
Fine-Grained Urban Flow Prediction
Yuxuan Liang1, Kun Ouyang1, Junkai Sun3, Yiwei Wang1, Junbo Zhang3,4, Yu Zheng3,4,5,

David S. Rosenblum1,2, Roger Zimmermann1
1School of Computing, National University of Singapore, Singapore

2Department of Computer Science, George Mason University, VA, USA
3JD iCity, JD Technology, Beijing, China & JD Intelligent Cities Research, Beijing, China

4Artificial Intelligence Institute, Southwest Jiaotong University, Chengdu, China 5Xidian University, Xi’an, China
{yuxliang,ouyangk,y-wang,rogerz,david}@comp.nus.edu.sg;{junkaisun,msjunbozhang,msyuzheng}@outlook.com

ABSTRACT
Urban flow prediction benefits smart cities in many aspects, such as
traffic management and risk assessment. However, a critical prereq-
uisite for these benefits is having fine-grained knowledge of the city.
Thus, unlike previous works that are limited to coarse-grained data,
we extend the horizon of urban flow prediction to fine granularity
which raises specific challenges: 1) the predominance of inter-grid
transitions observed in fine-grained data makes it more complicated
to capture the spatial dependencies among grid cells at a global
scale; 2) it is very challenging to learn the impact of external factors
(e.g., weather) on a large number of grid cells separately. To address
these two challenges, we present a Spatio-Temporal Relation Net-
work (STRN) to predict fine-grained urban flows. First, a backbone
network is used to learn high-level representations for each cell.
Second, we present a Global Relation Module (GloNet) that cap-
tures global spatial dependencies much more efficiently compared
to existing methods. Third, we design a Meta Learner that takes
external factors and land functions (e.g., POI density) as inputs to
produce meta knowledge and boost model performances. We con-
duct extensive experiments on two real-world datasets. The results
show that STRN reduces the errors by 7.1% to 11.5% compared to
the state-of-the-art method while using much fewer parameters.
Moreover, a cloud-based system called UrbanFlow 3.0 has been
deployed to show the practicality of our approach.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Com-
puting methodologies→ Artificial intelligence; Neural networks.

KEYWORDS
Urban flow prediction; spatio-temporal data; relational learning;
convolution neural networks; urban computing.

ACM Reference Format:
Yuxuan Liang, Kun Ouyang, Junkai Sun, Yiwei Wang, Junbo Zhang, Yu
Zheng, David S. Rosenblum and Roger Zimmermann. 2021. Fine-Grained
Urban Flow Prediction. In Proceedings of the Web Conference 2021 (WWW
’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 11
pages. https://doi.org/10.1145/3442381.3449792

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449792

1 INTRODUCTION
Accurately forecasting urban flows, such as predicting the total
crowd flows entering and leaving each location (i.e., grid cell) of
a city during a given time interval [40, 41], plays an essential role
in smart city efforts. It can provide insights to the government
for decision making, risk assessment, and traffic management. For
example, by foreseeing that an overwhelming crowd will stream
into a region ahead of time, the government can carry out traffic
control, send warnings or even evacuate people for public safety.

One key property that must be considered in grid-based urban
flow prediction is spatio-temporal (ST) dependencies: the future of a
grid cell is conditioned on its previous readings as well as neigh-
bors’ histories. Moreover, urban flows are also impacted by external
factors such as weather conditions and events. For example, heavy
snow can sharply reduce traffic flows in many regions. To address
these characteristics, many existing studies [6, 20, 36, 40–42] use
convolutional neural networks (CNNs) as the backbone structure
to extract spatially near and distant dependencies; the temporal de-
pendencies (e.g., at the recent, daily and weekly levels) are captured
using different sub-branches. Meanwhile, the influence of external
factors is encoded by some manually-designed subnetworks.

Grid size: 600m×600m Grid size: 150m×150m

16 hops

R1 R2

64 hops

Figure 1: Coarse-grained vs. fine-grained urban flows.

In this paper, we focus on predicting urban flows at a fine-grained
level, which is important yet unexplored in the community. Fine-
grained flows can create exactness of the underlying dynamics of
the city, encouraging better decisionmaking. For instance, as shown
in Figure 1, acquiring the traffic in a small area of interest with size
150m×150m can help allocate police resources more precisely while
knowing that information at a district level with size 600m×600m is
less useful. Notice that for a specific city, increasing the granularity
(e.g., 600m→150m) is equivalent to obtaining higher resolution (e.g.,
32×32→128×128). Thus, we use “high resolution” and “fine gran-
ularity” interchangeably. Although previous studies have shown
promising results at coarse-grained levels (e.g., 32×32 Beijing [40]),
their architectures are not suitable for predicting fine-grained urban
flows due to the following specific challenges:

https://doi.org/10.1145/3442381.3449792

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liang et al.

(a) Grid-based map segmentation

Office
area

Residence

T
ransition

Region
space

Grid
spaceBeijing

(c) From grid space to region space

0

80

160

240

1 41 81 121

Coarse-grained taxi flows (600m)

Fine-grained taxi flows (150m)

of

 tr
an

si
ti

on
s

(t
ho

us
an

d)

of hops

(b) Transition during a time period in Beijing

Time period:
2013/07/01-2013/07/07

(a) An example of transitions

0

80

160

240

1 41 81 121

Coarse-grained taxi flows (600m)

Fine-grained taxi flows (150m)

of

 tr
an

si
ti

on
s

(t
ho

us
an

d)

of hops

Time period:
2013/07/01-2013/07/07

Region
space

Grid
space

(b) Space conversion
Grid size: 600m×600m Grid size: 150m×150m

16 hops

R1 R2

64 hops

Figure 2: (a) compares the transition patterns from a certain
week in Beijing. (b) shows grid- and region-based map seg-
mentation, as well as space conversion between them.

1) Global spatial dependencies. Rasterizing the city with higher
resolution reveals more details of urban mobility and, meanwhile,
enlarges the distance (or hops) between two given grid cells. As
shown in Figure 1(a), the number of hops between an office area
(R1) and residence (R2) in Figure 1(b) becomes four times of that
in Figure 1(a). This causes the statistics in Figure 2(a) where we
can witness more long-range inter-grid communications (i.e., tran-
sitions with more hops) compared to that in the coarse-grained
setting where short-range transitions often dominate. Hence, it
becomes far more important to capture regional dependencies on a
global scale in such fine-grained settings. In most of the existing
studies [6, 40, 41], long-range spatial dependencies are captured
by large receptive fields achieved by stacking many convolutional
layers, where each layer captures only short-range dependencies
at a local scale. Such naive repetition is computationally inefficient
and causes optimization difficulties [7]. Though using dilation con-
volution [39] tends to alleviate this drawback to some extent, it fails
to improve the predictive performance empirically (see Appendix
A for more details). These facts demonstrate that simply increasing
the receptive fields may not help. Recently, a new method called
DeepSTN+ [20] attempted to capture the global spatial dependen-
cies in every layer by explicitly modeling all pairwise relationships
between grids. However, it indispensably induces a huge number of
parameters with high computational costs. Hence, how to efficiently
capture the global spatial dependencies remains unsolved.

2) External factors & Land functions. Previous studies like DeepST
[41] and ST-ResNet [40] use subnetworks to map the effects of ex-
ternal factors onto each grid cell. Specifically, they stack several
fully-connected layers upon the external factors: the former layers
act as embedding layers to combine each factor and the final layer
maps the short embeddings to high-dimensional features with the
same shape as the flow map. However, as the resolution enhances
to a fine-grained level, it will induce a large number of parameters
proportional to the number of grid cells in the final layer. Further-
more, they ignore the influence of land functions such as POIs on
traffic movements. To this end, DeepSTN+ [20] presents a new way
to jointly consider the POIs information as well as the external
factors. However, in DeepSTN+, external factors are used only to
learn the weights of different kinds of POI features, while ignoring
the significant difference of how external factors impact different
grid cells. Thus, it is still challenging to learn the location-specific
response to the external factors in fine-grained settings.

To address the above challenges, we present a Spatio-Temporal
Relation Network (STRN) for fine-grained urban flow prediction.

Similar to the previous and current state-of-the-art methods [20, 40],
STRN follows the CPT (closeness, period and trend) paradigm to
model the three types of temporal dependencies, and uses a CNN-
based backbone to extract high-level ST features. To address the
above challenges, we design two specific modules as follows.

