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ABSTRACT 
This paper tries to answer two questions. First, how to infer real-
time air quality of any arbitrary location given environmental data 
and historical air quality data from very sparse monitoring locations. 
Second, if one needs to establish few new monitoring stations to 
improve the inference quality, how to determine the best locations 
for such purpose? The problems are challenging since for most of 
the locations (>99%) in a city we do not have any air quality data 
to train a model from. We design a semi-supervised inference 
model utilizing existing monitoring data together with heterogene-
ous city dynamics, including meteorology, human mobility, struc-
ture of road networks, and point of interests (POIs). We also pro-
pose an entropy-minimization model to suggest the best locations 
to establish new monitoring stations. We evaluate the proposed ap-
proach using Beijing air quality data, resulting in clear advantages 
over a series of state-of-the-art and commonly used methods. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications - Data min-
ing, Spatial databases and GIS; 

General Terms 
Algorithms, Management, Experimentation 

Keywords 
Air quality, city dynamics, sensor placement, location recommen-
dation, monitoring station, semi-supervised inference 

1. INTRODUCTION 
In recent years, people are increasingly concerned with urban air 
quality, such as the concentration of NO2, PM2.5, and PM10. Gov-
ernment agency has defined the Air Quality Index (AQI) to com-
municate to the public the pollution levels of the air quality. To 
measure AQI values, accurate air-quality monitoring stations are 
required. Unfortunately it is usually not feasible to establish such 
stations in many places. An air-quality monitoring station occupies 
a good amount of space, with non-trivial cost (about 200k USD for 
construction and 30k USD per year for maintenance) and labor ef-
forts. Solutions based on crowd sourcing and participatory sensing 
(e.g., using sensor-equipped mobile phones) might not be reliable, 
as only a very limited number of gas like CO2 are detectable by 
those equipment, and is not widely applicable to aerosols and other 
pollutants such as PM2.5, PM10, and NO2. The devices for detecting 
the latter pollutants are not portable and usually need a relatively 
long sensing period (e.g. 1~2 hours) before accurate measurement 
can be produced.  

Given the fact that it is costly to establish an air-quality monitoring 
station, highly demanded is a model that can recommend a suitable 
location for building such stations. In this paper, we especially want 
to answer a practical question: Given a set of existing air monitor-
ing stations, where to establish the next ones? This task is challeng-
ing in several aspects. Let’s elaborate them by first investigate some 
plausible solutions:  
(1) An immediate thought would be to establish the stations to 

maximize the coverage area. Such proposal makes more sense 
when the air-quality values are smooth. However, this might 
not be an ideal solution as research has shown that air quality 
values are affected by many factors such as weather, traffic, 
and land usage, which leads to geographically non-smooth 
values, thus can hardly be captured through the interpolation-
based approaches. For example, Figure 1 illustrates a real 
snapshot data of Beijing’s air-quality monitoring results. We 
can find that the AQI (i.e. green represents best, yellow is me-
dium, and red is worst) shown on this map is not smooth. For 
instance, although stations S12 and S14 are close to each other, 
their PM2.5 diverse a lot. We observe that over 35% of the 
monitored time, data of S12 and S14 have deviations higher than 
80 from the period 8/24/2012 to 5/2/2013. It might be caused 
by the fact that S12 is located in a business area with dense 
buildings and heavy traffic, while S14 is located at a scenic spot 
with a lake nearby. Thus, from the coverage point of view, 
establishing two near-by stations at S12 and S14 is not a good 
choice. However, it might not be a bad idea since S14’s values 
differ from those of S12 significantly.  

(2) Another reasonable solution is to choose locations whose air-
quality values are harder to be inferred based on data from the 
existing monitoring stations. To obtain the suitable unob-
served locations are the ones with larger margin of inference 
error, we need not only (a) a certain technique to accurately 
infer the air quality values of the unobserved locations but also 
(b) the ground truth data of all the unobserved locations. Re-
quirement (b) is not realistic since we cannot obtain the true 
air quality values of a location without a monitoring station.  

(3) A third proposal is to establish new stations at locations such 
that by doing so the inference capability of a given model can 
be boosted significantly. It seems to be a reasonable and prac-
tical idea since, after all, the establishment of monitoring sta-
tions is very sparse and we want to accurately infer the AQI 
values of the unobserved locations given the observed ones. 
However, it is hard to know ‘observation in which locations 
can best boost the inference accuracy of other locations’, since 
we do not really have any observation data about the candidate 
locations. 

As the above proposals all have their own limitations, we feel that 
(3) brings the most benefits since it not only reveals the AQI of the 
new observation spots but also boost the inference accuracy of 
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other unobserved locations, although it is very difficult to identify 
such spots given only monitoring data of few stations that are cur-
rently available (e.g. 22 in Beijing). To approximately achieve (3), 
we propose a two-stage framework. In the first stage, we try to cre-
ate an AQI inference mechanism that not only can infer the AQI 
values of any arbitrary unobserved location but also reveal the con-
fidence of its inference. Then in the 2nd stage we propose to estab-
lish new stations at the locations that can minimize the uncertainty 
of the inference model. Based on our proposal, by adding the ob-
served values of these new stations, the inference model is less un-
certain about the inferred values of the remaining locations without 
monitoring stations. The intuition is that although we cannot di-
rectly measure the improvement on inference accuracy due to lack 
of data, as long as we can minimize the uncertainty of a relatively 
accurate model, it is more likely to yield more accurate results. Our 
experiments confirm that minimizing the uncertainty of the model 
leads to a significant improvement on the inference quality.  

