
Alleviating Users’ Pain of Waiting: Effective Task Grouping for
Online-to-Offline Food Delivery Services

Shenggong Ji
Southwest Jiaotong University, China

shenggongji@163.com

Yu Zheng∗

JD Urban Computing Business Unit, China

msyuzheng@outlook.com

Zhaoyuan Wang
Southwest Jiaotong University, China

wang_zhaoyuan@foxmail.com

Tianrui Li∗

Southwest Jiaotong University, China

trli@swjtu.edu.cn

ABSTRACT

Ordering take-out food (a.k.a. takeaway food) on online-to-offline

(O2O) food ordering and delivery platforms is becoming a new

lifestyle for people living in big cities, thanks to its great conve-

nience. Web users and mobile device users can order take-out food

(i.e. obtain online food ordering services) on an O2O platform. Then

the O2O platform will dispatch food carriers to deliver food from

restaurants to users, i.e. providing users with offline food delivery

services. For an O2O food ordering and delivery platform, improving

food delivery efficiency, given the massive number of food orders

each day and the limited number of food carriers, is of paramount

importance to reducing the length of time users wait for their food.

Thus, in this paper, we study the food delivery task grouping prob-

lem so as to improve food delivery efficiency and alleviate the pain

of waiting for users, which to the best of our knowledge has not

been studied yet. However, the food delivery task grouping problem

is challenging, given two reasons. First, the food delivery efficiency

is affected by multiple factors, which are non-trivial to formulate

and jointly consider. Second, the problem is a typical NP-hard prob-

lem and to find near-optimal grouping results is not easy. To address

these two issues, we propose an effective task grouping method.

On one hand, we provide formal formulations for the factors af-

fecting the food delivery efficiency, and provide an objective to

organically combine these factors such that it can better guide the

task grouping. On the other hand, we propose heuristic algorithms

to efficiently obtain effective task grouping results, consisting of

a greedy algorithm and a replacement algorithm. We evaluate our

task grouping method using take-out food order data from web

users and mobile device users on a real-world O2O food ordering

and delivery platform. Experiment results demonstrate that our

task grouping method can save ∼16% (87 seconds) of average wait-

ing time for each user, comparing with many baseline methods. It

indicates that our method is able to significantly improve the food

delivery efficiency and can provide better food delivery services

for users.

∗Yu Zheng and Tianrui Li are the correspondence authors of this paper. Yu Zheng is
also with JD Intelligent City Research, China, and Xidian University, China.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313464

CCS CONCEPTS

• Information systems→ Spatial-temporal systems;Datamin-

ing; •Human-centered computing→Ubiquitous andmobile

computing;

KEYWORDS

Mobile applications, O2O food delivery services, task grouping,

graph edge partition, optimization

ACM Reference Format:

Shenggong Ji, Yu Zheng, Zhaoyuan Wang, and Tianrui Li. 2019. Alleviating

Users’ Pain of Waiting: Effective Task Grouping for Online-to-Offline Food

Delivery Services. In Proceedings of the 2019 World Wide Web Conference

(WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3308558.3313464

1 INTRODUCTION

Advance in modern web and mobile device technologies is spurring

the prevalence of ordering take-out food (takeaway food) on online-

to-offline (O2O) food ordering and delivery platforms (O2O plat-

forms for short). As shown in Figure 1(a), web users or mobile device

users can order take-out food on an O2O platform (step 1), through

a web or an App. After receiving the food orders, the O2O platform

will send them to corresponding restaurants (step 2), and will dis-

patch food carriers to deliver the food from restaurants to users

(step 3), i.e. providing offline food delivery services for users. Thus,

users are not necessary to go to restaurants in person, just waiting

and enjoying the delivery of food from food carriers. Thanks to its

great convenience, there are massive people ordering take-out food

on O2O platforms every day. For example, in China, the number

of daily food orders from users on one O2O platform has already

reached 10 million [3, 4]. As a result, for O2O food ordering and

delivery platforms, given the limited number of food carriers and

the massive number of users each day, how to improve the food

delivery efficiency such that the waiting time of the massive users

can be reduced has become an urgent problem.

A feasible way to improve the food delivery efficiency is grouping

delivery tasks in a city into groups (i.e. the task grouping problem).

One delivery task is not one specific food order from a user, but

all food orders from a region to another. For the example in Figure

1(a), there is a delivery task e from region a to region b, since there
exist users in region b ordering food from restaurants in region a.
A region contains many users and restaurants. If we see regions

as vertices and delivery tasks as directed edges, we can construct

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Shenggong Ji, Yu Zheng, Zhaoyuan Wang, and Tianrui Li

a delivery task graph, like the one in Figure 1(b). In Figure 1(b),

tasks (edges) are grouped into four task groups, i.e. E1, E2, E3 and
E4, which are highlighted using different colors. A food carrier

will be assigned to only one task group such that he/she can be

very familiar with the locations of users and restaurants in the task

group. In other words, by task grouping, food carriers in each task

group can avoid wasting time on finding the locations of users and

restaurants, and the routes between them, thus improving the food

delivery efficiency and reducing users’ waiting time.

O2O Platform

1 2
3

region a
region b

Deliver food

(a) Online-to-Offline Food Delivery Services

e1

e2 e3

E1

E2

E3

E4={e1,e2,e3}
(b) Task Graph

v2

v3v1

Figure 1: Food delivery task grouping problem.

It should be noted that the task grouping problem is not a real-

time problem. For an O2O food ordering and delivery platform,

delivery tasks are grouped just from time to time, e.g. once per

month. For example, the task grouping result of this month can be

obtained based on users’ food orders in the last few months. Having

the task grouping result, we can allocate food carriers to each task

group and the food orders (arriving in real time) can be delivered by

food carriers in corresponding task group. Clearly, the food carrier

allocation problem (i.e. how many food carriers are needed for each

task group?) and the real-time food carrier dispatching problem (i.e.

which food carrier should be dispatched when a food order arrives

in real time?) also significantly affect the food delivery efficiency.

In this work, we focus on the task grouping problem since it is the

foundation of the allocation and dispatching problem. These two

problems will be studied in our future work.

In fact, our task grouping problem can be seen as a graph edge

partition problem, i.e. a graph vertex-cut problem [9, 19, 30]. How-

ever, previous graph edge partition algorithms (heuristic algorithms

mainly) are designed for distributed graph computation platforms

[9, 14, 15], whose aim is to minimize the number of total replicated

vertices over different edge groups. Therefore, due to the different

scenarios and the different objectives, previous graph edge partition

algorithms cannot work well to our task grouping problem. As a

consequence, a new task grouping method is in great need for the

O2O food ordering and delivery platforms.

However, our task grouping problem is challenging, due to the

following two reasons.

First, to improve the food delivery efficiency, our task group-

ing should consider multiple factors, e.g. the shareability and the

empty run time of each task group. Besides the joint consideration

of these two factors, to mathematically formulate and derive the

shareability and the empty run time is also non-trivial. Specifically,

the shareability indicates to what extent food orders in a task group

can be shared (jointly delivered). The empty run time refers to the

empty cruising time before carriers deliver next food orders. For

example, the task group E4 marked by the pink color in Figure 1(b)

may have high shareability, since carriers can jointly deliver orders

in task e1 together with orders in task e2 or e3, saving the total

delivery time, if these orders come at close time. However, the task

group has high empty run time. For instance, after a food carrier

delivers an order to region v3, if the next food order is in task e1
(or e2), the food carrier needs to go back to region v1, in empty, to

deliver the food order. Apparently, to improve the food delivery

efficiency, we expect task groups with high shareability and low

empty run time.