Primarily, we introduce a new structure (GloNet) to capture the
global spatial dependencies. We partition a city into 𝑁 grid cells.
Compared to DeepSTN+ that directly models all inter-grid corre-
lations (totally 𝑁 2 correlations), we perform relational inference
on a higher semantic level (i.e., region level) that is more friendly
to capture such global relations. As depicted in Figure 2(b), we
first perform a conversion from grid space to region space (𝑀 re-
gions), and then infer the regional correlations globally by message
passing. Since the region semantic changes over time, a new loss
based on minimum cut theory enables the model to dynamically
partition the map into irregular regions. Finally, we project the
features back to the grid space and obtain global-aware features. In
this way, our method only needs to model𝑀2 correlations among
all region pairs1, where typically 𝑀 ≪ 𝑁 . Moreover, we present
an original Meta Learner to produce the cell-specific responses to
the time-evolving external factors based on matrix decomposition.
Compared to DeepST and ST-ResNet, our Meta Learner not only
considers the latent region functions but is also independent of
the map resolution. Thus, it is more lightweight and practical in
fine-grained settings. In contrast to DeepSTN+, our module can
capture the cell-specific responses to the external factors and learn
better representations. In summary, our contributions are four-fold:
• We devise a unified model that jointly considers the spatial, tem-
poral and external relations for predicting fine-grained urban
flows. A system has been deployed to show its practicality.

• We develop a GloNet structure that captures the global spatial
dependencies in a more economical way than existing methods.

• We design an original Meta Learner to simultaneously learn the
effects of external factors and land function.

• We conduct extensive experiments to evaluate our model on two
real-world mobility datasets. Our model reduces the errors by
7.1%∼11.5% while using as few as less than 1% of the number of
parameters required in the state-of-the-art method DeepSTN+.

2 FORMULATION
Definition 1 (Grid cell) As shown in Figure 3(a), we partition an
area of interest (e.g., a city) evenly into a 𝐻 ×𝑊 raster with totally
𝑁 = 𝐻𝑊 grid cells. Note that enlarging 𝐻 or𝑊 indicates that we
can obtain urban flow data with higher resolution.

(a) Map segmentation (b) Road network (c) Irregular regions

Partition

Office
area

Residence

Figure 3: (a): Grid-based map segmentation. (b)-(c): We par-
tition Beijing into irregular regions based on road networks.

1 For example, 𝑁 = 1282 = 16384 while𝑀 = 100 in TaxiBJ+ dataset

Fine-Grained Urban Flow Prediction WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

1
2

t

Select
Key

Timesteps

Fetch
Ext & Land

Features

closeness

period

trend

... Conv

Conv

Conv

Mincut loss
Meta

Learner

Label Xt

GloNet

Loss Function

...

t-2

t-1

time

Oc

POI&RN MAE loss

(1) Data preparation (2) Model learning/predicting

Op

Oq

Om

concat

external

Xc

Xp

Xq

P

et

O Xh

Backbone
Network

Region
space

Grid
space

PredictionXt
^

Figure 4: The framework of STRN. Closeness, period and trend are recent, daily and weekly patterns; Conv: convolution layer.

Definition 2 (Urban flow) The urban flows at a certain time 𝑡 can
be denoted as a 3D tensor X𝑡 ∈ R𝐾×𝐻×𝑊 , where 𝐾 is the number
of flow measurements (e.g., inflow/outflow). Each entry (𝑘, ℎ,𝑤)
denotes the value of the 𝑘-th measurement in the cell (ℎ,𝑤).
Definition 3 (Region) Land use and function endow different geo-
graphic semantics to urban areas that are bounded irregularly [43].
Figure 3(c) shows an example of irregular region segmentation
based on road networks. It provides us with a more natural and
semantic segmentation of urban spaces than the grid-based method.
Assume that each region consists of many grid cells and we can
thereby use a matrix B ∈ R𝑁×𝑀 to denote the assignment, where
each element 𝑏𝑖, 𝑗 is the likelihood that grid cell 𝑖 belongs to region
𝑗 and𝑀 is the number of regions.
Definition 4 (External factors) Urban flow data have a strong
correlation with external factors, such as weather conditions, time
of day and events. We denote these external factors at a certain
time step 𝑡 as a vector e𝑡 ∈ R𝑙𝑒 , where 𝑙𝑒 is the feature length.
Definition 5 (Land features) The category of POIs and their den-
sity in an urban grid cell indicate the land functions of the cell as
well as the traffic patterns in this cell, therefore contributing to the
urban flows of the grid cell [20]. Likewise, the structure of road
networks (RNs) like the number of high-level road segments also
provides a good complement to traffic modeling [17, 43]. Thus, we
combine the land features including POIs and RNs of every cell,
and denote them as P ∈ R𝑙𝑓 ×𝐻×𝑊 , where 𝑙𝑓 is the feature number.
Problem Statement Here, we define the problem of fine-grained
urban flow prediction: Given the fine-grained historical observa-
tions of urban flows denoted as {X𝑖 |𝑖 = 1, 2, · · · , 𝑡 − 1}, the corre-
sponding external factors e𝑡 , and the land features P, our target is
to predict the urban flows at the future time step, denoted as X𝑡 .

3 METHODOLOGY
Figure 4 illustrates the framework of STRN, which consists of two
major stages: data preparation and model learning/predicting. In
the first stage, we first select the key timesteps (closeness, period
and trend) to create the flow inputs, denoted as X𝑐 , X𝑝 and X𝑞 ,
respectively. Meanwhile, we fetch the context of the external factors
e𝑡 and the land features P. More details about the construction and
dimensionality of these inputs are provided in Appendix B.

In the second stage, the prepared data are fed to learn the model,
following a local to global paradigm. As shown in Figure 4, for each

temporal sequence (X𝑐 , X𝑝 and X𝑞), we first use three non-shared
convolutional layers to convert them to embeddings O𝑐 ,O𝑝 ,O𝑞 ,
each with 𝐷 channels, i.e., they are all in R𝐷×𝐻×𝑊 . Meanwhile,
we design a Meta Learner that takes the external factors and land
features as inputs to learn the external impacts on each urban grid
cell, where the learned representation O𝑚 is of the same shape as
O𝑐 . Next, we concatenate the three types of temporal features as
well as the meta features, and feed the fusion result O ∈ R4𝐷×𝐻×𝑊

to the backbone network for feature extraction within its local re-
ceptive fields. This early fusion strategy allows different kinds of
information to interact with each other in the backbone network.
Once we obtain the extracted high-level features Xℎ ∈ R𝐶×𝐻×𝑊

at a local scale, we design a GloNet structure to capture the global
spatial dependencies and generate the final predictions. Finally,
we optimize the model weights by using a loss function including
two parts: a Mincut loss for automatic region partition and a mean
absolute error (MAE) loss for measuring the prediction errors.

3.1 Backbone Network
A powerful backbone network is crucial to urban flow prediction
as it can help the model learn useful and discriminative features.
For example, DeepST [41] provides the first deep learning-based
solution to urban flow prediction by stacking a number of convolu-
tional blocks for spatio-temporal feature extraction. As the network
depth increases, DeepST will be hard to train due to the notorious
vanishing gradient problem. To overcome this drawback, ResNet
[7] is widely used as the backbone in the previous and current
state-of-the-art [6, 20, 40] for urban flow prediction. However, they
emphasize the dependencies in the spatial dimension and overlook
the channel-wise information in the feature maps. In this paper,
we employ the Squeeze-and-Excitation Networks (SENet) [10] to
fuse both spatial and channel-wise information within small (i.e.,
local) receptive fields at each layer, which has proven to be effective
in producing compacted and discriminative features of each grid
cell. As shown in Figure 4, it takes the fusion result O as input and
outputs the high-level representations of each cell. First, we use a
convolutional layer to compress the dimension of input channels
from 4𝐷 to 𝐶 . Then, we stack 𝐹 squeeze-and-excitation (SE) blocks
[10] with 𝐶 filters for feature extraction within the receptive field.
Finally, a convolution layer is used to generate the output Xℎ . The
visualization of pipeline can be found in Appendix C.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liang et al.