 

 

Figure 1. Our problem and application scenarios  
Thus, we are required to solve two tasks. First, it is necessary to 
design an accurate inference model that can infer the AQI1 of the 
unobserved locations. Second, we need some mechanism to deter-
mine a set of locations that, assuming their AQI values are known, 
can significantly reduce the uncertainty of the inference model. 
Both tasks are nontrivial and each has its own challenges. 
One typical solution for the first task is through interpolation. How-
ever, as have been discussed earlier it might not be an ideal solution 
since air quality values are not smooth at all. Another plausible so-
lution is to exploit a supervised learning approach to build a regres-
sion model for inference. Unfortunately it works poorly for missing 
records, and for locations that have no historical values previously. 
Finally, it is known that air quality is affected by many factors such 
as traffic, land usage and weather. A model that can exploit such 
information is desirable. Based on the above observations, this pa-
per proposes a semi-supervised learning framework to infer the air 
quality values of arbitrary unobserved locations in a city. The pro-
posed framework assumes the observed locations are very sparse 
(e.g. covers less than 1% in Beijing), and takes the aforementioned 
factors into consideration to infer the unobserved AQI values.  
Our 2nd task is to determine a set of k locations, which with their 
observed data, can reduce the uncertainty of the inference by the 
biggest margin. To handle this task, we first need a mechanism to 
determine the uncertainty of the model developed in the previous 

                                                                 
1 In this paper, AQI is considered as a real value to indicate the quality of 

air, and focus on PM2.5 and PM10. 

task. Then we need a method to predict how much uncertainty can 
be reduced given a new set of locations hat are previously unob-
served. Finally, we need an efficient search mechanism to find 
these k locations that can maximize their effect. To achieve this 
goal, we design a greedy-based entropy minimization (GEM) 
framework. The central idea of GEM lies in that we consider the 
entropy of the AQI distribution of every inferred location as the 
approximation of the model uncertainty for the location. Then an 
iterative process is designed to gradually determine a set of loca-
tions that jointly have better potential to reduce the entropy of the 
inferred locations. We show the overall framework in Figure 2. 

 
Figure 2. The proposed framework. 

The last challenge we are facing lies in the difficulty of performing 
an evaluation on the proposed model. Due to limited amount of 
ground truth available, we divide them into three parts. The first 
part is used as observed data for inference, the second part is treated 
as the candidate stations (unobserved) to be recommended, while 
the third part is used to evaluate adding which candidates can best 
improve the inference quality. The results show that our model can 
significantly outperform the competitors in both inference and rec-
ommendation tasks. 

2. DATA AND FEATURES 
We utilize real datasets collected from Beijing air-quality monitor-
ing stations. The datasets consist of four parts, as elaborated in the 
following. The statistics are shown in Table 1. 
(a) Air Quality Records. The data contains the real-valued AQIof 

two kinds of pollutants, PM2.5 and PM10, measured by ground-
based air-quality monitoring stations every hour. Note that 
there are missing values in the data, while in our model they are 
treated as unobserved instance to infer.  

(b) Meteorological Data. The previous study [18] has shown that 
the concentration of air pollutants is influenced by meteorology. 
For instance, high wind speed disperses the concentration of 
PM2.5, high humidity usually results in high concentration of 
pollutants, and high pressure generally would result in a better 
AQI, etc. Accordingly, we identify five features, temperature, 
humidity, barometer pressure, wind speed, and weather condi-
tion (categorized as cloudy, foggy, rainy, sunny, and snowy). 

S12 
 

S14 



The list of fine-grained meteorological data is collected hourly 
from a public website, http://aqicn.org/. For the locations with-
out observation stations, we use Google Weather to capture the 
meteorological data given latitude and longitude.  

(c) Point-of-Interests (POIs). The category of POIs and their den-
sity in a region indicate the land usage and the function of the 
region, which has high correlation to the air quality of the re-
gion (e.g. poor air quality might be associated with locations 
with many factories). We extract 12 POI features using a POI 
database from Microsoft Bing Maps of Beijing (Table 2). 

(d) Road Networks. The road network data is collected using Mi-
crosoft Bing Maps. It is known that air quality is strongly af-
fected by the traffic condition. We exploit the structure of a 
road network since it has strong correlation with the real traffic 
condition. Three features are identified for each grid: (1) total 
length of highways, (2) total length of other (low-level) road 
segments, and (3) the number of intersections in the grid’s re-
gion. 

Table 1. Statistics of the Beijing data. 
Data Sources Statistics 

POI 2012 Q3 272,109 

Road Network 

# of road segments 162,246 
Highways length 1,497km 

Roads 18,525km 
# of intersections 49,981 

AQI  

# of stations 22 
# of hours 10416*22 

Time spans 8/24/2012 – 
10/31/2013 

Urban Size (grids) 1km (2500) 
Meteorological Data # of hours 10416*2500 

Table 2. The list of types of POIs in this paper. 
T1: Vehicle Services (gas stations, repair) T7: Sports 
T2: Transportation spots T8: Parks 
T3: Factories T9: Culture and education 
T4: Decoration and furniture markets T10: Entertainment 
T5: Food and beverage T11: Companies 
T6: Shopping malls and supermarkets T12: Hotels and real estates 

3. INFERRING ARBITRARY AQI VALUES 
First, we divide geo-spatial area into disjointed grids, which be-
comes the basic unit or instance in our inference. Each grid, denoted 
by r, is a 1km*1km sub-area, with its own geographical coordina-
tion. Each grid is associated with an AQI value, of which some need 
to be inferred. Here we define a set of grids R={r1, r2, ..., rm} in an 
area over a certain time intervals (in hours) T={t1, t2, ..., tn}. The 
AQI values of most grids are completely unknown while the his-
torical AQI values of a small amount of grids can be obtained 
through existing monitoring stations (e.g. for Beijing city’s data, 
only 0.88% of the locations are monitored). The meteorology, road 
network, and POI information of each grid are assumed to be avail-
able. The goal is to infer the AQI distribution P(v(ti)) of any unob-
served location v at any given time stamp ti. 
We design a semi-supervised learning algorithm to achieve such 
goal. The proposed algorithm consists of four stages. In the first 
stage a spatial-temporal graph, the AQI Affinity Graph (AG), is con-
structed to model the spatial-temporal correlation between grids. In 
the second stage we try to learn the weights of the edges, assuming 
they represent the correlations between nodes based on their fea-
tures. The third stage emphasizes on inferring the AQI values for 
locations. In this stage our model presumes those grids whose fea-
tures are close to each other tend to share similar AQI values. In the 
final stage the feature weights are adjusted to minimize the uncer-
tainty of the model on inferring the unobserved locations. Note that 
stages 3 and 4 are executed iteratively until convergence.  