Second, the task grouping problem can be easily proved to be

a NP-hard problem [9, 19, 30]. As a result, it is also non-trivial to

design an effective and efficient algorithm to obtain near-optimal

task grouping solutions.

To address these issues, in this paper, we propose a method to

do the task grouping for O2O food ordering and delivery platforms.

Specifically, our contributions are as below.

• To the best of our knowledge, we are the first to study the

delivery task grouping problem for O2O food ordering and

delivery platforms in real world. We formally define the food

delivery task grouping problem.

• We provide formal formulations for the shareability and the

empty run time. Besides, we propose a method to organically

incorporate the shareability and the empty run time into one

objective such that it can better guide our task grouping.

• We propose effective heuristic algorithms to solve the task

grouping problem, including a greedy algorithm and a re-

placement algorithm. The greedy algorithm is to output a

fast and good task grouping solution, while the replacement

algorithm is to further refine the obtained grouping solution.

• We evaluate our task grouping method using the food order

data from web users and mobile device users on an O2O food

ordering and delivery platform in real world. Compared with

previous graph edge partition methods, our task grouping

method is able to save at least 16% (87 seconds) of average

travel time for each food order, significantly reducing the

waiting time of users.

2 OVERVIEW

2.1 Preliminary

Definition 1 (Region): A region v is a small piece of a city, con-

taining some restaurants and users. Note that considering each

individual restaurant (or user) is not necessary, given that some

restaurants (or users) are geographically very close and thus can be

seen as a unity. A city is comprised of many regions and we denote

all regions in a city byV . RegionsV in a city are obtained by region

segmentation using road networks, which will be detailed later in

Section 3.1. An example for the obtained regions V in a city can be

found in Figure 8(b).

Definition 2 (Delivery Task): A delivery task, denoted by e =
(o,d,n1, · · · ,nP), is a directed edge from region o to region d , con-
taining all food orders from restaurants of region o to users of

region d . np ,p = 1, · · · , P denotes the number of food orders in

the delivery task in time period p, as demonstrated in Figure 2. A

period can be with 15 minutes. P is the number of total time periods

under consideration for the task grouping (e.g. one month). We can

denote all delivery tasks in a city by E. The extraction of all delivery

Effective Task Grouping for Online-to-Offline Food Delivery Services WWW ’19, May 13–17, 2019, San Francisco, CA, USA

tasks E is based on the food orders of users in the city, which will

be detailed in Section 3.2.

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

Period p

#
o
rd
e
rs

n
p

Figure 2: An example for a food delivery task’s n1, · · · ,nP .

Different with the edges on distributed graph computation plat-

forms [9, 14, 15], our edges (tasks) contain clear spatial and temporal

properties. Specifically, o and d refer to the spatial locations of a

task, while n1, · · · ,nP denote the temporal frequency of food or-

ders (from web users and mobile device users) from region o to

region d (Figure 2). Thus, the task grouping problem in our scenario

can be more difficult.

Definition 3 (Task Graph): A task graph is a directed graph,

denoted byG = 〈V ,E〉, with all regionsV as vertices and all delivery

tasks E as directed edges.G is naturally obtained onceV and E have

been extracted.

2.2 Problem Definition

M-task grouping problem: given a constructed task graph G =
〈V ,E〉 and the numberM of task groups, the task grouping problem

aims to group all delivery tasks in E into M groups, i.e. Em ,m =
1, · · · ,M , such that the following conditions (or objectives) can be

satisfied:

(1) Each task group Em is a subset of E, i.e. Em ⊂ E,∀m;

(2) All tasks are grouped into theM groups, i.e.
⋃M
m=1 Em = E;

(3) Task groups do not overlap, i.e. Em1 ∩ Em2 = ∅,∀m1 �m2;

(4) Each task group Em has high shareability;

(5) Each task group Em has low empty run time.

As mentioned in the Introduction, our task grouping is not con-

ducted in real time, but just from time to time. For the examples

in Figure 3, the task grouping is conducted every month. Actually,

since the distribution of food orders won’t change dramatically, the

task grouping can even be conducted every quarter/half of a year.

In Figure 3(a), the task groups in October are obtained based on

the task graph constructed using food order data in the previous

three months, i.e. July, August and September. The obtained task

groups are applied in October, i.e. each arriving food order are

delivered by a food carrier in the corresponding task group. That

is, the food carrier allocation and real-time dispatching (defined in

the Introduction) in October are based on the obtained task groups.

Similarly, in Figure 3(b), at the beginning of November, the task

grouping is re-conducted based on the task graph constructed using

food order data in August, September and October.

Our task grouping problem is actually a graph edge partition

problem, which has already been proved to be NP-hard [6, 30]. As

mentioned before, due to the spatial and temporal properties of the

edges (tasks) in our task graph and the different objectives 4 and 5,

our task grouping problem can be more difficult.

… …

Oct.Sep.Aug.Jul.

G = ˂ V, E > E1, E2, …, EM

Nov.
(a) Example: Task groups in October

… …

Oct.Sep.Aug.Jul.

G = ˂ V, E > E1, E2, …, EM

Nov.
(b) Example: Task groups in November

Figure 3: Examples for task grouping.

2.3 Framework

Figure 4 demonstrates the framework of our task grouping method,

consisting of three components: pre-processing, shareability and

empty run time, and task grouping algorithm. Below, we introduce

each component in detail.

Region

Segmentation

Road Networks Regions

Travel Time

Estimation

Travel Time

T p
od

Task Graph

Construction Food Orders

Replacement

Algorithm

Greedy

Algorithm

Objective

Shareability

Empty Run

Time

P
re

-P
ro

ce
ss

in
g

Task Grouping Algorithm

S
h

ar
e
ab

il
it

y
 a

n
d

 E
m

p
ty

 R
u
n

 T
im

eGPS Trajectories

V
G

Figure 4: The framework of our task grouping method.

As shown in Figure 4, the pre-processing component has three

small components: region segmentation, task graph construction,

and travel time estimation. Firstly, the region segmentation is to

segment a city into non-overlapping regions V . In detail, a city is

segmented based on the road structure of the city (i.e. road net-

works), e.g. Figure 8(a, b). Next, with the segmented regions V , we

construct the task graphG = 〈V ,E〉. The construction process uses

the historical food order records collected from web users and mo-

bile device users in real world. From these food order records, we

can know whether there are food orders from one region to another

and the number of the food orders in each time period. That is, all

delivery tasks E between any two regions can be extracted. Then,

based onV and E, task graphG can be constructed. The constructed

task graph G will be transferred to the task grouping algorithm

component for grouping. The third small component is the travel

time estimation, which is to estimate the travel time of food carriers

between any two regions in V in each time period p. The estima-

tion is based on the GPS trajectories of food carriers collected from

real world. The estimated travel time are also necessary in the task

grouping algorithm component.

