟  contains the travel speed on a particular 

road segment and in a particular time slot, calculated based on the recently received GPS 

trajectories. The goal is to fill the missing values in row 𝑡𝑗, which corresponds to the current 
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time slot. Though we can achieve the goal by solely applying matrix factorization to 𝑀′𝑟 , 
the accuracy of the inference is not very high as the majority of road segments are not 

covered by trajectories.   

       To address this issue, four context matrices (𝑀𝑟, 𝑀𝐺, 𝑀′𝐺  and 𝑍) are built. Specifically, 

𝑀𝑟 stands for the historical traffic patterns on road segments. While the rows and columns 

of 𝑀𝑟  have the same meaning as 𝑀′𝑟 , an entry of 𝑀𝑟  denotes the average travel speed 

derived from the historical data over a long period. The difference between the two 

corresponding entries from 𝑀′𝑟  and 𝑀𝑟 indicates the deviation of current traffic situation 

(on a road segment) from its average patterns. As depicted in Figure 23 B),  𝑍 contains the 

physical features of a road segment, such as the shape of a road, number of lanes, speed 

constraint, and the distribution of surrounding POIs. The general assumption is that two 

road segments with similar geographical properties could have similar traffic conditions at 

the same time of day. To capture the high-level traffic conditions, as demonstrated in 

Figure 23 C), a city is divided into uniform grids. By projecting the recently received GPS 

trajectories into these grids, a matrix 𝑀′𝐺  is built, with a column standing for a grid and a 

row denoting a time slot; an entry of 𝑀′𝐺  means the number of vehicles traveling in a 

particular grid and at a particular time slot. Likewise, by projecting the historical 

trajectories over a long period into the grids, a similar 𝑀𝐺 is built, with each entry means 

the average number of vehicles traveling in a particular grid and at a particular time slot. 

So, 𝑀′𝐺  denotes the real-time high-level traffic conditions in a city and 𝑀𝐺 indicates the 

historical high-level traffic patterns. The difference between the same entries of the two 

matrices suggests the deviation of current high-level traffic conditions from their historical 

averages. By combining these matrices, i.e. 𝑋 = 𝑀′𝑟||𝑀𝑟  and 𝑌 = 𝑀′𝐺||𝑀𝐺 , a coupled 

matrix factorization is applied to 𝑋, 𝑌, and 𝑍, with the objective function as follows. 

𝐿(𝑇, 𝑅, 𝐺, 𝐹) =
1

2
||𝑌 − 𝑇(𝐺; 𝐺)𝑇||2 +

𝜆1
2
||𝑋 − 𝑇(𝑅; 𝑅)𝑇||2 

+
𝜆2
2
||𝑍 − 𝑅𝐹𝑇||2 +

𝜆3
2
(||𝑇||2 + ||𝑅||

2
+||𝐺||2 + ||𝐹||2) 

where ∥∙∥ denotes the Frobenius norm. The first three terms in the objective function 

control the loss in matrix factorization, and the last term is a regularization of penalty to 

prevent over-fitting.  

 

Figure 23. Estimate traffic conditions based on trajectories 

      Diagnosing traffic anomalies: Chawla et al. [15] aim to identify the traffic flows that 

cause an anomaly between two regions. In the methodology, they first partition a city into 

regions by major roads, building a region graph based on trajectories of taxicabs, as 
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illustrated in Figure 24 A). A trajectory is then represented by a path on the graph, i.e. a 

sequence of links between regions, as shown in Fig 24. B). Two matrices are built based 

on the trajectories and graph. One is a link-traffic matrix 𝐿, as shown in Fig 24 C), where 

a row is a link and a column corresponds to a time interval. An entry of 𝐿 denotes the 

number of vehicles traversing a particular link at a specific time interval. The other is a 

link-path matrix 𝐴, with a row standing for a link and column denoting a path. An entry of 

𝐴 is set to 1 if a particular link is contained in a particular path. Given matrix 𝐿, they first 

use a PCA (Principal Component Analysis) algorithm to detect some anomalous links, 

which were represented by a column vector 𝑏 with 1 denoting an anomaly detected on the 

link. Then, the relationship between anomalous links and paths was captured by solving 

the equation, 𝐴𝑥 = 𝑏, where 𝑥 is a column vector denoting which paths contribute to the 

emergency of these anomalies shown in 𝑏. Using 𝐿1  optimization techniques, 𝑥 can be 

inferred. 