3.1 AQI Affinity Graph 
The air quality values of different locations are correlated with each 
other in temporal and spatial perspectives. For example, the AQI of 
a location tends to be good if the AQIs of the past few hours are 
also good; the AQI of a location is likely to be bad if the air quality 
of many of the neighboring places is bad. Inspired by above obser-
vations, we propose to create a graph to model such spatial-tem-
poral correlations over locations. We first divide an urban area into 
disjointed grids (e.g. 1km*1km), and then construct an AQI Affinity 
Graph (AG) to model the correlation of different grids. The AG is 
designed to be a 3-dimensional weighted connected graph, in which 
only few nodes possess known AQI information (i.e., those places 
established with monitoring stations) while other nodes have no 
AQI records. The spatial correlation is reflected by both the geo-
graphical distance and the demographic spatial features. The tem-
poral correlation is reflected by connecting nodes that represent dif-
ferent time stamps. We first describe how to construct the graph, 
and then show how the weights in the graph can be generated. 
Definition: Affinity Graph. An affinity graph (See Figure 3) is a 
multi-layer weighted connected graph 𝐺 = 〈𝒢1, 𝒢2, … , 𝒢𝑛〉, where 
each layer represents one time interval from 𝑡1, 𝑡2, … , 𝑡𝑜 𝑡𝑛 , and 
𝒢𝑖 = 〈𝑉, 𝐸, 𝑊𝑡𝑖〉 is the graph at time interval 𝑡𝑖, where 𝑉 is the set 
of all grids, 𝐸 is the set of edges, and 𝑊𝑡𝑖 represent edge weights 
at 𝑡𝑖 . The first two dimensions in AG connect the geographical 
neighbors of grids, while the 3rd dimension connects nodes across 
temporal domain. Every single node in AG can be regarded as a 
random variable whose AQI distribution has to be inferred. The 
node set 𝑉 = 𝑈 ∪ 𝓥 consists of a subset 𝑈 of query grids without 
air-quality monitoring stations, and the subset 𝓥 of grids with mon-
itoring stations. We term nodes in 𝓥 as labeled ones and nodes in 
𝑈 as unlabeled ones. Each unlabeled node u is associated with an 
AQI distribution P(u) to be inferred. The construction of an AG 
consists of four parts. 
(a) Connecting to Station Locations. Because we aim to leverage 

few grids with existing stations to infer the temporal AQI val-
ues of arbitrary locations, we connect every unobserved node 
𝑢 ∈ 𝑈 to all the observed nodes 𝑣 ∈ 𝓥 of the same time stamp, 
regardless of their geographical distance (i.e. the lines connect-
ing white and black nodes in Figure 3). Note that since the ob-
served nodes are very sparse, adding those connections does 
not affect the efficiency significantly.  

(b) Connecting to Near-by Locations. Since the AQI values of 
near-by locations are naturally highly correlated, within each 
layer of graph, every node is connected to the neighboring 
nodes 𝑤 ∈ 𝑈 within a given geographical radius 𝑟.  

(c) Connecting to Recent Layers. Due to the fact that the AQI 
value of a location is highly correlated to its historical AQI val-
ues, we connect each node 𝑢 ∈ 𝑈 of time stamp 𝑡𝑖 to the previ-
ous z corresponding nodes of the same location. That is, the 
nodes of the same grid but with different time stamps: 𝑡𝑖−1 , 
𝑡𝑖−2, ..., and 𝑡𝑖−𝑧 are connected (i.e. the blue line in Figure 3).  

(d) Connecting to Similar Layers. Since the environmental fac-
tors can repeat themselves within certain period (e.g. some phe-
nomenon are observed every 24 hours while some are observed 
during a specific season of the year), it is also possible that the 
AQI value of a node correlates with that further away from the 
current time stamp. Our idea is to connect a node in the current 
layer to the corresponding nodes of certain past layers with the 
most similar environmental features. The similarity between 
layers is computed based on the features. See the red lines in 
Figure 3 as an example. 



 
Figure 3. An example of the affinity graph. There are five location nodes, 
in which two contains measurement stations (in black) and three needs to 
be inferred (in white). We construct 𝑖 layer graphs capturing temporal cor-
relation, while the connections are identical for each layer. The temporal 
correlations are modeled by connections across layers such as the red and 
blue lines.  