The shareability and empty run time component is to formally

formulate the shareability and the empty run time, which are then

combined as one objective. The objective will be used to guide the

grouping of tasks. In general, given a grouping result, we utilize

the total delivery time of food orders to indicate the shareability of

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Shenggong Ji, Yu Zheng, Zhaoyuan Wang, and Tianrui Li

the grouping result. The smaller the total delivery time, the higher

shareability the grouping result. Thus, our objective is formulated

as the sum of the delivery time and the empty run time. The delivery

time and the empty run time of a grouping result will consider the

number of food orders in each task in each period.

The task grouping algorithm component details our algorithms

for grouping tasks intoM task groups, including a greedy algorithm

and a replacement algorithm. The greedy algorithm assigns tasks

to each task group Em in a greedy manner based on the objective,

and will output a task grouping result E1, · · · ,Em . The replacement

algorithm is to further improve the grouping result of the greedy

algorithm. Specifically, we try to replace the owner (one task group)

of a task with another task group, with the expectation that the

total delivery time and the total empty run time can be reduced

after the replacement. The replacement algorithm stops when the

objective cannot be improved any more, and then our ultimate task

grouping result is returned.

3 PRE-PROCESSING

3.1 Region Segmentation

In this subsection, we segment a city into non-overlapping regions

V , which includes two steps. At the first step, we segment the city

into regions according to the structure of road networks, using

the region segmentation method proposed in [29]. By this method,

the segmented regions have semantic meanings, e.g. a region can

be a small block of a city. This is an important advantage of this

segmentationmethod over the grid-basedmethod [13, 20]. However,

since road networks in a city are too dense, some regions obtained

from the first step are very small, e.g. the widths and lengths of

some regions are less than 200 meters. Therefore, at the second

step, we recursively merge those small and geographically adjacent

regions into relatively big regions, until the size of the smallest

region reaches a threshold (e.g. 400 meters × 400 meters).

3.2 Task Graph Construction

With segmented regions V , we can construct the task graph based

on users’ food order records over a long time in real world. Specif-

ically, for each food order (see the data format in the Section 6),

we can get the location of the restaurant and the location of the

user, which can be mapped into regions. For example, if the restau-

rant is in region o and the user is in region d , we have a task

e = (o,d,n1, · · · ,nP). Iterating over the entire food order records,

we can obtain all tasks E. Besides the location information, we also

have the time stamp at which a food order is ordered, which can be

mapped to a corresponding time period. Thus, for each task e ∈ E,
we can get the number of food orders in each period p, i.e. the e .np .
Finally, based on the constructed V and E, we can then obtain the

task graph G = 〈V ,E〉 in a city.

3.3 Travel Time Estimation

In this subsection, we estimate the travel time T
p

o,d
of food carriers

traveling from region o ∈ V to region d ∈ V in each period p, using
the GPS trajectories of food carriers in real world. Since a period

is too short (e.g. 15 minutes), we estimate the travel time from o

to d in each hour, based on which we can get T
p

o,d
. In detail, our

estimation process has the following steps. First, we detect and

remove stay points from the GPS trajectories of food carriers, using

the stay-point detection algorithm proposed in [32]. In real world,

food carriers may stay still to wait for users to fetch their food, or to

wait for restaurants to prepare the food. Thus, we need to remove

these stay points, before estimating the travel time of food carriers.

Second, we map the GPS trajectories (without stay points) onto

road segments, using the map-matching algorithm proposed in [28].

After the map-matching, we can obtain the travel time of carriers

on each road segment. Note that there may exist some missing data,

we can fill them based on the spatial and temporal correlation of

travel time between road segments [8, 10, 26, 31]. Finally, the travel

time between any two regions can be estimated as the minimum

travel time of a path (a sequence of road segments), concatenating

the centers of these two regions [26]. Note that the estimated travel

time is necessary for the calculation of the shareability and the

empty run time, when we conduct the task grouping.

4 SHAREABILITY AND EMPTY RUN TIME

4.1 Objective

The shareability of a grouping result E1, · · · ,EM can be indicated

by the total delivery time needed to deliver all food orders in all

tasks. The smaller the total delivery time, the higher the shareability.

For a simple example in Figure 5, there are four tasks. Tasks e1, e2
can be easily shared since their origins and destinations are both

highly close, and food orders in e1, e2 have a similar arrival pattern

(Figure 5(c)). That is, food orders in e1, e2 that come in the same

time period can be delivered jointly, using just around one share of

delivery time. So can tasks e3, e4. Thus, if we group e1, e2 as a task
group and e3, e4 as another group, as Figure 5(a), the shareability
of the grouping is high. In the meantime, the total delivery time to

deliver all food orders is small, since jointly delivering food orders

in e1, e2 (or e3, e4) can save a lot of delivery time. In contrast, as

Figure 5(b), if we group e1, e3 as a group and e2, e4 as another group,
the shareability of the grouping is low. Meanwhile, the total delivery

time is large, since jointly delivering food orders in e1, e3 (or e2, e4)
cannot save the total delivery time. Therefore, we can use the total

delivery time to indicate the shareability. It should be noted that for

a task group, in addition to the tasks’ origins and destinations, the

shareability is also affected by tasks’ number of food orders in each

time period (Figure 5(c)). The formal formulation of the shareability

is in Section 4.2.

e1
e2

e3

e4 e1
e2

e3

e4

(a) (b) (c) e2 e3

e4 p

np

e1

Figure 5: An example for the shareability.

The total delivery time for delivering all food orders is denoted

by DT (E1, · · · ,EM) and is actually the aggregation of delivery time

in each task group Em , i.e.

DT (E1, · · · ,EM) =

M∑
m=1

DT (Em), (1)

Effective Task Grouping for Online-to-Offline Food Delivery Services WWW ’19, May 13–17, 2019, San Francisco, CA, USA

where DT (Em) refers to the total delivery time needed to deliver

food orders in task group Em .

The total empty run time of a grouping result E1, · · · ,EM is

denoted by ET (E1, · · · ,EM), which is the aggregation of empty run

time in each task group Em :

ET (E1, · · · ,EM) =

M∑
m=1

ET (Em), (2)

where ET (Em) denotes the empty run time of task group Em .

For our task grouping problem, we expect a grouping result with

smaller delivery time (i.e. higher shareability) and smaller empty

run time. Therefore, we can combine them as one objective, i.e. the

total travel time, which is the sum of the total delivery time and the

total empty run time. Thus, the total travel timeTT (E1, · · · ,EM) is

TT (E1, · · · ,EM) =

M∑
m=1

TT (Em), (3)

where TT (Em) is the aggregation of DT (Em) and ET (Em):

TT (Em) = DT (Em) + ET (Em). (4)

To obtain our objective function in Equation 3, we need to math-

ematically formulate the delivery time (shareability) DT (Em) and

the empty run time ET (Em) in each task group Em . Thus, for the

rest of this section, we detail how to mathematically formulate the

delivery time DT (Em) and the empty run time ET (Em) for each

task groupm.

4.2 Delivery Time DT (Em) (Shareability)
When calculating the delivery time of food orders in a task group

Em , we will consider jointly delivering (sharing) food orders, such

that the delivery time can denote the shareability. However, in

real world, only food orders that arrive within a time period (e.g.