Space
Conversion

X
h : N

 ×
 C

H: M × C’

Message
Passing

H
’ :

 M
 ×

 C
’

X
g : N

 ×
 C

Re-
projection

Grid Features Region Features Region Features Grid Features

Conv

Y
:

K
 ×

 H
 ×

 W

Predictions

Region space

A: reshape

BT

B

Space
Conversion

X
h
: N

 ×
 C

H: M × C’

Message
Passing
(GCN)

H
’

: M
 ×

 C
’

X
g
: N

 ×
 C

Reverse
Projection

Grid Features Region Features Region Features Grid Features

X
t :

 K
 ×

 H
 ×

 W

Region space

Ar:Region
Partition

B
Reshape

&
Predict

Predictions

^

Figure 5: The pipeline of GloNet, where 𝑁 = 𝐻𝑊 and𝑀 are the number of grid cells and regions respectively.

3.2 Global Relation Module
After local feature extraction, we present a Global Relation Mod-
ule (GloNet) to capture the global spatial dependencies in a more
economical way than the previous attempts (e.g., DeepSTN+). Moti-
vated by the relation networks [2, 14, 44] seizing relations between
objects in images, we perform relational inference on a higher se-
mantic level (i.e., region level) that is more friendly to capture global
relations. Moreover, we design an unsupervised loss based on the
minimum cut (Mincut) theory for region partition.

Figure 5 depicts the whole pipeline of GloNet. We first use the
high-level features Xℎ to generate the assignment matrix B by a
linear transformation. By referring to this matrix, GloNet then ag-
gregates the grid-cell features into region space to obtain region
features H ∈ R𝑀×𝐶′ and generate the connections (i.e., adjacency
matrix A𝑟 ∈ R𝑀×𝑀) between these regions. As the regions are
connected in the form of a graph, we utilize Graph Convolution
Networks (GCN) [13] to perform message passing on the region
level. Once we obtain the global-aware features that are discrimi-
native on the region level, the last step of GloNet is to project them
back to the grid space and generate the final predictions.

3.2.1 Region Partition. Recall that the backbone network has pro-
duced a high-level abstraction of the flow history and external con-
texts. For convenience, we reshape this tensor to be Xℎ ∈ R𝑁×𝐶 ,
where 𝑁 = 𝐻𝑊 is the number of grid cells. By doing this, each
grid 𝑖 can be represented by an embedding xℎ

𝑖
∈ R𝐶 . Here, we

aim to generate the grid-to-region assignment matrix B ∈ R𝑁×𝑀 ,
where𝑀 is a hyperparameter that indicates the number of regions.
Although we can perform a static region segmentation based on
the road networks as mentioned in Section 2, it fails to capture the
highly dynamic traffic conditions and the time-evolving external
factors. To tackle this problem, we compute B based on the high-
level representation Xℎ by means of a function 𝛿 , which maps each
grid feature xℎ

𝑖
into the 𝑖-th row of B as

B = softmax
(
𝛿 (Xℎ)

)
, (1)

where the softmax function guarantees the sum of each column
equals to one. We parametrize 𝛿 as a feedforward neural network.

Inspired by the Mincut theory [1, 30] that aims at partitioning
nodes into disjoint subsets by removing the minimum volume of
edges, we view each region as a cluster containing many grid cells
and regularize the assignment matrix by using a new loss. In other
words, the network weights can be jointly optimized by minimizing
the usual task-specific loss (e.g., MAE loss), as well as an unsuper-
vised Mincut loss L𝑚 composed of two terms:

L𝑚 = −Tr(B𝑇 Ã𝑔B)
Tr(B𝑇 D̃𝑔B)︸ ︷︷ ︸

L𝑐

+

 B𝑇B

B𝑇B

𝐹

− I𝑀√
𝑀

𝐹︸ ︷︷ ︸

L𝑜

, (2)

where ∥ · ∥𝐹 denotes the Frobenius norm; Tr is the trace of a matrix;
A𝑔 ∈ R𝑁×𝑁 is the adjacency matrix derived from the Euclidean
structure and Ã𝑔 is its normalization; D̃𝑔 is the degree matrix of
Ã𝑔 . I𝑀 = B̂𝑇 B̂ is a rescaled clustering matrix, where B̂ assigns
exactly 𝑁 /𝑀 grid cells to each region. L𝑐 ∈ [−1, 0] denotes the
consistency loss that evaluates the mincut given by B. Minimizing
L𝑐 enforces strongly connected grid cells to be grouped into the
same region, while the other term L𝑜 encourages the assignment
to be orthogonal and the regions to be of similar size (see proof in
Appendix D). Since the two terms in L𝑜 have unitary norm, it is
obvious that 0 ≤ L𝑜 ≤ 2. Hence, L𝑜 does not dominate over L𝑐 .

3.2.2 Space Conversion. Given the grid-cell features and the as-
signment matrix, we convert those grid-based embeddings to their
regional counterparts H ∈ R𝑀×𝐶′ that are more friendly to capture
global dependencies. Moreover, we need to find the connectivity
A𝑟 ∈ R𝑀×𝑀 between these regions. As people are capable of travel-
ing to remote places in a short time period (e.g., 30 minutes) in mod-
ern cities, we assume that all regions are mutually connected (i.e., a
complete digraph). Instead of using complex and time-consuming
operations, we implement the space conversion by

H = B⊤𝜙 (Xℎ), A𝑟 = B⊤Ã𝑔B, (3)

where we generate the features of each region by directly aggregat-
ing the features of the corresponding cells that belong to this region;
𝜙 is a dense layer that compresses the dimension of embeddings
from𝐶 to𝐶 ′ to avoid heavy computation; A𝑟 is a symmetric matrix,
whose entry 𝑎𝑖,𝑖 is the total number of edges between the grid cells
in the region 𝑖 , while 𝑎𝑖, 𝑗 is the number of edges between region 𝑖
and 𝑗 . It can be seen easily that A𝑟 comes from the numerator of
𝐿𝑐 in Eq. 2, thus, the trace maximization yields regions with many
internal grid-cell connections and weakly connected to each other.

3.2.3 Message Passing between Regions. After space conversion,
we obtain a new graph where each node represents an irregular
region and each edge models the interaction among two regions. To
model the inter-region relationships, a natural idea is to use Graph
Convolutional Networks (GCN) [13] to perform message passing
between these regions based on A𝑟 . However, we notice that A𝑟

is a diagonal-dominant matrix, describing a graph with self-loops
much stronger than any other connection. As self-loops usually
hamper the propagation across adjacent nodes in message passing

Fine-Grained Urban Flow Prediction WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

schemes [13], we compute a new adjacency matrix Ã𝑟 ∈ R𝑀×𝑀 by
zeroing the diagonal and applying degree normalization:

Â𝑟 = A𝑟 − diag
(
A𝑟

)
; Ã𝑟 = D̂− 1

2 Â𝑟 D̂− 1
2 (4)

where D̂ denotes the degree matrix of Â𝑟 . Then, we employ a two-
layer GCN for global relation inference on the region graph to
generate the new region features H′ ∈ R𝑀×𝐶′ as

H′ = 𝑓𝐺𝐶𝑁 (Ã𝑟 ,H) = Ã𝑟 ReLU
(
Ã𝑟HW1

)
W2 (5)

where W1,W2 ∈ R𝐶′×𝐶′ are learnable weights. By this, the regional
information are passed through the graph to generate a global-
aware representation for each region.

3.2.4 Reverse projection. Once we obtain the global-aware features
H′ from region space, the next step is to project them back to the
original space. Similar to the step of space conversion, we can also
use an assignment matrix for the reverse projection. Instead of
using extra operations and introducing additional overhead, we
reuse the B ∈ R𝑁×𝑀 to project the region features back to grid-cell
features by a linear combination as follows:

X𝑔 = B𝜃 (H′), (6)

where 𝜃 is a dense layer for dimension conversion from𝐶 ′ to𝐶 . The
new grid-cell features X𝑔 ∈ R𝑁×𝐶 are generated by aggregating
their related region features, which is achieved by multiplying
matrix 𝜃 (H′). Until now, we have performed a grid-region-grid
transformation to learn the global-aware features in this module.