Next, it is required to learn the correlation between nodes as edge 
weights in the AQI affinity graph. The concept is that if two nodes 
have higher feature affinity, their AQI values should have higher 
correlation. The heterogeneous features are exploited to character-
ize the affinity between nodes. Various features might have differ-
ent degree of effect on the correlation. Therefore, we propose to 
learn these effects separately from data. Finally, we combine affin-
ity functions of all the features through a weighted sum, while the 
weights can further be adjusted later on to reduce the inference un-
certainty. 
Affinity Function. Given a particular type of feature fk, its affinity 
value 𝑎𝒇𝒌

(𝑢, 𝑣) between nodes 𝑢 and 𝑣, (𝑢, 𝑣) ∈ 𝐸 can be derived 
from the affinity function 𝐴𝐹𝒇𝒌

(∆𝒇𝑘(𝑢, 𝑣)) , where ∆𝒇𝑘 =

‖𝒇𝑘(𝑢) − 𝒇𝑘(𝑣)‖ . 𝐴𝐹𝒇𝒌
is a linear function 𝑎 ∙ ∆𝑓𝑘(𝑢, 𝑣) + 𝑏  to 

model the correlation between feature difference and AQI similar-
ity, where the parameters a and b are learned using from Maximum 
Likelihood Estimation [1]. 
Combined Affinity Function. Given a set of features 𝐹 =
{𝑓1, 𝑓2, … , 𝑓𝑚}, the combined affinity 𝑎(𝑢, 𝑣) between nodes 𝑢 and 
𝑣, (𝑢, 𝑣) ∈ 𝐸can be derived based on the weighted sum of 𝐴𝐹: 

𝑎(𝑢, 𝑣) = exp (− ∑ 𝜋𝑘
2 × 𝐴𝐹𝒇𝒌

(∆𝒇𝑘(𝑢, 𝑣))

𝑚

𝑘=1

)   (1) 

where 𝜋𝑘 is the weight of feature 𝑓𝑘. Note that the parameters a and 
𝜋𝑘 seem to have the same linear effect on the model, they are not 
combined as a single parameter since each is learnt with a different 
purpose; a is learnt to capture the correlation with the AQI and, as 
will be described later, 𝜋𝑘 is learnt to minimize the uncertainty of 
the model.  

3.2 Affinity-based AQI Inference 
Based on the affinity graph and the affinity function learned from 
data, we propose the affinity-based AQI inference (AQInf) model, 
which is a graph-based semi-supervised learning solution. The fun-
damental idea is three-fold. First, the observed AQI on labeled 
nodes 𝑣 ∈ 𝓥 are utilized to infer the AQI distributions 𝑃(𝑢) of un-
labeled nodes 𝑢 ∈ 𝑈. Second, we assume that nodes with similar 
features should have similar AQI distributions. This relationship is 
modeled by edge weights through the combined affinity function. 
Third, since the AQI values for the unobserved locations are not 
available and observed data are sparse, it is less practical to tune 
our model parameters to minimize the inference error. Instead we 
propose to tune the parameters to minimize the model uncertainty. 
By putting these three ideas together, we seek for an optimal set of 

edge weights W such that a) after inference, the unlabeled nodes 
shall possess similar AQI distributions with its close neighbors and 
b) the learned label distribution should possess small entropy to 
minimize the uncertainty of inference. Figure 4 describes our itera-
tive learning framework. 
 

 
Figure 4. The process of inferring AQI values. 

To realize a), we propose to optimize a loss function on the affinity 
graph to enforce the label distributions to be propagated to nodes 
with higher edge weights: 

𝑄(𝑃) = ∑ 𝑤𝑢,𝑣 ∙ (𝑃(𝑢) − 𝑃(𝑣))2

(𝑢,𝑣)∈𝐸
     (2) 

using the quadratic loss function. We exploit the symmetric Kull-
back-Leibler (KL) Divergence to measure the difference between 
two AQI distributions, i.e., 
𝑃(𝑢) − 𝑃(𝑣) = 𝐷𝐾𝐿(𝑃(𝑢)||𝑃(𝑣)) + 𝐷𝐾𝐿(𝑃(𝑣)||𝑃(𝑢))   (3) 

where 𝐷𝐾𝐿(𝑃(𝑢)||𝑃(𝑣)) = ∫ 𝑃(𝑢)[𝑥]ln
𝑃(𝑢)[𝑥]

𝑃(𝑣)[𝑥]
d𝑥

𝑞𝑚𝑎𝑥

𝑥=0
   

where 𝑞𝑚𝑎𝑥 is the maximum AQI value among locations. Putting 
these together, our goal is to find the AQI distributions for unla-
beled nodes such that 𝑄(𝑃) is minimized, expressed by: 

𝑃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃|𝓥 𝑄(𝑃)   (4) 

It is not hard to show that such minimization is harmonic [21], 
which refers to ∆𝑃 = 0 for unlabeled nodes 𝑈, while ∆𝑃 = 𝑃(𝑣) 
for labeled nodes 𝑣 ∈ 𝓥. ∆ is known as the combinatorial graph 
Laplacian matrix defined as ∆= 𝐷 − 𝑊, where the matrix 𝐷 is a 
diagonal matrix whose diagonal elements are given by 𝐷𝑖𝑖 =
∑ 𝑊𝑖𝑗𝑗  and 𝑊 = [𝑤𝑖𝑗] is the weight matrix of affinity graph. The 
underlying rationale is that minimizing 𝑄(𝑃) drives 𝑃 to leverage 
the AQI distributions of labeled nodes 𝓥 and propagates smoothly 
on unlabeled nodes 𝑈 based on the weight matrix 𝑊. The harmonic 
property of the function 𝑃 derives the solution to assign the AQI 
distribution of each unlabeled node using the weighted average of 
its neighboring nodes via: 

𝑃(𝑢)[𝑥] =
1

𝑑𝑒𝑔𝑢
∑ 𝑤𝑢,𝑣 ∙ 𝑃(𝑣)[𝑥]

(𝑢,𝑣)∈𝐸

,   𝑥 = 0, 1, 2, … , 𝑞𝑚𝑎𝑥   (5) 

which corresponds to the smooth propagation of 𝑃 in affinity graph, 
where 𝑑𝑒𝑔𝑢 is the degree of node 𝑢. We can further obtain the har-
monic solution ∆𝑃 = 0 in terms of matrix operations for unlabeled 
nodes subject to the AQI distributions of labeled nodes, expressed 
by: 



𝑃𝑈 = (𝐷𝑈𝑈 − 𝑊𝑈𝑈)−1𝑊𝑈𝓥𝑃𝓥 = −∆𝑈𝑈
−1 ∆𝑈𝓥𝑃𝓥  (6) 

where 𝑃𝑈 is the AQI distributions of unlabeled nodes, 𝑃 = [𝑃𝓥; 𝑃𝑈], 
and both the weight matrix 𝑊 and the combinatorial graph Lapla-
cian matrix ∆ can be split into labeled and unlabeled parts, given by 

𝑊 = [
𝑊𝓥𝓥 𝑊𝓥𝑈

𝑊𝑈𝓥 𝑊𝑈𝑈
] and ∆= [

∆𝓥𝓥 ∆𝓥𝑈

∆𝑈𝓥 ∆𝑈𝑈
]. 