15 minutes) can be shared, since jointly delivering food orders in

different time periods would let users wait too long for their food.

That is, jointly delivering food in different time periods is not user-

friendly and will lead to poor user experience. Thus, the DT (Em) is

actually the aggregation of the delivery time of food orders in each

time period p. That is, DT (Em) is

DT (Em) =

P∑
p=1

DT (Em ,p), (5)

where P denotes the number of total time periods, and DT (Em ,p)
refers to the delivery time of food orders in task group Em in period

p. A period considered in this paper is with 15 minutes.

For food orders in a task group Em in a period p, there may exist

many strategies to jointly deliver them. For example, as shown in

Figure 6, there are three tasks in task group Em , i.e. e1, e2, e3. In
period p, e1 is with one order, e2 with two and e3 with one. The

possible joint delivery solutions include: 1) jointly delivering the

order in e1 with an order in e2 and jointly delivering another order

in e2 with the order in e3; 2) jointly delivering the order in e1 with
the order in e3 and jointly delivering the two orders in e2; etc. The
problem now is to find a delivery solution such that it can be used

for the calculation of our needed delivery time.

Definition 4 (Delivery Time): The delivery time DT (Em ,p) is
defined as the minimum delivery time among all possible delivery

v4

e2 e3

e1

e2

e3

e1

77 10 12

910 9 11

1012 11 10

1

2

1

ei.n pv1

e1

e2v3

v2

9, 2
2

7, 1

3

e3
10, 1

t p
ij t p

i

7, 1: travel time=7, #orders=1; t p
12 = t p

21 = 10

Figure 6: A simple example for delivery time DT (Em ,p).

solutions such that it can indicate the shareability. As a consequence,

to obtain the DT (Em ,p), we need to find the optimal delivery solu-

tion. In math, it is

DT (Em ,p) = min
yi ,xi j

|Em |∑
i=1

���yi · t
p
i +

|Em |∑
j=i

xi j · t
p
i j
��	

s .t .

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 · yi +

(
2 · xii + 1 ·

∑ |Em |
j=1, j�i xi j

)
= ei .n

p ,∀i
xi j = x ji ,∀i, j
yi ,xi j ∈ Z

+ ∪ {0},∀i, j

(6)

yi and xi j are the decision variables. yi refers to the number of

food orders in task ei being delivered individually. xi j refers to the

number of food orders in task ei and ej that are delivered jointly.

t
p
i denotes the travel time needed for delivering an order in task

ei , i.e. t
p
i = T

p

ei .o,ei .d
. For example, in Figure 6, t

p
1 = T

p
v1,v2

= 7. t
p
i j

is the minimum travel time needed to jointly deliver an order in

ei and an order in ej , and t
p
i j = t

p
ji holds. For example, in Figure

6, t
p
12 = t

p
21 = 10 means that the minimum travel time to jointly

deliver an order in e1 and an order in e2 is 10 minutes (by taking

the route v1 → v2 → v4, i.e. picking up two orders in region v1
and then delivering the one to region v2 and another one to v4).
ei .n

p denotes the number of orders in ei in period p. |Em | denotes

the number of tasks in group Em .

In this optimization problem, the objective is to find the optimal

delivery solution, i.e. yi and xi j , with the minimum delivery time.

The first constraint requires that all orders in each task ei should
be delivered. Note that if xii = 1, two orders in task ei are delivered
(denoted by 2 ·xii). The second constraint indicates that the sharing
of orders between two tasks is symmetric. The last constraint means

that yi ,xi j are nonnegative integers.
From the optimization problem 6, we can find that the shareabil-

ity of a task group is affected both by tasks’ origins and destinations

and by tasks’ number of food orders in a time period, as aforemen-

tioned. The more tasks having close origins and destinations, the

higher the shareability. The more food orders that come at the same

time period, the higher the shareability.

The optimization problem can be efficiently solved using some

off-the-shelf optimization solvers, e.g. Gurobi Optimizer [1], Mi-

crosoft Solver Foundation [2], etc. For the example in Figure 6, the

solution is x21 = x12 = 1,x23 = x32 = 1 and thus DT (Em ,p) =

(T
p
v1,v2

+T
p
v2,v4

) + (T
p
v3,v1

+T
p
v1,v4

) = 21. That is, the optimal deliv-

ery solution is to jointly deliver an order in e2 with the order in e1
(taking route v1 → v2 → v4) and to jointly deliver another order

in e2 with the order in e3 (taking route v3 → v1 → v4).

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Shenggong Ji, Yu Zheng, Zhaoyuan Wang, and Tianrui Li

4.3 Empty Run Time ET (Em)
The empty run time for task group Em is denoted by ET (Em). Sim-

ilar to DT (Em), ET (Em) is also the aggregation of the empty run

time ET (Em ,p) in each period p, i.e.

ET (Em) =

P∑
p=1

ET (Em ,p). (7)

The empty run time ET (Em ,p) is the total time intervals between

the delivery units in period p.
Definition 5 (Delivery Unit): A delivery unit contains one food

order in task es1 and one food order in es2 , and is denoted by du =
(es1 , e

s
2 ,o,d), where o and d denote the origin and destination of the

delivery unit, respectively. For the example in Figure 6, the solution

forDT (Em ,p) contains two delivery units. The first unit is to jointly
deliver an order in e1 and e2 by taking the route v1 → v2 → v4.
Therefore, du1 = (e1, e2,v1,v4). The second unit is to jointly deliver
an order in e2 and e3 by taking the route v3 → v1 → v4, that is,
du2 = (e2, e3,v3,v4). Note that if a delivery unit contains only one

food order, es2 is null and we denote es2 = ∗.

After a carrier finishes a delivery unitdui , to deliver next delivery
unit duj , the carrier needs to spend some time traveling from dui ’s
destination dui .d to duj ’s origin duj .o, in empty (without carring

any food). That is, the travel time from dui .d to duj .o is the empty

run time. For example, as the first row in Figure 7, from delivery

unit du1 to du2, there is empty run time T
p
v4,v3

.

Definition 6 (Empty Run Time): Given the last delivery unit du0
in period p − 1 and the n delivery units du1, · · · ,dun obtained from

the solution for DT (Em ,p) in this period p, the empty run time

ET (Em ,p) is the minimum time needed to travel between delivery

units du1, · · · ,dun , starting from du0. In math, it is

ET (Em ,p) = min
(i1,i2, · · · ,in)∈Perm(1,2, · · · ,n)

n∑
j=0

T
p

duij .d,duij+1 .o
(8)

where Perm(1, 2, · · · ,n) denotes all permutations of set {1, 2, · · · ,n}

and i0 = 0.T
p

duij .d,duij+1 .o
is the travel time from dui j ’s destination

dui j .d to dui j+1 ’s origin dui j+1 .o, i.e. the empty run time between

the i j -th delivery unit and i j+1-th delivery unit.