3.2.5 Reshape & Predict. Lastly, the global-aware discriminative
features X𝑔 are reshaped to R𝐶×𝐻×𝑊 such that the output dimen-
sion can match the input dimension Xℎ forming a residual path,
and fed to a convolution layer to produce the final predictions X̂𝑡 .
In practice, the matrix multiplication procedures for projection and
reverse projection are both implemented by an 1×1 convolution
layer since it supports high-speed parallelization. When computing
the Mincut loss, we need to store and employ two matrices (i.e.,
Ã𝑔 and D̃𝑔) with shape 𝑁 by 𝑁 , which dramatically increases the
memory cost and computational cost in devices (such as a GPU).
To overcome this problem, we notice these two matrices are sparse
and thereby implement Eq. 2 based on sparse matrix multiplication.

3.3 Meta Learner
As mentioned before, existing works like DeepST [41] and ST-
ResNet [40] use fully-connected layers to encode the external fac-
tors for urban flow prediction. However, as the granularity becomes
larger to a fine-grained setting, it will induce massive parameters
in the last layer proportional to the number of grid cells (𝑁). In
addition, they do not consider the influence of land features on
the traffic movements. To this end, DeepSTN+ [20] presents a new
approach to jointly consider the POIs information as well as the
external factors. They notice that POIs have varied temporal influ-
ences on flow maps, they thereby transform the external factors to
influence the strength of POI. However, the external factors are ap-
plied to weight on different channels (i.e., categories) of POIs while
ignoring the significant difference of how external factors impact
different cells. Thus, how to learn the cell-specific responses to the
external factors in the fine-grained settings remains a challenge.

(a) Food & Beverage (b) level-1 roads (c) level-2 roads

lf

External Factors

Land FeaturesPOIs & RNs

N

reshape

lf
DExternal Features

L Om

N

R2-layer
MLP

reshape

Matmul

Grid-cell
Embeddings

Parameter
Embeddings

Output

D

Figure 6: Pipeline of the proposed Meta Learner.

In general, grid cells with similar land functions will have similar
responses to the external factors. Based on this observation, we
design a novel Meta Learner to produce cell-specific responses to
the external factors based on Matrix Factorization. Given the land
features P ∈ R𝑙𝑓 ×𝐻×𝑊 and external features e𝑡 ∈ R𝑙𝑒 , we aim to
compute the response of each grid cell by

O𝑚 = 𝑓𝑀𝐿 (P, e𝑡) ∈ R𝐷×𝐻×𝑊 . (7)

Then, the output O𝑚 will be early fused with the temporal infor-
mation (O𝑐 , O𝑝 , O𝑞) and fed to the backbone network.

Without introducing a large number of parameters in 𝑓𝑀𝐿 , we
can reshape this target tensor as R𝑁×𝐷 and decompose it into
two matrices L ∈ R𝑁×𝑘 and R ∈ R𝑘×𝐷 , which satisfies O𝑚 = LR.
Motivated by a very recent study that learns specific predictors for
each grid cell [27], we can view L as the grid-cell embeddings while
R represents the parameter embeddings generated using e𝑡 as meta
knowledge. For simplicity, L is reshaped from the land features
P, where 𝑙𝑓 = 𝑘 at this time. In this way, we can guarantee that
cells with similar land functions will have similar responses to the
external factors. For the parameter embeddings R, we aim to make
it change over time and influenced by the external factors, such
as weather and time. Inspired by the meta learning approach for
traffic prediction [27], we can use a two-layer MLP to generate it:
the first layer transforms the external features from 𝑙𝑒 to 𝑙𝑑 , and
the second layer further converts the dimension to be 𝑙𝑓 𝐷 . Finally,
we reshape the output and assign it to R.

To help better understand the meta learner, Figure 6 further
describes its whole pipeline. Compared to external components in
ST-ResNet, as our meta learner is independent of the map resolution
(only 𝑙𝑒𝑙𝑑 + 𝑙𝑑𝑙𝑓 𝐷 parameters, which can be set far less than 𝑁),
it is much more lightweight and practical in fine-grained settings.
In contrast to DeepSTN+, our module can capture the cell-specific
responses to the external factors and learn better representations.

3.4 Optimization
Our method provides an end-to-end solution from historical ob-
servations to fine-grained predictions, which is differentiable ev-
erywhere. Hence, the network can be trained through the back-
propagation strategy and the Adam optimizer. To train our model,
we aim to minimize the following loss function with two terms:

L = L𝑀𝐴𝐸 + 𝛼L𝑚 . (8)

Here, 𝛼 is a trade-off between these two losses while L𝑀𝐴𝐸 is the
pixel-wise Mean Absolute Error (MAE) for evaluating the errors
between our prediction X̂𝑡 and the corresponding ground truth X𝑡 .

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liang et al.

4 EVALUATION
4.1 Experimental Settings
4.1.1 Datasets. We conduct our experiments on two real-world
datasets, where TaxiBJ+ is the fine-grained version of TaxiBJ re-
leased by [41] and HappyValley is from [19].
• TaxiBJ+: This dataset sources from the trajectories of over 30,000
taxicabs in Beijing for four different time periods (i.e., P1 to P4).
Since the taxi distributions and numbers are different in these
four time periods, we evaluate our method over these periods
separately. As shown in Figure 1(b), we crop the area of interest
which contains most traffics, and rasterize this area into 128×128
uniform grid cells. The size of each cell is 150m×150m, which is
much more fine-grained than that of the popular datasets like
TaxiBJ [41] and MobileBJ [20]. We follow the previous studies
[40, 41] to map the GPS points into different grid cells, each of
which computes inflow and outflow volumes per half hour.

• HappyValley: It provides open access for the public to observe
the hourly human density of a popular theme park in Beijing,
allowing us to examine the model capacity in a much smaller
area with a higher rate of global transitions. We partition the
area into 50×100 grid cells, each of which is around 10m×10m.
The human density is more distributed than the taxi flows in
TaxiBJ+ since there are several popular play facilities with far
more flows than their nearby regions.

The details of them are available in Table 1. We use the observations
from the previous 12 time steps to predict the next step, and set
the frames of period and trend patterns as 3. In each period of
TaxiBJ+ and HappyValley, we recruit the first 70% as the training
set, the next 20% as the validation set and the rest for the test set
according to chronological order. We have removed the labels with
all entries equal to zero. Besides, we use zero matrices as history for
those items without sufficient precedent records. To speed up the
convergence of STRN, a unique data normalization method [19, 25]
for urban flow data is employed in our study.

Table 1: Description of the two datasets.

Dataset TaxiBJ+ HappyValley
Data type Taxi trip Human flow
Resolution 128×128 50×100
Grid cell size 150m×150m 10m×10m
Channels (𝐾) 2 (inflow and outflow) 1 (population)
Sampling rate 30 minutes 1 hour

Time span

P1: 07/01/2013-10/31/2013
P2: 02/01/2014-06/30/2014 01/01/2018-
P3: 03/01/2015-06/30/2015 10/31/2018
P4: 11/01/2015-03/31/2016

External factors (meteorology, time and event)
Weather 16 types 8 types
Temperature/℃ [-24.6,41.0] [-24.6,41.0]
Wind speed/mph [0,48.6] [0,48.6]
holidays 41 33
Ticket prize/RMB / [29.9,260]
Land features (POIs, road networks)
of POIs 651,016 (20 types) /
features of RNs 5 /

4.1.2 Baselines. We compare STRN with the following baselines:
• ARIMA: A well-known time series model.
• VAR: Vector Auto-Regressive (VAR) can capture the pairwise
relationships among grid cells. To avoid parameter explosion, we
use the history of nearby 7×7 cells as input.

• LSTM [9]: Long Short-Term Memory is a variant of vanilla RNN
for learning long-term temporal dependencies.

• DeepST [41]: The first deep learning-based prediction model for
grid-based spatio-Temporal data.

• ST-ResNet [40]: A ResNet-based method, which shows promis-
ing results on citywide crowd flows prediction.

• ST-3DNet [6]: It uses 3D convolution to capture the correlation
of traffic data in both spatial and temporal dimensions.

• ConvLSTM [31]: It extends LSTM to have convolutional struc-
tures to better capture spatio-temporal correlations.

• STDN [36]: It employs CNNs and LSTMs to capture spatial and
temporal correlations separately, and an attention mechanism to
model long-term periodic temporal shifting.

• DeepSTN+ [20]: The state-of-the-art method for urban flow pre-
diction, which can capture long-term spatial dependencies as
well as the effect of land functions.
We test different hyperparameters for them all, finding the best

setting for each over the two datasets separately. For example, for
LSTM and ConvLSTM, we tune the hidden dimensionality and
different numbers of layers. Notice that the original design of Deep-
STN+ would introduce too many parameters (over 10G) when it is
directly applied to our fine-grained datasets. To avoid the parameter
explosion, we set the pooling rate 32 for DeepSTN+.