The results obtained from the above equation is the soft labeling of 
AQI values because the derived 𝑃(𝑢) for unlabeled node 𝑢 ∈ 𝑈 is 
a probability distribution of AQI values, and thus does not provide 
exact AQI values for unlabeled nodes. To have a hard labeling of 
AQI for unlabeled node 𝑢 ∈ 𝑈, we find the AQI value 𝑞∗ with the 
highest quantized probability from its AQI distribution and assign 
𝑞∗ as its final predicted AQI value, given by 

𝑞∗(𝑢) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃(𝑢)[𝑥],   𝑥 = 0, 1, 2, … , 𝑞𝑚𝑎𝑥 (7) 
Note that since an unlabeled location 𝑢 ∈ 𝑈 has 𝑛 node instances 
𝑢(𝑡1), 𝑢(𝑡2), ..., 𝑢(𝑡𝑛) in the affinity graph over time intervals 𝑡1, 
𝑡2, ..., 𝑡𝑛, and the edge weights (i.e., affinity) vary based on the fea-
tures of locations within/across time intervals, the predicted AQI, 
𝑞∗(𝑢(𝑡𝑖)), shall be different given different time stamp.  
So far we have elaborated the central idea of the affinity-based AQI 
inference (AQInf) model, i.e., minimizing 𝑄(𝑃) based on the given 
edge weights 𝑤𝑢,𝑣. Recall that in Section 3.1, edge weights between 
nodes are determined by the affinity values between locations, 
which are obtained through the weighted sum over the location af-
finity functions of features 𝑓𝑘 with feature weights {𝜋𝑘}. That says, 
{𝜋𝑘}  first influences the affinity between locations, i.e. edge 
weights, and consequently the weights take effect on the inference 
of the unlabeled nodes. Thus, learning a suitable set {𝜋𝑘} becomes 
the key to the success of the inference.  
The intuitive approach is to adjust {𝜋𝑘} to maximize the likelihood 
of labeled nodes using validation data. However, this idea is prob-
lematic because the observed data is very sparse, and thus doing so 
would likely overfit the model to the validation data. Here we pro-
pose an objective for learning 𝜋𝑘, which is to minimize the entropy 
of the inferred AQI distribution of unlabeled nodes. It is intuitive 
since the inference model would become useless if the inferred dis-
tribution has high entropy (i.e. unpredictable values).  
The average AQI distribution entropy 𝐻(𝑃𝑈) for unlabeled nodes 
𝑈 can be defined as: 

𝐻(𝑃𝑈) =
1

|𝑈|
(− ∑ ∫ (

𝑃(𝑢)[𝑥] log(𝑃(𝑢)[𝑥]) +

(1 − 𝑃(𝑢))[𝑥]log ((1 − 𝑃(𝑢))[𝑥])
) d𝑥

𝑥𝑢∈𝕍

) (8) 

where |𝑈| is the number of unlabeled nodes in the affinity graph. 
For brevity, we denote ∫ (𝑃(𝑢)[𝑥] log(𝑃(𝑢)[𝑥]) + (1 −

𝑥

𝑃(𝑢))[𝑥]log ((1 − 𝑃(𝑢))[𝑥]))d𝑥  as 𝑃(𝑢) log(𝑃(𝑢)) + (1 −

𝑃(𝑢)) log(1 − 𝑃(𝑢)). We want to minimize the uncertainty of the 
model, which is equivalent to minimizing 𝐻(𝑃𝑈).  
To derive {𝜋𝑘}, the minimization of 𝐻(𝑃𝑈) is embedded into the 
AQInf model using 𝑤𝑢,𝑣 = exp (− ∑ 𝜋𝑘

2 × 𝐴𝐹𝒇𝒌
(∆𝒇𝑘(𝑢, 𝑣))𝑚

𝑘=1 ) 
and 𝑃𝑈 = −∆𝑈𝑈

−1 ∆𝑈𝓥𝑃𝓥. We exploit the technique of gradient de-
scent on 𝜋𝑘  to obtain an updated set of feature weights 𝑤𝑢,𝑣  that 
minimizes 𝐻(𝑃𝑈) . The gradient can be derived by computing 
𝜕𝐻(𝑃𝑈)

𝜕𝜋𝑘
, given by 

𝜕𝐻(𝑃𝑈)

𝜕𝜋𝑘
=

1

|𝑈|
∑ log

1 − 𝑃(𝑢)

𝑃(𝑢)
𝑢∈𝑈

𝜕𝑃(𝑢)

𝜕𝜋𝑘
 (9) 

Using 𝑤𝑢,𝑣 = exp (− ∑ 𝜋𝑘
2 × 𝐴𝐹𝒇𝒌

(∆𝒇𝑘(𝑢, 𝑣))𝑚
𝑘=1 ) , 𝑃(𝑢)[𝑥] =

1

𝑑𝑒𝑔𝑢

∑ 𝑤𝑢,𝑣 ∙ 𝑃(𝑣)[𝑥](𝑢,𝑣)∈𝐸 , and 𝑃𝑈 = −∆𝑈𝑈
−1 ∆𝑈𝓥𝑃𝓥, together with 

the chain rule of differentiation, we obtain the final gradient as: 
𝜕𝑤𝑢,𝑣

𝜕𝜋𝑘
= 2𝑤𝑢,𝑣 ∙ 𝐴𝐹𝒇𝒌

(∆𝒇𝑘(𝑢, 𝑣)) ∙ 𝜋𝑘    (10) 