In summary, the delivery time DT (Em ,p) is the total travel time

of all delivery units in period p, while the empty run time ET (Em ,p)
is the minimum travel time needed to travel between all delivery

units. For example, for the delivery units obtained in Figure 6,

i.e. the du1 = (e1, e2,v1,v4) and du2 = (e2, e3,v3,v4) in Figure 7,

DT (Em ,p) = (T
p
v1,v2

+T
p
v2,v4

) + (T
p
v3,v1

+T
p
v1,v4

). Assume that the

last delivery unit in period p − 1 is du0 = (e1, ∗,v1,v2). We have

Perm(1, 2) = {(1, 2), (2, 1)}, corresponding to the two rows in Figure

7. If the optimal solution is (i1, i2) = (2, 1), i.e. the second row, then

ET (Em ,p) = T
p
v2,v3

+T
p
v4,v1

.

The optimization problem 8 is a NP-hard problem. In fact, the

problem can be seen as a traditional traveling salesman problem

[21], which is to find the shortest route to visit a given list of cities.

Specifically, a delivery unit in our problem can be seen as a city in

the traveling salesman problem and the distance between two cities

is the travel time from the destination of a delivery unit to the origin

of another delivery unit. Thus, to solve the NP-hard optimization

problem 8, we can apply an efficient and effective nearest neighbour

v1 v2

du0

v1 v4

du1

v3 v4

du2

v1 v2

du0

v3 v4

du2

v1 v4

du1

p - 1 p p + 1

v2 v1

v2v1

Tp
v2,v1 Tp

v4,v3

Tp
v2,v3 Tp

v4,v1

Figure 7: A simple example for empty run time ET (Em ,p).

algorithm [11, 21, 22], which has been widely used in the traveling

salesman problem. Specifically, assuming the current delivery unit

is dui , the algorithm selects the nearest (in terms of travel time)

unvisited delivery unit duj as the next delivery unit. That is, we

select duj such that

T
p

dui .d,duj .o
≤ T

p

dui .d,duk .o
, for each unvisited duk .

In this way, starting from du0, we can obtain the solution for the op-

timization problem 8 efficiently and the empty run time ET (Em ,p).
The time complexity is O(n), where n is the number of delivery

units in period p.
An assumption underlying the above formulation is that there

exists only one carrier in each task group Em . This is due to that

when conducting task grouping, we don’t know the number of

carriers in each task group Em . The allocation of carriers to task

groups is after the task grouping. Actually, if we are given the num-

ber of carriers in each task group, the problem can be formulated

as a multiple travelling salesman problem [5] and corresponding

empty run time can be similarly calculated.

5 TASK GROUPING ALGORITHM

5.1 Greedy Algorithm

The greedy algorithm is demonstrated in Algorithm 1. In general,

the greedy algorithm is comprised ofM rounds (Line 3-11) and at

each roundm, we assign tasks to task group Em . Below, we detail

the processes of assigning tasks to Em at each roundm.

Algorithm 1 Greedy Algorithm

1: procedure Greedy(E,M)

2: Eu = E � Initial unassigned tasks

3: form = 1, · · · ,M
4: Em = ∅

5: e∗ ← a random task from Eu

6: Em = Em ∪ {e∗}, E
u = Eu\{e∗}

7: while |Em | < α |E |/M or Eu ∩ Nei(Em) � ∅

8: for e ∈ Eu ∩ Nei(Em)

9: ComputeMTR(e |Em) � Equation 9

10: e∗∗ = argmine ∈Eu∩Nei(Em)MTR(e |Em)

11: Em = Em ∪ {e∗∗},E
u = Eu\{e∗∗}

12: return E1, · · · ,EM

Initially, Em is an empty set and is assigned with a random task

e∗ selected from unassigned tasks Eu (Line 3-6). Eu is initialized

Effective Task Grouping for Online-to-Offline Food Delivery Services WWW ’19, May 13–17, 2019, San Francisco, CA, USA

as E (Line 2) and tasks assigned will be removed from Eu . Second,
we search each unassigned task e from Em ’s neighborhood tasks

Nei(Em) and compute the marginal travel time ratio MTR(e |Em)

(Equation 9) of assigning e to Em (Line 8-9). Third, the task e∗∗
with the minimum marginal time ratio is assigned to Em (Line

10-11), making Em be with high shareability and low empty run

time. We repeat the Step 2 and Step 3, until the number of tasks

in Em surpasses α |E |/M or there does not exist unassigned task

nearby Em (Line 7). The first stop criterion is to balance the size of

each task group (e.g. α = 1.1). The reason that we only consider

the neighborhood tasks of Em is that usually tasks not in Nei(Em)

have much bigger marginal travel time ratios than tasks in Nei(Em).

Thus, tasks not in Nei(Em) can be pruned and the total running

time can be largely reduced. Below, we introduce the definitions of

the marginal travel time ratio and the neighborhood tasks.

Definition 7 (Marginal Travel Time Ratio): For task group Em
and a task e , the marginal travel time ratio of assigning task e to
task group Em is defined as:

MTR(e |Em) =
TT ({e} ∪ Em) −TT (Em)

TT ({e})
, (9)

where TT (Em) denotes the total travel time needed (including de-

livery time and empty run time) to deliver food orders in task group

Em as defined in Equation 4. Similarly, TT ({e} ∪ Em) denotes the

total travel time for delivering food orders in tasks {e}∪Em . That is,

MTR(e |Em) is the marginal travel time of food orders after assign-

ing e to Em , divided by the original travel time needed to deliver

food orders in task e . Apparently, to minimize the total travel time

(our objective), we assign the task with the minimumMTR(e |Em)

to the task group Em each time, i.e. Line 10-11 in Algorithm 1.

Definition 8 (Neighborhood Task): A task e is a neighborhood
task of task group Em , if both e’s origin e .o and e’s destination e .d
are geographically close to Em , i.e.

T
p
e .o,Em

≤ tnei and T
p

e .d,Em
≤ tnei .

T
p
e .o,Em

denotes the minimum of the travel time from e’s origin e .o

to regions in Em . tnei is a given threshold, e.g. 5 minutes.

5.2 Replacement Algorithm

The replacement algorithm, shown in Algorithm 2, is to improve

the grouping result of the greedy algorithm. The main idea of the

replacement algorithm is to replace the owner of a task from one

task group with another task group, with the expectation that the

total travel time can be reduced (our objective). The replacement

algorithm stops (Line 3) when the number of continuous failed re-

placement attempts ncur reaches the threshold nth (e.g. nth = 100).

For each replacement process (Line 4-11), we have the following

four steps.

First, we randomly select a task e from a random task group Em1

and we remove e from Em1 (Line 4-5). Second, for each task group

Em , we compute the marginal travel time MT (e |Em) (Equation 10)

if assigning task e to group Em (Line 6-7). Third, we find the task

group Em∗ with the minimum marginal travel time, and assign task

e to group Em∗ (Line 8-9). Fourth, if the task group Em∗ is exactly the

task group Em1 , this replacement process fails, since the total travel

time is not reduced. As a result, the number of continuous failed

attempts increases, i.e. ncur = ncur + 1 (Line 10). If the task group

Algorithm 2 Replacement Algorithm

1: procedure Replace(E1, · · · ,EM)

2: ncur = 0 � Initial failed times

3: while ncur < nth
4: e ← a random task from a random Em1

5: Em1 = Em1\{e}
6: form = 1, · · · ,M
7: ComputeMT (e |Em) � Equation 10

8: m∗ = argminm=1, · · · ,M MT (e |Em)

9: Em∗ = Em∗ ∪ {e}
10: if m∗ =m1: ncur = ncur + 1
11: else: ncur = 0

12: return E1, · · · ,EM

Em∗ is not the task group Em1 , the replacement process succeeds

and the total travel time has been reduced successfully. Thus, we

reset the ncur as ncur = 0 (Line 11).