4.1.3 Training Details & Hyperparameters. We implement STRN
as well as the baselines by PyTorch 1.1 with one RTX 2080 Ti. The
learning rate is halved every 50 epochs, starting from 0.001, and the
batch size is 16. In the backbone network, the convolution layers
and SE blocks use 𝐶 = {32, 64, 96, 128} filters with kernel size 3×3.
For the number of stacked SE blocks, we conduct a grid search over
𝐹 = {3, 6, 9, 12}. Moreover, we set 𝐶 ′ = 0.5𝐶 for feature reduction
in the GloNet and tune the region number𝑀 . In the meta learner,
the two fully-connected layers have 𝑙𝑑 = 32 and 𝑙𝑓 = 25 hidden
units respectively and the embedding length 𝐷 is 64.

#Params

Figure 7: Model performance on TaxiBJ+ vs. # of parameters.
The x-axis and y-axis indicate the average MAE and RMSE
over the four time spans of TaxiBJ+. The color of each point
denotes the number of parameters. It is worth noting that
the number of parameters in DeepSTN+ largely exceeds 5M.

Fine-Grained Urban Flow Prediction WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 2: Model comparison on TaxiBJ+, where the notation ∆ indicates the reduction of MAE compared with DeepSTN+.

Method #Param P1 P2 P3 P4
MAE ∆ RMSE MAE ∆ RMSE MAE ∆ RMSE MAE ∆ RMSE

ARIMA <0.01M 2.46 +24.2% 5.37 2.91 +28.8% 6.34 3.02 +26.4% 6.55 2.08 +19.5% 4.47
VAR <0.01M 2.41 +21.7% 5.21 2.84 +25.7% 6.18 2.92 +22.2% 6.38 2.06 +18.4% 4.35
LSTM 0.07M 2.27 +14.6% 5.04 2.68 +18.6% 6.03 2.78 +16.3% 6.21 1.88 +8.0% 4.20
ConvLSTM 3.45M 2.03 +2.5% 4.47 2.33 +3.1% 5.15 2.45 +2.5% 5.43 1.76 +1.1% 3.94
DeepST 0.46M 2.21 +11.6% 4.68 2.53 +11.9% 5.41 2.57 +7.5% 5.59 1.92 +10.3% 4.05
ST-ResNet 2.39M 2.14 +8.1% 4.58 2.48 +9.7% 5.29 2.61 +9.2% 5.55 1.83 +5.2% 3.88
ST-3DNet 0.89M 2.16 +9.1% 4.56 2.30 +1.8% 4.99 2.38 -0.4% 5.23 1.95 +12.1% 4.20
STDN 6.36M 2.08 +5.1% 4.40 2.32 +2.7% 4.98 2.44 +2.1% 5.23 1.85 +6.3% 3.85
DeepSTN+ 0.27G 1.98 - 4.24 2.26 - 4.87 2.39 - 5.15 1.74 - 3.75
STRN 0.88M 1.82 -8.1% 4.13 2.10 -7.1% 4.71 2.19 -8.4% 5.01 1.54 -11.5% 3.61

4.1.4 Evaluation Metrics. We measure model performances by two
common metrics: Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). Smaller metrics indicate higher accuracy.
For each dataset, we run each method 5 times and report the mean
errors of each approach.

4.2 Results on TaxiBJ+
4.2.1 Model Comparison. Wepresent the experimental results over
TaxiBJ+ in Table 2. In particular, we report the result of STRN
with 𝐹 = 9, 𝐶 = 64, 𝑀 = 100 and 𝛼 = 5𝑒 − 3 as our default
setting. Our STRN significantly outperforms all competing baselines
in terms of RMSE and MAE over all time periods according to
the Students T-test at level 0.01. Compared to the state-of-the-art
method (DeepSTN+), our approach reduces MAE by approximately
7.1% to 11.5% in each period, while using only 0.33% of the number
of parameters required in DeepSTN+. The reasons are two-fold.
First, our method captures the global spatial dependencies in a
more efficient way, i.e., by GloNet structure. Second, STRN captures
the cell-specific response to the external factors. Compared to ST-
3DNet, our model surpasses it by a large margin while enjoying a
similar parameter size. From Table 2, we can also have the following
observations. ARIMAprovides a lower bound ofmodel performance.
The results of VAR is much worse than the deep models due to its
lower model capacity. Taking advantage of the RNN architecture,
ConvLSTM and STDN slightly advance the previous state-of-the-
art including DeepST, ST-ResNet and ST-3DNet. However, they
both have overlooked the global spatial dependencies as well as the
land functions, leading to the inferiority against DeepSTN+ and
STRN. To further show the progress of our model, we also analyze
the average performance of each model against the parameter size
over TaxiBJ+ in Figure 7, which clearly shows that our method
wins in both lightweights and effectiveness. Next, we study the
effectiveness of each model component over P1 of TaxiBJ+.

4.2.2 Effects of Backbone Network. In general, a strong backbone
network can significantly improve the capability of feature extrac-
tion. Here, we compare STRN with its variants using the residual
block (ResBlock) [7] or the standrard convolution block (ConvBlock)
as the backbone. We also attempt different numbers of these blocks
(𝐹) and filters (𝐶) to study the effects of them. Specifically, we set
𝐶 = 64 to explore the effects of 𝐹 and let 𝐹 = 9 to study the effects

of 𝐶 . As depicted in Figure 8(a)-(b), SEBlock and ResBlock outper-
form ConvBlock by a very large margin in all cases, which demon-
strates the power of residual learning. Since SEBlock considers the
channel-wise information in the feature maps, it reduces MAE by
approximately 0.05 compared to ResBlock. Figure 8(a) shows that
our model achieves the best performance in test set when 𝐹 = 9.
Though increasing 𝐶 to 128 can bring slight improvement accord-
ing to Figure 8(b), it will induce much higher computational costs.
Thus, we choose 𝐶 = 64 as our default setting.

4.2.3 Effects of GloNet. Table 3 shows the comparison between
STRN and its variants over P1. It can be seen easily that the integra-
tion of GloNet improves the model performance from 1.93 to 1.82
while only using very few extra parameters (0.05M), since GloNet
enables our model to capture global spatial dependencies more effi-
ciently. Moreover, GloNet with dynamic region partition (Mincut-
based) can outperform static partition (road-network-based in Fig-
ure 3(b)) according to the comparison between STRN and STRN
w/o dynamic. There are two hyperparameters in this module: the
number of regions𝑀 and the parameter 𝛼 for balancing L𝑀𝐴𝐸 and
L𝑚 . As shown in Figure 8(c), the performance degrades when𝑀 is
small such as 10 and 50, since it is hard to aggregate over ten thou-
sand grid cells into such few regions. We also notice that increasing

(a) Number of blocks vs. MAE (b) Number of filters vs. MAE

(c) Number of regions vs. MAE (d) Trade-off parameter vs. MAE

Figure 8: Effects of hyperparameters in STRN over P1.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liang et al.

Table 3: Results of different variants over P1 of TaxiBJ+,
where ML denotes Meta Learner and w/o indicates without;
∆ indicates the reduction of MAE compared with Backbone.

Variant #Param MAE ∆ RMSE
Backbone 0.82M 1.97 - 4.22
STRN w/o GloNet 0.83M 1.93 -2.0% 4.20
STRN w/o ML 0.87M 1.85 -6.1% 4.15
STRN w/o dynamic 0.88M 1.87 -5.1% 4.16
STRN 0.88M 1.82 -7.6% 4.13

𝑀 does not give significant gain and instead slow down the training
phase. Therefore, we select𝑀 = 100 in our STRN. Several examples
of the partition results at different epochs are shown in Figure 9.
At the beginning of the training phase, most of the grid cells are
clustered into one region like Figure 9(a). After training, we can
obtain a discriminative partition, see Figure 9(b). In contrast, we
also present a counterpart when𝑀 = 10 in Figure 9(c).

(a) Results at epoch 1
(M = 100)

(b) Results at epoch 150
(M = 100)

(c) Results at epoch 150
(M = 10)

Figure 9: Examples of region partition, where different col-
ors indicate the regions with highest likelihood to each cell.