Such integration produces a mutually reinforced inference flow, the 
learned feature weights 𝜋𝑘  update the AQI distributions 𝑃(𝑢) of 
unlabeled nodes 𝑢 ∈ 𝑈, and 𝑃(𝑢) determines the average AQI dis-
tribution entropy 𝐻(𝑃𝑈) to be minimized in the next iteration. We 
develop the inference model to follow this mutual reinforcement 
mechanism, in which each change of feature weights 𝜋𝑘 triggers an 
update of edge weights 𝑤𝑢,𝑣 that further generates new AQI distri-
bution 𝑃(𝑢) based on the affinity graph, and proceeds iteratively 
till convergence. The pseudocode of AQInf model is described in 
Algorithm 1. 
Algorithm 1: Affinity-based AQI Inference (AQInf) 
Input: (a) a set of locations 𝓥 with existing measurement sta-
tions; (b) a set of query locations 𝑈 without stations; and (c) the 
time interval 𝑡𝑖 of interest. 
Output: the AQI value 𝑞(𝑢(𝑡𝑖)), where 𝑢 ∈ 𝑈 and 𝑡𝑖 ∈ 𝑇. 
1: 𝑉 ← 𝓥 ∪ 𝑈. 
2: 𝒇𝒌(𝑣) ← extracting feature 𝑓𝑘, where 𝑘 = 1, 2, … , 𝑚, 𝑣 ∈ 𝑉 
3: Construct affinity graph 𝐴𝐺 from 𝑉 and 𝒇𝒌(𝑣), 𝑣 ∈ 𝑉. 
4: Initialize feature weight 𝜋𝑘 = 1, where 𝑘 = 1, 2, … , 𝑚. 
5: 𝑤𝑢,𝑣 ← exp (− ∑ 𝜋𝑘

2 × 𝐴𝐹𝒇𝒌
(∆𝒇𝑘(𝑢, 𝑣))𝑚

𝑘=1 ).  
6: 𝐻(𝑃𝑈) ←

1

|𝑈|
(− ∑ 𝑃(𝑢) log(𝑃(𝑢)) + (1 − 𝑃(𝑢)) log(1 − 𝑃(𝑢))𝑢∈𝑈 )  

7: ∆ℎ ← 𝐻(𝑃𝑈). 
8: while ∆ℎ > 𝜖 do: 
9:     𝜋𝑘 ← 𝜋𝑘 − 2𝑤𝑢,𝑣 ∙ 𝐴𝐹𝒇𝒌

(∆𝒇𝑘(𝑢, 𝑣)) ∙ 𝜋𝑘 
10:     𝑤𝑢,𝑣 ← exp (− ∑ 𝜋𝑘

2 × 𝐴𝐹𝒇𝒌
(∆𝒇𝑘(𝑢, 𝑣))𝑚

𝑘=1 ) 

11:     𝑃𝑈 = (𝐷𝑈𝑈 − 𝑊𝑈𝑈)−1𝑊𝑈𝓥𝑃𝓥 
12:      𝐻′(𝑃𝑈) ←

1

|𝑈|
(− ∑ 𝑃(𝑢) log(𝑃(𝑢)) + (1 − 𝑃(𝑢)) log(1 − 𝑃(𝑢))𝑢∈𝑈 )   

13:     ∆ℎ ← |𝐻(𝑃𝑈) − 𝐻′(𝑃𝑈)| 
14:     𝐻(𝑃𝑈) ← 𝐻′(𝑃𝑈) 
15: end 
16: 𝑞(𝑢) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃(𝑢)[𝑥],   𝑥 = 0, 1, 2, … , 𝑞𝑚𝑎𝑥 
17: return: 𝑞(𝑢(𝑡𝑖)). 

4. BUILDING MEASUREMENT STATIONS 
With the proposed AQInf model, now we can talk about how to use 
it to recommend locations for building new measurement stations. 
The ultimate goal is to recommend k locations such that the estab-
lishment of new stations can lead to the best improvement of AQI 
inference of other locations. Unfortunately, such goal cannot di-
rectly be achieved since we do not know the exact AQI values for 
locations without monitoring stations. Instead, we focus on recom-
mending locations that have better potential to reduce the uncer-
tainty of the AQI inference model. Recall previously in our AQInf 
model, the distribution of each unobserved location is inferred. 
Thus, we can model the uncertainty of the model as the sum of the 
entropies of all unobserved nodes in Equation 8.  

4.1 Greedy-based Entropy Minimization 
Our goal is to select k locations from N candidates that by using 
their AQI values together with those of the known sites, we can 
construct an update AQInf model whose uncertainty on the remain-



ing locations are minimized. Let us first assume that once the k lo-
cations are picked, their AQI values can be known. Then the overall 
task becomes an optimization problem. That is, for each of the C𝑘

𝑁 
possible combination, we can infer the corresponding uncertainty 
for each AQInf model, and finally choose the minimum one. Un-
fortunately, searching among the C𝑘

𝑁  combinations is intractable. 
One might resort to a greedy method to choose one location first, 
obtain the updated AQInf model, and then use this updated model 
to choose the 2nd location, and so on so forth. However, it is not 
clear how the AQInf model can be updated in the first place because 
we do not have the observed values for the selected locations. Fur-
thermore, the first selected locations are the ones with high entropy 
(more uncertain), thus their true AQI values can hardly be inferred.  
Alternatively, we might simply pick the top-k locations with the 
highest entropy as the recommended outcome. The concern for this 
proposal is that some of these uncertain regions might be highly 
correlated. That says, once we obtain the values for some locations, 
the rest might not as unpredictable as before. Our experiments con-
firm such hypothesis.  
We propose a method called greedy-based entropy minimization 
(GEM) that aims at ranking locations based on their capability to 
reduce uncertainty. Instead of focusing on the high-entropy loca-
tions, we start from the low-entropy ones first. GEM is performed 
with following steps, which corresponds to the five steps specified 
in Figure 5. 
1. Given the obtained AQInf model, first identify the location X0 

with the lowest entropy, meaning that our model is very con-
fident about its inferred AQI value. Rank X0 the last candidate 
to be recommended. 