 
Figure 24. From trajectories to matrices for detecting anomalies 

9.3 From Trajectory to Tensor  

A nature extension of the matrix-based transformation is turning trajectories into a (3D) 

tensor, where the third dimension is added to a matrix so as to accommodate additional 

information. The goal of the transformation is usually to fill the missing entries (in a tensor) 

or find the correlation between two objects, like two road segments or gas stations. A 

common approach to solving this problem is to decompose a tensor into the multiplication 

of a few (low-rank) matrices and a core tensor (or just a few vectors), based on the tensor’s 

non-zero entries. When a tensor is very sparse, in order to achieve a better performance, 

the tensor is usually decomposed with other (context) matrices in a framework of 

collaborative filtering. 

      Zheng et al. [139][137] extend the generic location-activity research [138] into a 

personalized one, by adding a user dimension into the original location-activity matrix. As 

shown in Figure 25, a user-location-activity tensor 𝐴 is built, with an entry denoting the 

times that a particular user has performed a particular activity in a particular location. If we 

can infer the value of every entry, personalized recommendation can be enabled. However, 

tensor 𝐴  is very sparse as a user usually visits a few places. Thus, a simple tensor 

completion method cannot fill its missing entries very well. To address this issue, four 

context matrices are built based on additional data sources, such as road network and POI 

datasets, which are not sparse. In addition, these matrices share some dimension with tensor 

𝐴 . For instance, tensor 𝐴  share the user dimension with matrix 𝐵  and the location 

dimension with matrix 𝐸 . Consequently, the knowledge from these matrices can be 

transferred into the tensor to help completing tensor 𝐴. 

Wang and Zheng et al. [104] proposed a coupled tensor-decomposition-based method to 

instantly estimate the travel time of a path, based on a sample of vehicles’ GPS trajectories. 
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To model the traffic conditions of the current time slot, they construct a tensor 𝒜𝑟 ∈
ℝ𝑁×𝑀×𝐿, with the three dimensions standing for road segments, drivers and time slots, 

respectively, based on the GPS trajectories received in the most recent 𝐿 time slots and the 

road network data. As shown in Figure 26, an entry 𝒜𝑟(𝑖, 𝑗, 𝑘) = 𝑐 denotes the 𝑖th road 

segment is traveled by the 𝑗th driver with a time cost 𝑐 in time slot 𝑘 (e.g., 2-2:30pm). The 

last time slot denotes the present time slot, combined with the 𝐿-1 time slots right before it 

to formulate the tensor. Clearly, the tensor is very sparse as a driver can only travel a few 

road segments in a short time period. If the missing entries can be inferred based on the 

values of non-zero entries, we can obtain the travel time of any driver on any road segment 

in the present time slot.  

 

Figure 25. Recommendation based on trajectories and tensors. 

       To this end, another tensor 𝒜ℎ is built based on the historical trajectories over a long 

period of time (e.g. one month). 𝒜ℎ  has the same structure as 𝒜𝑟 , while an entry 

𝒜ℎ(𝑖, 𝑗, 𝑘) = 𝑐′ denotes the 𝑗th driver’s average travel time on the 𝑖th road segment in time 

slot 𝑘 in the history. Intrinsically, 𝒜ℎ  is much denser than 𝒜𝑟 , denoting the historical 

traffic patterns and drivers’ behavior on an entire road network. Besides, two context 

matrices (𝑋  and 𝑌) are built to help supplement the missing entries of 𝒜𝑟 .  Matrix 𝑋 

(consisting of 𝑋𝑟 and 𝑋ℎ) represents the correlation between different time slots in terms 

of the coarse-grained traffic conditions. This is similar to its correspondence shown Figure 