To study the effects of 𝛼 , we try different scales of 𝛼 from 1e-4
to 1e-1. We also set 𝛼 = 0 (i.e., no Mincut loss) for comparison.
The results are given in Figure 8(d), from which we can see that
increasing 𝛼 to a large level (over 0.05) dilutes the effect of L𝑀𝐴𝐸 ,
leading to more predictive biases. Using very small 𝛼 also degrades
the performances as it cannot effectively supervise the region par-
tition. Besides, we achieve the lowest MAE when 𝛼 is around 1e-3.
Note that we choose 𝛼 = 5𝑒 − 3 as our default setting due to its best
performance on the validation set rather than the test set.

4.2.4 Effects of Meta Learner. As a practical component of STRN,
this module provides additional prior knowledge (external factors
and land functions) to boost the predictive performance. The com-
parison between STRN and STRN w/o ML in Table 3 shows the
effectiveness of Meta Learner (ML). To further investigate it, we also
compare it with the modules for similar targets from other models.
As depicted in Figure 10(a), “Ext” is the variant of STRN replacing
ML by the external module from ST-ResNet, and “Semantic+” is
the variant of STRN using the semantic module from DeepSTN+.
Besides, “None” denotes STRN w/o ML as a baseline. Compared to
None, Ext degrades the model performance since it suffers from
overfitting problems caused by its large parameter size in our fine-
grained settings. Semantic+ can bring slight improvements but less
than our Meta Learner because Semantic+ has overlooked the cell-
specific response to the external factors. Moreover, Figure 10(b)
presents the validation curves during the training phase over P1.

Remarkably, Meta Learner not only accelerates the training pro-
cess but also makes it more stable. Specifically, STRN converges
at iteration 40700 (epoch 201) while STRN w/o ML early-stops at
iteration 50900 (epoch 250). The reason is that our Meta Learner
successfully encodes the external factors and land functions and
provides them as prior knowledge of the model.

(b) The curves of validation MAE(a) Meta Learner vs. Other models

Converged

Converged

Figure 10: Effects of Meta Learner over P1 of TaxiBJ+.

4.3 Results on HappyValley
We also evaluate STRN on HappyValley with skewed human flow
distribution, where only a few grid cells with popular play facilities
contain dense human flow. Since the samples in HappyValley are
fewer than TaxiBJ+, we reduce the network depth for each model to
avoid overfitting. Noticing that there are no available land features
in this dataset, we remove the corresponding components of Deep-
STN+ and STRN. Table 4 presents the results over HappyValley,
from which we know that: 1) STRN with such few parameters can
present the state-of-the-art performance over both metrics, which
reveals that our model is practical in real-world systems. It brings
around 7.6% improvements against DeepSTN+ in terms of MAE,
where the improvements are significant according to the Student T-
test at level 0.01. 2) The fact that STRN and DeepSTN+ significantly
outperform ST-ResNet over MAE verifies the necessity of captur-
ing the global relations in such a small area. The enhancement of
STRN beyond its variant (w/o GloNet) further verifies this point.
3) Unlike the results in TaxiBJ, ConvLSTM performs much better
on MAE and slightly better on RMSE than most of the baselines,
which validates the importance of the LSTM structure for explicitly
modeling the temporal patterns. 4) Though CNN-based baselines
(DeepST, ST-ResNet and ST-3DNet) achieve promising results on
RMSE, they perform much poorer in terms of MAE, demonstrating
the skewed distribution of this dataset.

Table 4: Results on HappyValley dataset. We omit ARIMA,
VAR and LSTM due to their poor performances.

Model #Param MAE ∆ RMSE
DeepST 0.26M 2.21 +10.6% 7.98
ST-ResNet 0.63M 2.20 +10.1% 7.91
ST-3DNet 0.52M 2.16 +8.1% 7.95
ConvLSTM 0.63M 1.98 -1.0% 7.86
STDN 0.97M 2.05 +2.5% 7.89
DeepSTN+ 15.69M 2.00 - 7.88
STRN w/o GloNet 0.36M 1.97 -1.5% 7.90
STRN 0.37M 1.85 -7.6% 7.80

Fine-Grained Urban Flow Prediction WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

5 PRACTICALITY
To further verify its practicality, we deploy a cloud-based system
called UrbanFlow3.0 for monitoring the real-time urban flows and
forecasting future flows in Beijing. Specifically, it supports us to
predict the urban flows at a fine-grained level by using our STRN
as the bedrock model. Figure 11(a) presents the main interface of
it. Each grid cell denotes an area of interest with 150m×150m size.
The color of each cell indicates its flow density, where “red” means
dense and “green” means sparse. A user can click any grid cell on
the interface to see the flow details like Figure 11(b), including the
historical ground truth as well as the previous and future prediction
results. Furthermore, users can watch the movie-style heatmaps
such as Figure 11(c) by clicking the “play button” at the bottom left
of the main interface in Figure 11(a). In summary, the benefits from
application layers lie in two aspects. First, our model is scalable
to high-resolution flow data. For example, as the data granularity
increases to 256*256, DeepSTN+ will induce 40G parameters and
is no longer feasible in online deployment, but our model still
works well. Second, the lightweight property is crucial to mobile
deployment, e.g., our model can be easily integrated into mobile
apps such as Google Maps for urban flow prediction.

(c) Flow heatmap in the history and in future

Inflow

(a) Interface of our system (b) Inflow/Outflow of a cell

Historical Flow Predicted Flow

History
prediction

Outflow

Ground
truth

Future
Prediction

Figure 11: Interface of UrbanFlow3.0.

6 RELATEDWORK
6.1 Grid-based Urban Flow Prediction
With recent advances in ubiquitous devices [33], urban flow pre-
diction has been an appealing domain. Several pioneering studies
[3, 32] were made to forecast massive individual mobility traces.
Apart from analyzing mobility on an individual level, many data-
driven models were proposed for city-scale traffic prediction by
aggregating flows into corresponding regions [8, 16]. However,
these models highly depend on hand-crafted features, which re-
quire extensive expert efforts. Thereafter, researchers started to use
deep learning for urban flow prediction. [41] presented the first
CNN-based architecture to forecast the urban flows. Inspired by

residual learning [7], they further presented ST-ResNet [40] to col-
lectively predict inflow and outflow of crowds in every city grid cell.
However, ST-ResNet simply treats information in adjacent time in-
tervals as multiple channels, losing the temporal information in the
intermediate layers. To tackle this issue, [6] first presented a frame-
work based on 3D convolution to jointly model the ST correlations.
Besides, many studies [21–23, 31, 36, 37] combined the CNNs with
RNNs to capture the dynamic ST dependencies. In addition, [4, 42]
exploited the flow transitions between regions as auxiliary features
to boost the predictive performance. One problem is that, these
studies are inefficient to capture the global spatial dependencies,
since they rely on large receptive fields achieved by stacking many
convolution layers. Therefore, [20] proposed DeepSTN+ to directly
model the relationships between two arbitrary grid cells, showing
state-of-the-art performances in urban flow prediction.

However, none of them can be directly applied to fine-grained
data as capturing long-range dependencies would incur a huge
increase in the network depth and parameters. Instead, our STRN
is able to capture the global dependencies at a much lower mem-
ory cost and provides superior performances. In addition, STRN
can capture the cell-specific responses to external factors in the
fine-grained settings. Besides, there are several studies that aim to
predict other types of ST data in a fine-grained level [28, 34].

6.2 Deep Learning for ST Prediction
Recently, deep learning models have been the dominant class of
spatio-temporal forecasting. For instance, CNNs have been widely
used as a basic building block for capturing spatial dependencies in
grid-based ST data, such as urban flows [5, 20, 40], abnormal events
[11, 12] and taxi demand [37]. Another paradigm is to use RNNs
and attention mechanisms to model the temporal dependencies
[18, 26, 36]. Recently, graph convolution networks (GCNs) [13] have
attracted many interests by virtue of its capability of modeling non-
euclidean structure. [15] devised a diffusion convolution to model
the spatial dependencies between traffic sensors and integrate it
with RNNs for traffic forecasting. Later works [35, 38] combined
GCNs with temporal convolutions for parallel training. However,
GCNs cannot be directly applied to grid-based urban flow prediction
since there is no explicit graph structure. In this study, we use GCNs
to perform global relation inference in the region space.