Definition 9 (Marginal Travel Time): The marginal travel time

MT (e |Em) of assigning e to Em is defined as:

MT (e |Em) = TT ({e} ∪ Em) −TT (Em), (10)

where TT (Em) denotes the total travel time for task group Em as

defined in Equation 4. Thus, selecting the task group Em∗ with the

minimum travel time for the task e is helpful for minimizing the

total travel time (our objective).

6 EVALUATION

6.1 Datasets and Pre-processing Results

To evaluate our task grouping method, we use datasets collected

from a real-world O2O food ordering and delivery platform. Specif-

ically, our datasets include road network data, food order record

data, and food carriers’ GPS trajectory data. Below, we detail these

datasets and our pre-processing results.

6.1.1 Road network. We use the road network data in city of Shang-

hai, China. The network contains 333,766 intersections and 440,922

road segments, as shown in Figure 8(a). As detailed before, our re-

gion segmentation is based on the road network. Specifically, using

the road network, we segment the area in Figure 8(a) into regions,

and after merging small and adjacent regions, we obtain 1,000 re-

gions (i.e. |V | = 1000), as demonstrated in Figure 8(b). Besides, the

road network data is also needed when we estimate the travel time

of food carriers between any two regions.

6.1.2 Food order records. We collect one month of food order

record data from users in this area. The food order records start

from December 1 to December 31, 2016. For each food order record,

we have the following information: 1) the time stamp at which the

user ordered the food; 2) the restaurant information (ID, latitude,

longitude); 3) the user information (ID, latitude, longitude); 4) the

ID of the food carrier delivering the food order; and etc.

Temporal distribution of food orders. In total, our food order

record dataset contains 1,852,439 food orders in total. In average,

each day is with around 59,756 orders. Note that a time period is

with 15 minutes, thus we have 2,976 time periods for the 31 days

of food order records, i.e. P = 2976. The number of food orders in

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Shenggong Ji, Yu Zheng, Zhaoyuan Wang, and Tianrui Li

(a) Road Network (b) Segmented Regions (c) Restaurants, Customers

(e) #Orders to Regions (f) #Orders of Tasks

0 22905 0 45000 64749

(d) #Orders from Regions

Restaurants
Customers

Figure 8: Regions, tasks, and food orders in an area of Shang-

hai city, China.

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

Period

N
um

be
r

of
 fo

od
 o

rd
er

s

0 20 40 60 80 100
0

1000

2000

3000

4000

Period

A
ve

ra
ge

 n
um

be
r

of
 fo

od
 o

rd
er

s

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

Distance (meters)

R
at

io

(a) (b)

(c)

weekends

supper time

lunch time

Figure 9: Statistics of food orders from real-world users.

each time period is demonstrated in Figure 9(c), and Figure 9(b)

presents the average number of food orders in each period of a

day. Clearly, the number of food orders has a clear daily pattern,

i.e. there exist two peaks (a big one and a small one) each day.

The big peak appears during the lunch time while the small peak

appears during the supper time. On the other hand, there also exists

a weekly pattern, i.e. weekends have much less food orders than

weekdays, as shown in Figure 9(c). It implies that people more often

order take-out food during their working hours, especially at noon

on weekdays.

Spatial distribution of food orders. Together with the seg-

mented regions V , the food order record data can be used to con-

struct the task graph. Based on the food order records, using the

method proposed in Section 3.2, we extract 2,980 tasks, i.e. |E | =
2980. And then we can construct the task graph G = 〈V ,E〉, based
on the obtained V and E.

The tasks (edges) are demonstrated in Figure 8(f). Task (edges)

are denoted by lines in different colors based on the number of food

orders in each task. That is, different colors correspond to different

numbers of food orders, as the color bar shows. For example, a task

denoted by red color has around 4500 food orders in the 31 days,

while a task in blue color has only a few food orders.

Similar to the Figure 8(f), we can also draw the spatial distribu-

tion of food orders in each region, as shown in Figure 8(d) and (e).

Specifically, Figure 8(d) demonstrates the number of food orders

from each region (restaurants), while Figure 8(e) shows the number

of food orders to each region (users).

Figure 8(c) shows the geographical locations of restaurants and

users. Figure 9(a) presents the distribution of the geographical

distances between restaurants and users. As depicted in the figure,

for most food orders, the distances between restaurants and users

are within 3,000 meters. This is due to that the O2O platform usually

recommends restaurants within 3 kilometers to users on its web

and App.

6.1.3 GPS trajectories of food carriers. The GPS trajectories of

food carriers are also collected in December 2016. For each GPS

record, we have a food carrier ID, a latitude, a longitude, and a

time stamp. In total, there are 4,774 food carriers with 115,602,018

GPS records collected. Based on the GPS trajectory data, using the

method proposed in Section 3.3, we can estimate the travel time of

food carriers traveling between any two regions in V , in each time

period p.

6.2 Metrics

To evaluate our task grouping method, we use four metrics, which

are the average delivery time DT , the average empty run time ET ,

the average travel time TT for each food order, and the average

number of regions that each task group covers. Formally, the four

metrics can be formulated as

DT =
DT

ntotal
, ET =

ET

ntotal
, TT =

TT

ntotal
, #R (11)

where DT , ET and TT correspond to the total delivery time in

Equation 1, the total empty run time in Equation 2 and the total

travel time in Equation 3, respectively.ntotal denotes the number of

total food orders in all tasks. The smaller the first three metrics, the

better a grouping result. For a task grouping result with a smaller

#R, carriers in a task group can be more familiar with the locations

of users and restaurants. Thus, the smaller the #R, the better.

6.3 Baselines

To demonstrate the effectiveness of our task grouping method, we

compare our method with many state-of-the-art baseline methods,

including NE [30], DBH [27], HDRF [19], RAND [9], and Oblivious

[9, 19]. Although these baseline methods are originally designed

for undirected graph edge partition problems for distributed graph

computation platforms [9, 14, 15], they can be used or can be slightly

modified to partition directed graph edges for our task grouping

problem.

6.4 Effectiveness

We conduct extensive experiments to compare our task group-

ing method with the above baselines. Specifically, we use the task

graph G constructed from our datasets and set M = 300, 400, 500,

Effective Task Grouping for Online-to-Offline Food Delivery Services WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Table 1: Comparisons with baselines (unit for DT ,ET ,TT : seconds).

Task Grouping Method
M = 300 M = 400 M = 500

DT ET TT #R DT ET TT #R DT ET TT #R

NE 275 260 535 9.9 277 264 541 7.9 279 268 547 6.6

DBH 276 294 570 8.8 276 280 556 6.6 276 276 552 5.4

HDRF 283 267 550 7.3 285 264 549 6.0 285 258 543 5.1

RAND 292 611 903 18.4 292 603 895 13.9 292 606 898 11.3

Oblivious 284 261 545 7.5 285 252 537 5.9 285 250 535 4.9

Greedy (ours) 270 191 461 8.8 273 198 471 6.8 276 200 476 6.3

Greedy+Replace (ours) 268 180 448 8.5 271 185 456 7.0 273 186 459 6.0

i.e. grouping all tasks into 300, 400, 500 groups. To better evaluate

the performance of the greedy algorithm and the replacement algo-

rithm in our method, we first consider only the greedy algorithm

(Greedy) and then add the replacement algorithm (Greedy+Replace).