2. Choose the most likely value inferred from the original AQInf 
of X0 as its ‘pseudo observed AQI value’. The mark X0 as la-
beled. 

3. Use X0’s pseudo AQI value together with the original ob-
served data to build a new influence model, AQInf1. 

4. Identify another location X1 with the lowest entropy in AQInf1, 
assign it as the second-to-last candidate in the recommenda-
tion list. 

5. Repeat 1~4 to iteratively rank the locations to be recom-
mended from last to first.  

 
Figure 5. An illustration of GEM at time interval 𝒕𝒊 ∈ 𝑻. 

Note that for each specific time stamp ti, we perform GEM to obtain 
a ranked list of unobserved nodes. Since the unpredictability of 
nodes can vary with time, eventually we would like to average the 

ranking over certain period of time to obtain the overall ranking. 
Note that this step is important to boost the performance of GEM. 
It is because conceptually the nodes with lower rank in GEM are 
those not very correlated with the ones in the higher rank. We find 
that for different time stamp, the nodes with the highest entropy 
might differ. Thus the high ranked nodes might not always be the 
same in each ranking list across time. This implies that if there are 
some nodes that are consistently ranked very low (i.e. those with 
lowest average rank), they are very likely to be independent with 
many other nodes, and thus should be picked. The pseudocode of 
the proposed method is described in Algorithm 2.  

Algorithm 2: Greedy-based Entropy Minimization (GEM) 
Input: (a) a set of locations 𝓥 with existing measurement sta-
tions; (b) a set of candidate locations 𝐶 without stations; (c) the 
time stamps 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑚; and (d) the number of locations 𝑘 
to be selected for new stations. 
Output: the set 𝑆 of 𝑘 recommended locations (|𝑆| = 𝑘). 
1: for each 𝑡𝑖 ∈ 𝑇 do: 
2:     𝑈 ← 𝐶. 
3:     for 𝑛𝑢𝑚 ← |𝐶| to 1 do: 
4:         𝐻(𝑃𝑈)  ← 𝐴𝑄𝐼𝑛𝑓(𝓥, 𝑈, 𝑡𝑖). 
5:         𝑢∗  ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 𝐻(𝑃(𝑢)). // select the min entropy one 
6:         𝑟𝑎𝑛𝑘(𝑢∗, 𝑡𝑖) ← 𝑛𝑢𝑚.   // give the rank value reversely 
7:         𝓥 ← 𝓥 ∪ {𝑢∗}.   // turn unlabeled to labeled 
8:          𝑈 ← 𝑈 \ {𝑢∗}.    // exclude the turned candidate 
9:     end 

10: end 
11: for each 𝑢 ∈ 𝐶 do: 
12:     𝑟𝑎𝑛𝑘(𝑢) = (∑ 𝑟𝑎𝑛𝑘(𝑢, 𝑡𝑖)𝑡𝑖∈𝑇 )/|𝑇|. 
13: end 
14: 𝑠𝑜𝑟𝑡(𝑟𝑎𝑛𝑘(𝑢 ∈ 𝐶)) in a descending order. 
15: for 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 0 to 𝑘 − 1 do: 
16:     𝑆 = 𝑆 ∪ 𝑟𝑎𝑛𝑘(𝐶)[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑]. 
17: end 
18: return: 𝑆. 

5. EXPERIMENTS 
In this section, we introduce two evaluations to verify the perfor-
mance of our proposed method using the air quality data introduced 
in Section 2.1, and compare the results with several state-of-art and 
baseline methods. In the following experiments, we repeat each of 
them 1000 times to obtain the average results. 

5.1 The Effectiveness of AQInf  
Settings In this experiment, we would like to investigate whether 
our designed AQInf can accurately infer AQI. In the experiment, 
the Beijing area is decomposed into 50*50 grids, in which 22 of the 
grids have the monitoring stations (i.e., have AQI values) while the 
AQI values of the other 2478 grids are unknown. The experiment 
period spans from 8/24/2012 to 10/31/2013, containing 10416 time 
stamps (each represents an hour).  Since we only have ground truth 
for locations with monitoring stations, we propose to conduct cross 
validation by randomly choosing 15 of the 22 grids to be the labeled 
data, resulting in 15*10416 labeled instances. The model is evalu-
ated based on the inference accuracy of the leftover 7*10416 in-
stances whose ground truth measurement is available. All the ex-
periments are repeated 1000 times and the average results are re-
ported. For each repetition the training and testing sets are ran-
domly selected.  
To evaluate the usefulness of the proposed features, we build 3 
slightly different models with incremental feature sets (1) geo-
graphical distances features plus three recent and three similar time 
layers as features (denoted by D+T3), (2) features in (1) plus the 



meteorology data (denoted by D+T3+M), (3) features in (2) plus 
Roadnet and POI features (denoted by ALL). We use Root Mean 
Square Error (RMSE) to measure the difference between the pre-
dicted AQI and ground-truth AQI. 
Competitors. Competitors can be divided into three categories. 
Three interpolation-based methods, two learning-based methods, 
and two semi-supervised learning methods as the state-of-the-art. 
All the features proposed in this paper are exploited in the last two 
categories of models:  
 Spatial kNN. Spatial k-Nearest Neighbors (kNN) simply gen-

erates the AQI value by averaging the values of the labeled data 
from k spatially closest stations.  