6.3 Relation Networks
Relation networks enable us to resolve complexities within spatio-
temporal data by capturing and exploiting the underlying semantic
structures, which overcomes the pitfalls of short-range dependen-
cies in traditional CNNs. In this strand, [29] presented the first
effort in modeling inter-region relations in images using a simple
relation network. In the temporal domain, [44] captured frame-
level correlations in video streams by a temporal relation network.
Moving from the limited competence of processing only regular
data (i.e., pixel-level), recently, [2, 14] developed novel relation net-
work modules to reason on semantic-level relations by employing
a latent semantic graph structure. Motivated by the ubiquitous de-
pendencies between regions in ST domains [24], we present the
first attempt to infer the relations between different urban locations
in both grid-cell and region level based on the Mincut theory.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liang et al.

7 CONCLUSION AND FUTUREWORK
In this paper, we present a Spatio-Temporal Relation Network for
fine-grained urban flow prediction. Our model can jointly learn spa-
tial (local and global) and temporal (CPT) dependencies as well as
external relations (e.g. weather and POIs). Unlike previous methods,
we avoid to model all inefficient operations (e.g., for cell-specific
responses or pairwise transitions), which allows us immune to the
change of granularity and thus avoid parameter blowing up. We
evaluate our model on two real-world fine-grained datasets, where
our model can achieve state-of-the-art performances while using
very few parameters. In the future, we plan to extend our flow
prediction system to an online learning framework.

ACKNOWLEDGMENTS
This study is mainly supported by Singapore Ministry of Educa-
tion Academic Research Fund Tier 2 under MOE’s official grant
number MOE2018-T2-1-103, also supported by the National Key
R&D Program of China (2019YFB2103201), the NSFC (No. 62076191,
72061127001), and the Beijing Nova Program (Z201100006820053).
We thank all reviewers for their advice in improving this paper.

REFERENCES
[1] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2019. Mincut

pooling in graph neural networks. arXiv preprint arXiv:1907.00481 (2019).
[2] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Yan Shuicheng, Jiashi Feng, and

Yannis Kalantidis. 2019. Graph-based global reasoning networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.

[3] Zipei Fan, Xuan Song, Ryosuke Shibasaki, and Ryutaro Adachi. 2015. CityMo-
mentum: an online approach for crowd behavior prediction at a citywide level.
In UbiComp. 559–569.

[4] Jie Feng, Ziqian Lin, Tong Xia, Funing Sun, Diansheng Guo, and Yong Li. [n.d.]. A
Sequential Convolution Network for Population Flow Prediction with Explicitly
Correlation Modelling. In IJCAI.

[5] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic
Flow Forecasting. In AAAI.

[6] Shengnan Guo, Youfang Lin, Shijie Li, Zhaoming Chen, and Huaiyu Wan. 2019.
Deep Spatial-Temporal 3D Convolutional Neural Networks for Traffic Data Fore-
casting. IEEE Transactions on Intelligent Transportation Systems (2019).

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[8] Minh X Hoang, Yu Zheng, and Ambuj K Singh. 2016. FCCF: forecasting citywide
crowd flows based on big data. In SIGSPATIAL. 1–10.

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[10] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[11] ChaoHuang, Chuxu Zhang, Jiashu Zhao, XianWu, Dawei Yin, and Nitesh Chawla.
2019. Mist: A multiview and multimodal spatial-temporal learning framework
for citywide abnormal event forecasting. In The World Wide Web Conference.
717–728.

[12] Chao Huang, Junbo Zhang, Yu Zheng, and Nitesh V Chawla. 2018. DeepCrime:
Attentive hierarchical recurrent networks for crime prediction. In ACM Interna-
tional Conference on Information and Knowledge Management. 1423–1432.

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Yin Li and Abhinav Gupta. 2018. Beyond grids: Learning graph representations
for visual recognition. In Advances in Neural Information Processing Systems.

[15] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations.

[16] Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. 2015. Traffic prediction in a
bike-sharing system. In SIGSPATIAL.

[17] Yuxuan Liang, Zhongyuan Jiang, and Yu Zheng. 2017. Inferring traffic cascading
patterns. In SIGSPATIAL. 1–10.

[18] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. 2018. Geo-
MAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction.
In IJCAI.

[19] Yuxuan Liang, Kun Ouyang, Lin Jing, Sijie Ruan, Ye Liu, Junbo Zhang, David S.
Rosenblum, and Yu Zheng. 2019. UrbanFM: Inferring Fine-Grained Urban Flows.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 3132–3142.

[20] Ziqian Lin, Jie Feng, Ziyang Lu, Yong Li, and Depeng Jin. 2019. Deepstn+: Context-
aware spatial-temporal neural network for crowd flow prediction in metropolis.
In AAAI, Vol. 33. 1020–1027.

[21] Lingbo Liu, Zhilin Qiu, Guanbin Li, Qing Wang, Wanli Ouyang, and Liang Lin.
2019. Contextualized spatial–temporal network for taxi origin-destination de-
mand prediction. IEEE Transactions on Intelligent Transportation Systems 20, 10
(2019), 3875–3887.

[22] Lingbo Liu, Ruimao Zhang, Jiefeng Peng, Guanbin Li, Bowen Du, and Liang Lin.
2018. Attentive crowd flowmachines. In Proceedings of the 26th ACM international
conference on Multimedia. 1553–1561.

[23] Lingbo Liu, Jiajie Zhen, Guanbin Li, Geng Zhan, Zhaocheng He, Bowen Du, and
Liang Lin. 2020. Dynamic spatial-temporal representation learning for traffic
flow prediction. IEEE Transactions on Intelligent Transportation Systems (2020).

[24] Philippe Muller. 2002. Topological spatio–temporal reasoning and representation.
Computational Intelligence 18, 3 (2002), 420–450.

[25] K. Ouyang, Y. Liang, Y. Liu, Z. Tong, S. Ruan, D. Rosenblum, and Y. Zheng. 2020.
Fine-Grained Urban Flow Inference. IEEE Transactions on Knowledge and Data
Engineering (2020), 1–1.

[26] Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang.
2019. Urban traffic prediction from spatio-temporal data using deepmeta learning.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1720–1730.

[27] Zheyi Pan, Zhaoyuan Wang, Weifeng Wang, Yong Yu, Junbo Zhang, and Yu
Zheng. 2019. Matrix Factorization for Spatio-Temporal Neural Networks with
Applications to Urban Flow Prediction. In CIKM. 2683–2691.

[28] Zhongang Qi, Tianchun Wang, Guojie Song, Weisong Hu, Xi Li, and Zhongfei
Zhang. 2018. Deep air learning: Interpolation, prediction, and feature analysis of
fine-grained air quality. IEEE Transactions on Knowledge and Data Engineering
30, 12 (2018), 2285–2297.

[29] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. 2017. A simple neural network
module for relational reasoning. In NeurIPS. 4967–4976.

[30] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888–
905.

[31] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. In Advances in neural information processing
systems. 802–810.

[32] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, and Ryosuke Shibasaki. 2014.
Prediction of human emergency behavior and their mobility following large-
scale disaster. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. 5–14.

[33] My T Thai, Weili Wu, and Hui Xiong. 2016. Big Data in Complex and Social
Networks. CRC Press.

[34] Xian Wu, Chao Huang, Chuxu Zhang, and Nitesh V Chawla. 2020. Hierarchically
Structured Transformer Networks for Fine-Grained Spatial Event Forecasting. In
Proceedings of The Web Conference 2020. 2320–2330.

[35] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAI.

[36] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019.
Revisiting spatial-temporal similarity: A deep learning framework for traffic
prediction. In AAAI, Vol. 33. 5668–5675.

[37] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,
Jieping Ye, and Li Zhenhui. 2018. Deep Multi-View Spatial-Temporal Network
for Taxi Demand Prediction. In AAAI.

[38] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal Graph Con-
volutional Networks: A Deep Learning Framework for Traffic Forecasting. In
IJCAI.

[39] Fisher Yu and Vladlen Koltun. 2015. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122 (2015).

[40] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction. In AAAI. 1655–1661.

[41] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-based
prediction model for spatio-temporal data. In SIGSPATIAL. 1–4.

[42] Junbo Zhang, Yu Zheng, Junkai Sun, and Dekang Qi. 2019. Flow prediction in
spatio-temporal networks based on multitask deep learning. IEEE Transactions
on Knowledge and Data Engineering (2019).