Experiment results are summarized in Table 1.

In terms of the first three metrics, our task grouping method

defeats all baseline methods. The best baseline method is the NE

method [30]. The improvement of our method over baseline meth-

ods is significant. For example, whenM = 300, our greedy algorithm

(461 seconds) has already defeated the baseline algorithms by at

least 74 seconds (comparing with 535 seconds of NE method). If

combined with the replacement algorithm, our method needs just

448 seconds for each food order, saving 87 seconds for each order.

That is, our method can save at least 16% of average travel time for

each order, comparing with the baseline methods, i.e. significantly

reducing the waiting time of users.

In terms of the average number #R of regions covered by each

task group, each task group of ourmethod covers less than 9 regions,

which is a proper value. From Table 1, we can find that the smaller

theM , the bigger the #R. Thus, to make carriers familiar with the

locations of users and restaurants in a task group, grouping more

task groups (a relatively biggerM) is better.

In the meantime, we can find that the average delivery time,

empty run time, and travel time will slightly increase with the in-

creasing ofM . This is due to that the larger theM , the smaller the

size of each task group, and the more difficult to improve shareabil-

ity and to reduce empty run time. However, this does not mean a

smallerM is better since we expect a biggerM to reduce #R. Thus,

the selection ofM should be a trade-off between TT and the #R for

O2O platforms in real world.

6.5 Time Efficiency

In this subsection, we study the time efficiency of our task group-

ing method. Our task grouping method is realized in C# and is

performed on a single computer with 4 Intel Xeon E3-1225 3.31

GHz cores and 8 GB RAM. The running time of our task grouping

method is presented in Figure 10. We can see that our task grouping

method is efficient, using just at most 1.5 hours. It should be noted

that given a city, the task grouping is only conducted from time

to time, e.g. once per month or even per quarter/half of a year, as

mentioned in the Introduction. Besides, our task grouping method

can easily run in parallel. When more machines are used, the run-

ning time can be significantly reduced. Thus, our task grouping

method is efficient enough for the applications of real-world O2O

food ordering and delivery platforms.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

300 400 500

Ru
nn

in
g

tim
e

(h
ou

r)

M

Greedy Replace

430
435
440
445
450
455
460
465
470
475
480

0.
00

0.
06

0.
10

0.
15

0.
19

0.
24

0.
28

0.
32

0.
36

0.
40

0.
44

0.
48

0.
52

Av
er

ag
e

tra
ve

l t
im

e

Running time (hour)

M=300
M=400
M=500

(a) (b)

Figure 10: Running time of our task grouping method.

6.6 Balance of Task Grouping Results

The balance of each task group is also an important index. The

amounts of tasks, regions, and food orders in different task groups

are expected to be balancing. To this end, for a task grouping result,

we use entropy to indicate the balance of tasks, regions and food

orders in each task group. More specifically, we define the entropy

of tasks for a task grouping result as Ent t = −
∑M
m=1 p

t
m log2 p

t
m .

ptm denotes the ratio of tasks in groupm, i.e. the number of tasks in

groupm divided by the total number of tasks. Similarly, in terms of

regions and food orders, we can define Entr = −
∑M
m=1 p

r
m log2 p

r
m

and Ento = −
∑M
m=1 p

o
m log2 p

o
m . prm and pom refer to the ratio of re-

gions and the ratio of food orders in groupm, respectively. Entropies

of different task grouping methods are presented in Figure 11. As

shown in the figure, our method, together with HDRF, RAND and

Oblivious, achieves balancing task grouping results, with entropies

approaching the optimal entropy log2 300 ≈ 0.829.

7 RELATEDWORK

7.1 Previous Research on Take-out Food

Previous research on take-out food (takeaway food) is conducted

mainly from the socioeconomic perspective [17, 18, 25] or from the

perspective of human health [23, 24]. In general, previous research

mainly focuses on the influence of take-out food consumption on

health. For example, in [18], Miura et al. studied the relationship

between the consumption of take-out food with the socioeconomic

differences in fruit and vegetable intake. Based on their analysis,

they found that less educated people are more likely to consume

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Shenggong Ji, Yu Zheng, Zhaoyuan Wang, and Tianrui Li
8.

08
2

7.
30

2

8.
22

3

8.
15

9

8.
22

5

8.
16

9

8.
16

5

8.
06

2

7.
40

0

8.
19

9

8.
16

5

8.
20

1

8.
15

4

8.
14

9

7.
90

8

7.
18

4

8.
14

8

8.
11

1

8.
15

0

8.
01

6

8.
03

6

6.000
6.500
7.000
7.500
8.000
8.500
9.000
9.500

10.000

En
tro

py

Method

#tasks #regions #orders

Figure 11: Entropies of tasks, regions, and orders.M = 300.

less healthy take-out food, containing fewer fruit and vegetables,

and that consuming less healthy take-out food may result in the

socioeconomic differences in fruit and vegetable intake. For another

example, in literature [24], Smith et al. investigated the relationship

between the take-out food consumption with diet quality and ab-

dominal obesity. This work concluded that consuming take-out food

twice a week or more may lead to poor diet quality and moderate

abdominal obesity in young men and women.

Different with the above work, our work aims to improve the

take-out food delivery efficiency for O2O take-out food ordering

and delivery platforms, from the perspective of computer science,

using data-driven methods. Consuming take-out food frequently

may lead to some health concerns, however more and more healthy

take-out food can be ordered. Since massive food orders are issued

each day, to improve the food delivery efficiency is essential for

O2O platforms. To the best of our knowledge, we are the first to

study the take-out food from this perspective.

7.2 Graph Edge Partition

From the perspective of the problem formulation, our task grouping

problem is formulated as a graph edge partition problem (a.k.a.

graph vertex-cut problem) [6, 9, 16, 19, 27, 30]. Previous graph edge

partition problems are mainly studied for large-scale distributed

graph computation platforms, e.g. PowerGraph [9], GraphLab [14],

Pregel [15]. Specifically, they partition a large-scale computation

graph to different machines and each machine runs a part of the

graph in parallel, so as to speed up the whole computation process.

Their objective is to minimize the number of replicated vertices in

different machines so as to lower the communication cost between

machines. Many heuristic algorithms [9, 16, 19, 27, 30] have been

proposed in recent years for graph edge partition problems. For

example, in [30], Zhang et al. proposed a neighborhood expansion-

based heuristic algorithm to do the graph edge partition. In [9],

Gonzalez et al. proposed a random algorithm and some greedy

algorithms. In [19], Petroni et al. presented a high-degree replicated

first algorithm. Besides the graph edge partition problems, graph

vertex grouping problems (a.k.a. graph edge-cut problems) [6, 7, 12]

were also widely studied, which is to partition vertices (instead of

edges) in a graph into a given number of groups.