23 C). An entry of 𝑋𝑟  denotes the number of vehicles traversing a particular grid in a 

particular time slot. A row of 𝑋𝑟 represents coarse-grained traffic conditions in a city at a 

particular time slot. Consequently, the similarity of two different rows indicates the 

correlation of traffic flows between two time slots. 𝑋ℎ has the same structure as 𝑋𝑟, storing 

the historical average number of vehicles traversing a grid from 𝑡𝑖 to 𝑡𝑗. Matrix 𝑌 stores 

each road segment’s geographical features, which are similar to that of Matrix 𝑍 shown in 

Figure 23 A). Later, they decompose 𝒜 = 𝒜𝑟|| 𝒜ℎ with matrices 𝑋 and 𝑌 collaboratively, 

by optimizing the following objective function.  

 
Figure 26. Travel time estimation using tensor decomposition. 
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    A similar idea was employed by Zhang et al. [132][133] to estimate the queuing time in 

each gas station throughout a city. The queuing time is further used to estimate the number 

of vehicles that are being refueled. Specifically, the refueling event are first detected from 

a taxicab’s GPS trajectories based on a stay point-based inference method. Then, as shown 

in Figure 27, a three dimension tensor 𝐹 is built, with the first dimension denoting gas 

stations, second one standing for time of day, and the third for the day of the week. An 

entry means the average waiting time (detected from taxi trajectories) at a station in a 

particular day of the week and at a particular time interval. This tensor is intrinsically sparse 

as we cannot guarantee to have a taxicab being refueled in each station anytime. A context 

matrix is built, incorporating the geographical features of a station. Intuitively, two gas 

stations with the similar surrounding environment (including road networks and POIs) and 

traffic flow could have the similar refueling pattern. The coupled tensor decomposition 

method mentioned in pervious examples is then applied to the tensor and matrix, filling the 

missing value in 𝐹. 

 

Figure 27. Estimate the refueling behavior in a gas station 

 

10. MISCELLANEOUS 

10.1 Public Trajectory Datasets  

Collecting data is always the first priority of trajectory data mining. Thanks to researchers 

in this field, there are quite a few real trajectory datasets that are publicly available:  

 GeoLife Trajectory Dataset [159]: a GPS trajectory dataset from Microsoft Research 

GeoLife project [153], collected by 182 users from April 2007 to August 2012. The 

dataset has been used to estimate the similarity between users [54], which enables 

friend and location recommendations [154][155]. It was also used by Chen et al. [21] 

for studying the problem of finding the nearest trajectory to a sequence of query points. 

 T-Drive Taxi Trajectories [160]: A sample of trajectories from Microsoft Research T-

Drive project [123], generated by over 10,000 taxicabs in a week of 2008 in Beijing. 

The full dataset was used to suggest the practically fastest driving directions to normal 

drivers [124][125], recommend passenger-pickup location for taxi drivers [127][130], 

enable dynamic taxi ridesharing [65][66], glean the problematic design in a city’s 

transportation network [151], and identify urban functional regions [122].  

 GPS Trajectory with Transportation Labels [161]: Each trajectory has a set of 

transportation mode labels, such as driving, taking a bus, riding a bike and walking. 

The dataset can be used to evaluate trajectory classification and activity recognition 

[149][146].  

 Check-in Data from Location-based Social Networks [162]: The dataset consists of the 

check-in data generated by over 49,000 users in New York City and 31,000 users in 

Los Angeles as well as the social structure of the users. Each check-in includes a venue 

ID, the category of the venue, a timestamp, and a user ID. As the check-in data of a 
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user can be regarded as a low-sampling-rate trajectory, this dataset has been used to 

study the uncertainty of trajectories [105] and evaluate location recommendation [5].  

 Hurricane trajectories [163]: This dataset is provided by the National Hurricane 

Service (NHS), containing 1,740 trajectories of Atlantic Hurricanes (formally defined 

as tropical cyclone) from 1851 to 2012. NHS also provides annotations of typical 

hurricane tracks for each month throughout the annual hurricane season that spans from 

June to November. The dataset can be used to test trajectory clustering and uncertainty.  