[43] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing:
concepts, methodologies, and applications. ACM Transactions on Intelligent
Systems and Technology (TIST) 5, 3 (2014), 1–55.

[44] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. 2018. Temporal
relational reasoning in videos. In Proceedings of the European Conference on
Computer Vision (ECCV). 803–818.

Fine-Grained Urban Flow Prediction WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

A EFFECTS OF DILATION CONVOLUTION
To validate the effects of dilation convolution for capturing the
global spatial dependencies in fine-grained urban flow prediction,
we integrate the existing CNN-based methods (DeepST [41], ST-
ResNet [40] and ST-3DNet [6]) with it. Figure 12 presents the variant
comparison in terms of Root Mean Square Error (RMSE) on two
real-world datasets (the details of these datasets are provided in
Section 4.1.1), where base denotes the base model while base w/
DConv means integrating the dilation convolution. We can easily
observe that the integration of dilation convolution cannot bring
consistent improvements over both datasets.

4.30

4.40

4.50

4.60

4.70

Base w/
DConv

Base w/
DConv

Base w/
DConv

DeepST ST-ResNet ST-3DNet

7.86

7.89

7.92

7.95

7.98

Base w/
DConv

Base w/
DConv

Base w/
DConv

DeepST ST-ResNet ST-3DNet

(a) Results on P1 of TaxiBJ+ (b) Results on HappyValley

RM
SE

RM
SE

Figure 12: The effects of dilation convolution.

B DETAILS OF DATA PREPARATION
The urban flows in a grid cell is affected by recent time intervals,
both near and far. Thus, we use the CPT paradigm (closeness, period
and trend) [40] to consider the three types of temporal dependen-
cies. For a specific future time 𝑡 as the prediction target, we select
the corresponding recent, daily and weekly timesteps as the key
timesteps to construct the input sequences X𝑐 , X𝑝 and X𝑞 as:

X𝑐 =
[
X𝑡−𝑙𝑐 ,X𝑡−(𝑙𝑐−1) , · · · ,X𝑡−1

]
∈ R𝐾𝑙𝑐×𝐻×𝑊 ,

X𝑝 =

[
X𝑡−𝑙𝑝 ·𝑝 ,X𝑡−(𝑙𝑝−1) ·𝑝 , · · · ,X𝑡−𝑝

]
∈ R𝐾𝑙𝑝×𝐻×𝑊 ,

X𝑞 =

[
X𝑡−𝑙𝑞 ·𝑞,X𝑡−(𝑙𝑞−1) ·𝑞, · · · ,X𝑡−𝑞

]
∈ R𝐾𝑙𝑞×𝐻×𝑊 ,

where 𝑙𝑐 , 𝑙𝑝 , 𝑙𝑞 are the input length of closeness, period and trend
respectively. To better illustrate it, we have shown an example of
the input preprocessing in Figure 13.

(a) Residual blocks (ResBlock)

(b) Squeeze-and-Excitation (SE) blocks

R
es

B
lo

ck

P
oo

li
ng

D
en

se

D
en

se scalesigmoid

C
on

v

B
N

R
eL

U

C
on

v

B
N

(a) Local feature extraction module

(b) Squeeze-and-Excitation (SE) blocks

R
es

B
lo

ck

P
oo

lin
g

D
en

se

D
en

se scalesigmoid

C
on

v

S
E

 b
lc

ok

S
E

 b
lc

ok

S
E

 b
lc

ok

C
on

v

….

M blocks

H

W
C

H

C
W

H

W
C

H

C
W

time
RecentDailyWeekly

...

TR
M

Co
nv

Re
LU

SE
 B

lo
ck

SE
 B

lo
ck

SE
 B

lo
ck...

Local Feature Extraction

Co
nv

G
SR
M

Co
nv

Predicted resultL channels

H

W

Historical
Flows

Target

Inflows

Outflows

Meta Knowledge (c)

Jan 30, Wed.
9:00-9:30 am

Jan 30, Wed.
6:00-8:30 am

Jan 29, Tues.
9:00-9:30 am

Jan 28, Mon.
9:00-9:30 am

...
Jan 23, Wed.
9:00-9:30 am

Jan 16, Wed.
9:00-9:30 am

......
Time

lq lp

lc

Figure 13: An example of input construction.

Besides, we fetch the external factors e𝑡 as well as land features P.
The external factors can be classified into two groups: continuous
and categorical. Continuous features like humidity and temperature
can be directly concatenated to be a vector e𝑐𝑜𝑛𝑡 . Categorical features
like weather (e.g, sunny, rainy) and events are transformed into
low-dimensional embeddings by feeding them into different embed-
ding layers separately, and then concatenate those embeddings to
construct the categorical vector e𝑐𝑎𝑡𝑡 . Finally, we concatenate them
to obtain the external features at time interval 𝑡 as e𝑡 = [e𝑐𝑜𝑛𝑡 ; e𝑐𝑎𝑡𝑡].

C DETAILS OF BACKBONE NETWORK
Figure 14(a) presents the pipeline of backbone network as detailed
in Section 3.1. Figure 14(b) further shows the details of SE block,
which contains three steps: 1) a function 𝑓𝑅 for feature transforma-
tion; 2) a squeeze operation to squeeze global spatial information
into a channel descriptor; 3) an excitation operation to fully cap-
ture the channel-wise dependencies: it first computes the attention
coefficients over each channel via a feedforward network followed
by a sigmoid function, and then rescales the channels of original
inputs by these weights. In our study, 𝑓𝑅 is a residual block [7] and
the squeeze operation is implemented by global average pooling. In
summary, the SE-based backbone allows our model to learn better
representations for each grid cell locally within its receptive fields.

(a) Pipeline of the backbone network

(b) Squeeze-and-Excitation (SE) blocks

Excitation

W

H

C

H

W
C

W

H

C

fR

C
on

v

S
E

 b
lc

ok

S
E

 b
lc

ok

S
E

 b
lc

ok

C
on

v

….

F blocks

W

H

4D
W

H

C

Input: O Output: Xh

Figure 14: Pipeline of backbone network, where the number
of filters in each convolution layer and SE block is 𝐶.

D EXPLANATORY OF MINCUT LOSS
Here, we introduce the insight behind using Mincut theory to con-
duct region partition in our study. Recall that the unsupervised
Mincut loss L𝑚 is defined as:

L𝑚 = −Tr(B𝑇 Ã𝑔B)
Tr(B𝑇 D̃𝑔B)︸ ︷︷ ︸

L𝑐

+

 B𝑇B

B𝑇B

𝐹

− I𝑀√
𝑀

𝐹︸ ︷︷ ︸

L𝑜

,

L𝑐 ∈ [−1, 0] denotes the consistency loss that evaluates the mincut
given by B. Minimizing L𝑐 enforces strongly connected grid cells
to be grouped into the same region, since the denominator is a con-
stant and the inner product

〈
b𝑖 , b𝑗

〉
increases when 𝑎𝑔

𝑖,𝑗
is large. L𝑐

will reach its maximum 1 when the region assignments are orthog-
onal for each pair of connected cells. On the contrary, the minimum
occurs only if B𝑇 Ã𝑔B = B𝑇 D̃𝑔B. In other words, it happens when in
a graph with𝑀 disconnected components, the region assignments
are equal for all the grid cells in the same component and orthog-
onal to the region assignments of cells in different components.
However, minimizing L𝑐 may lead to incorrect or naive solutions.
For example, given a connected graph, a trivial yet optimal solution
is the one that assigns all grid cells to the same regions. To avoid
the degenerate solution by optimizing L𝑐 , the other term (i.e., the
orthogonality loss L𝑜) encourages the assignment to be orthogonal
and the regions to be of similar size.

	Abstract
	1 Introduction
	2 Formulation
	3 Methodology
	3.1 Backbone Network
	3.2 Global Relation Module
	3.3 Meta Learner
	3.4 Optimization

	4 Evaluation
	4.1 Experimental Settings
	4.2 Results on TaxiBJ+
	4.3 Results on HappyValley

	5 Practicality
	6 Related Work
	6.1 Grid-based Urban Flow Prediction
	6.2 Deep Learning for ST Prediction
	6.3 Relation Networks

	7 Conclusion and Future Work
	Acknowledgments
	References
	A Effects of Dilation Convolution
	B Details of Data Preparation
	C Details of Backbone Network
	D Explanatory of Mincut Loss