As discussed before, although our task grouping problem is a

graph edge partition problem, due to the different scenarios and

objectives, previous graph edge partition algorithms cannot apply

well to our problem. Actually, our experiment results have also

validated that our proposed task grouping algorithm can achieve

much better performance than the previous graph edge partition

algorithms (see Table 1).

8 CONCLUSION AND FUTUREWORK

In this paper, we proposed a task grouping method for O2O take-

out food ordering and delivery platforms, consisting of two main

contents. First, we formulated the factors affecting the food deliv-

ery efficiency and provided a combined objective to guide our task

grouping. Second, we presented effective heuristic algorithms for

grouping tasks, including a greedy algorithm and a replacement

algorithm. Using our task grouping method, the food delivery effi-

ciency can be highly improved. According to the experiment results,

our method is able to group tasks into task groups with high share-

ability (i.e. low delivery time) and low empty run time. Comparing

with the previous graph edge partition algorithms, our method is

able to save at least 16% (87 seconds) of average travel time for each

food order, which is a significant improvement. As a result, with

our research, O2O take-out food ordering and delivery platforms

can largely improve their food delivery efficiency, thus providing

better food delivery services for users. In the future, as mentioned

in the Introduction, we plan to study the food carrier allocation

problem and the real-time food carrier dispatching problem. Note

that these two problems also significantly affect the food delivery

efficiency of O2O food ordering and delivery platforms.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foun-

dation of China (Grant Nos. 61672399, U1609217, 61773324), the

Fundamental Research Funds for the Central Universities (Nos.

220710004005040177), and Doctoral Innovation Fund Program of

Southwest Jiaotong University.

REFERENCES
[1] [n. d.]. Gurobi optimizer reference manual. http://www.gurobi.com.
[2] [n. d.]. Microsoft solver foundation reference manual. https://msdn.microsoft.com/

en-us/library/ff524499(v=vs.93).aspx.
[3] [n. d.]. Online take-out food ordering platform 1 in China. https://en.wikipedia.

org/wiki/Ele.me.
[4] [n. d.]. Online take-out food ordering platform 2 in China. https://en.wikipedia.

org/wiki/Meituan-Dianping.
[5] Tolga Bektas. 2006. The multiple traveling salesman problem: an overview of

formulations and solution procedures. Omega 34 (2006), 209–219.
[6] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced graph edge

partition. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD. 1456–1465.

[7] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. 2016. Recent Advances in Graph Partitioning. In Algorithm Engineering -
Selected Results and Surveys. 117–158.

[8] C. De Fabritiis, R. Ragona, and G. Valenti. 2008. Traffic estimation and prediction
based on real time floating car data. In Proceedings of the 11th International IEEE
Conference on Intelligent Transportation Systems.

[9] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation. 17–30.

[10] E. Jenelius and H. N. Koutsopoulos. 2013. Travel time estimation for urban road
networks using low frequency probe vehicle data. Transportation Research Part
B: Methodological 53 (2013), 64–81.

[11] David S. Johnson and Lyle A. McGeoch. 1997. The Traveling Salesman Problem:
A Case Study in Local Optimization. Local Search in Combinatorial Optimisation
(1997), 215–310.

Effective Task Grouping for Online-to-Offline Food Delivery Services WWW ’19, May 13–17, 2019, San Francisco, CA, USA

[12] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Scientific Computing 20, 1
(1998), 359–392.

[13] John Krumm and Eric Horvitz. 2007. Predestination: Where Do You Want to Go
Today? IEEE Computer 40 (2007), 105–107.

[14] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and JosephM. Hellerstein. 2012. Distributed GraphLab: A Framework forMachine
Learning in the Cloud. PVLDB 5, 8 (2012), 716–727.

[15] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD. 135–146.

[16] Daniel W. Margo and Margo I. Seltzer. 2015. A Scalable Distributed Graph
Partitioner. PVLDB 8, 12 (2015), 1478–1489.

[17] Kyoko Miura, Katrina Giskes, and Gavin Turrell. 2009. Socioeconomic differences
in takeaway food consumption and their contribution to inequalities in dietary
intakes. Journal of Epidemiology & Community Health 63, 10 (2009), 820–826.

[18] Kyoko Miura, Katrina Giskes, and Gavin Turrell. 2011. Contribution of take-out
food consumption to socioeconomic differences in fruit and vegetable intake : a
mediation analysis. Journal of The American Dietetic Association 111, 10 (2011),
1556–1562.

[19] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-
gio Iacoboni. 2015. HDRF: Stream-Based Partitioning for Power-Law Graphs. In
Proceedings of the 24th ACM International Conference on Information and Knowl-
edge Management, CIKM 2015. 243–252.

[20] Jason W. Powell, Yan Huang, Favyen Bastani, and Minhe Ji. 2011. Towards
Reducing Taxicab Cruising Time Using Spatio-Temporal Profitability Maps. In
Advances in Spatial and Temporal Databases - 12th International Symposium, SSTD.
242–260.

[21] César Rego, Dorabela Gamboa, Fred Glover, and Colin Osterman. 2011. Travel-
ing salesman problem heuristics: Leading methods, implementations and latest
advances. European Journal of Operational Research 211, 3 (2011), 427–441.

[22] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II. 1974.
Approximate Algorithms for the Traveling Salesperson Problem. In 15th Annual

Symposium on Switching and Automata Theory. 33–42.
[23] Helmut Schröder, Montserrat Fïto, and Maria Isabel Covas. 2007. Association of

fast food consumption with energy intake, diet quality, body mass index and the
risk of obesity in a representative Mediterranean population. British Journal of
Nutrition 98 (2007), 1274–1280.

[24] Kylie J Smith, Sarah A McNaughton, Seana L Gall, Leigh Blizzard, Terence Dwyer,
and Alison J Venn. 2009. Takeaway food consumption and its associations with
diet quality and abdominal obesity: a cross-sectional study of young adults.
International Journal of Behavioral Nutrition and Physical Activity 6, 29 (2009).

[25] Gavin Turrell and Katrina Giskes. 2008. Socioeconomic disadvantage and the
purchase of takeaway food: a multilevel analysis. Appetite 51, 1 (2008), 69–81.

[26] Yilun Wang, Yu Zheng, and Yexiang Xue. 2014. Travel time estimation of a path
using sparse trajectories. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 25–34.

[27] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed Power-law
Graph Computing: Theoretical and Empirical Analysis. In Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014. 1673–1681.

[28] Jing Yuan, Yu Zheng, Chengyang Zhang, Xing Xie, and Guangzhong Sun. 2010.
An Interactive-Voting Based Map Matching Algorithm. In Eleventh International
Conference on Mobile Data Management, MDM. 43–52.

[29] Nicholas Jing Yuan, Yu Zheng, and Xing Xie. 2012. Segmentation of Urban Areas
Using Road Networks. MSR-TR 65 (July 2012).

[30] Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li. 2017.
Graph Edge Partitioning via Neighborhood Heuristic. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD. 605–614.

[31] Yu Zheng. 2015. Trajectory Data Mining: An Overview. ACM Transaction on
Intelligent Systems and Technology 6, 3 (2015), 29:1–29:41.

[32] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2012. Mining interesting
locations and travel sequences from GPS trajectories. In Proceedings of the 18th
International Conference on World Wide Web, WWW. 17–30.