 The Greek truck trajectories [164]: This dataset contains 1,100 trajectories from 50 

different trucks delivering concrete around Athens, Greece. It was used to evaluate 

trajectory pattern mining task in [34]. 

 Movebank animal tracking data [165]: Movebank is a free, online database of animal 

tracking data, helping animal tracking researchers to manage, share, protect, analyze, 

and archive their data.  

 

When needing massive trajectories to test the efficiency of a method, we can generate syn-

thetic trajectories based on traffic generators, e.g. BerlinMod [29] and Thomas-Brinkhoff 

[10]. There is also a web-based interface, called MNTG [70], which supports the two traffic 

generators to work on any arbitrary road networks. Ma et al. [66] build a taxi ride request 

simulator based on the pickup and drop-off points of the real taxi trajectories generated in 

Beijing. The simulator is used to test the efficiency of a taxi ride sharing service.  

10.2 Conferences and Journals Concerning Trajectories 

Research about trajectory data mining has a wide presence at the following venues: 

 General data mining conferences: KDD, ICDM, SDM, PAKDD, and ICML-PKDD.  

 General database conferences: ICDE, VLDB, SIGMOD, EDBT and DASFAA. 

 General artificial intelligence conferences: IJCAI and AAAI. 

 Spatial-data-focusing conferences: ACM SIGSPATIAL GIS, SSTD and MDM.  

 Application-driven conferences and workshops: International Conference on Ubiqu-

itous Computing, and the International Workshop on Urban Computing [146]. 

 Journals and Transactions: IEEE TKDE, ACM TKDD, ACM TIST, VLDB, Data 

Mining and Knowledge Discovery,  KAIS, DKE, Journal on Personal and Ubiquitous 

Computing. Besides the journals in computer science area, there are many journals in 

other disciplinary, such as Transportation Research Part C, IEEE Transaction on 

Intelligent Transportation Systems, and Transportation Record. 

10.3 Potential Future Direction 

In the big data era, a data mining task needs to harness a diversity of data. This is calling 

for new technology that can unlock the power of knowledge from multiple data sources. 

Under such a circumstance, how to mine trajectory data together with other data sources is 

a new challenge. There two approaches towards this goal.  

      One is to combine trajectories with other data sources to fulfill a data mining task. For 

example, Zheng et al. [143][148] infer the fine-grained air quality, using trajectories of 

vehicles, POIs and meteorological data. Fu et al. [31][32] combine human mobility data 

represented by trajectories with social media and geographical data to rank the potential 

value of real estates. Yuan et al. [122][130] aim to identify the functional regions in a city 

based on taxi trajectories, road network data and POIs. Zheng et al. [150] diagnoses the 

urban noise, using check-in data, traffic, and 311 complaints. The other approach is to use 
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other sources to enrich a trajectory. For instance, leveraging POIs and road network data, 

Wang et al. [104] better estimates the travel time of a path based on sparse trajectories.  

     The new challenge calls for 1) data management techniques that can organize multi-

modal data for an efficient retrieval and mining; 2) the cross-domain machine learning 

methods that can unlock the power of knowledge that cannot be discovered from a single 

data source; and 3) advanced visualization techniques that can suggest the insights across 

different sources. 
 

11. CONCLUSION 

The wide availability of trajectory data has fostered a diversity of applications, calling for 

algorithms that can discover knowledge from the data effectively and efficiently. This 

paper surveys the techniques concerned with different stages of trajectory data mining, 

recapping them by categories and exploring the differences between one another. This 

paper also suggests the approaches of transforming raw trajectories into other data 

structures, to which more existing data mining techniques can be applied.  This paper 

provides an overview on how to unlock the power of knowledge from trajectories, for 

researchers and professionals from not only computer sciences but also a broader range of 

communities dealing with trajectories. At the end this paper, a list of public trajectory 

datasets have been given and a few future directions have been suggested.  
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