 Inverse Distance Weighting (IDW). It is a well-known inter-
polation method. The idea of IDW is to assign values of un-
known data points using the weighted averages of the values 
available from the known data points. The weights are propor-
tional to the inverse of the geographical distances. 

 Ordinary Kriging (OK). The Ordinary Kriging is one of the 
most used spatial point interpolation. The estimations are 
weighted averaged input point values, similar to IDW. The 
main difference with IDW is that it utilizes semi-variogram to 
express the spatial variation, and minimizes the error of pre-
dicted values which are estimated by spatial distribution of the 
predicted values.  

 ANN. We choose Artificial Neural Network (ANN) with back 
propagation technique as another baseline. The constructed 
ANN contains one hidden layer. The ANN method simply 
treats all historical labeled data from all stations as the training 
data to build a model.  

 SVR. The version of SVM for regression is chosen to predict 
the AQI value. Similar to ANN, SVR utilizes stations’ histori-
cal data for training and then infer the values of unlabeled ones.   

 Co-training. The co-training model proposed by U-Air [18] is 
the state-of-the-art method for air quality inference problem. 
The co-training model consists of two separated classifiers. 
One is a spatial classifier based on artificial neural network, 
which employs the spatially-related features (e.g. POIs) to 
model the spatial correlation. The other is a temporal classifier 
based on a linear-chain conditional random field (CRF), which 
utilizes temporally-related features (e.g. meteorology) to model 
the temporal dependency.  

 RBF-SSL. We employ a state-of-the-art graph-based semi-su-
pervised learning (SSL) with a radial basis function (RBF) clas-
sifier [21] to predict the AQI labels. All the features proposed 
in this paper are exploited, and the weights in RBF are esti-
mated by 𝑤𝑖𝑗 = exp (− ∑ (𝑥𝑖𝑑 − 𝑥𝑗𝑑)2 𝜎𝑑

2⁄𝑚
𝑑=1 ). 

Error of Air Quality Inference. The experimental results on in-
ferring PM10 and PM2.5 are shown in Figure 6, which show that in 
general our method outperforms all the competitors significantly, 
especially when all the features are considered. The results also 
show that each additional feature set brings certain level of im-
provement (3~ 7.9 for PM10 and 2.3 ~ 8.5 for PM2.5).  
Robustness of Air Quality Inference. In Figure 7, we test how 
sensitive the models are to the number of observed neighbors. 
When more spatial neighbors of the labeled instance are removed, 
the proposed model always outperforms other competitors, up to 
12.9~114.8 for PM10 and 14.4~106.5 for PM2.5 in average. We 
can further find that the increases of RMSE of the AQInf are rela-
tively slow, comparing to the competitors. Such results suggest that 
our proposed model is the most survivable when there is only very 

rare labeled data available. The interpolation-based methods are 
suffered from labeled data the most. 

    
Figure 6. Error of Air Quality Inference at (a) PM10 and (b) 
PM2.5 for different algorithms. 

  

 

Figure 7. Error of Air Quality Inference at (a) PM10 and (b) 
PM2.5 for different algorithms when R% labeled neighbors re-
moved. 

5.2 The Effectiveness of GEM  
Settings. In this experiment, we would like to verify whether our 
model recommends locations that bring the most improvement in 
terms of inference accuracy. Since there are total 2,478 unobserved 
grids, assuming we want to recommend k=5 locations to establish 
monitoring stations, we will need to evaluate  C5

2478 combinations 
to find the optimal solution. However, we need to point out that 
there are no ground truths for those locations without monitoring 
stations established. Since we only have the ground truth AQI for 
locations with stations, we propose to conduct cross validation by 
randomly choosing 5 locations among 22 grids to be the labeled 
data, i.e., pretending there are only 5 locations already with stations, 
and then we reserve 10 locations to be the candidate locations to 
build new stations. The rest 7 locations are used for evaluation of 
prediction quality. To elaborate, we first train the AQInf model us-
ing the data of 5 training locations, and utilize the model to infer 
the air quality of the 7 evaluation locations to obtain the inference 
error (i.e. RMSE). Now assume we would like to pick k locations 
from the 10 candidate locations to build new monitoring stations. 
There will be 𝐶𝑘

10 combinations to be considered. To generate the 
ground truth, for each candidate combination, we turn them from 
unlabeled into labeled ones to form the new labeled set whose size 
is 5+k. Then we can use the expanded labeled set to build an AQInf 
model and infer the AQI of the remaining 7 locations again to ob-
tain the updated RMSE. The combination with highest improved 
RMSE is best choice to construct the new stations because it can 
bring the most accuracy improvement of AQI. Based on this strat-
egy, we generate and rank the RMSE improvements for all 𝐶𝑘

10 
combinations, which we call the ground-truth ranking. The goal of 
the experiment then becomes checking whether the combination re-
turned by our method is indeed a combination that ranks high in the 
ground-truth ranking. 
Evaluation Metrics. We designed two evaluation metrics, top-
rank ratio TRR that reflects how the returned combination by each 
algorithm ranks in the ground-truth ranking and RMSE-improve-
ment which shows how much inference accuracy can be improved 
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after establishing the stations in the recommended locations. The 
TRR of a combination C is determined as, 𝑇𝑅𝑅(𝐶) =

𝑅𝑎𝑛𝑘(𝐶)

C𝑘
10 , with 

value range from 1/C𝑘
10 to 1 (the lower the better). 

Competitors. Since to our knowledge, there is currently no study 
on solving the proposed problem, here we devise several methods 
as the competitors in our experiments. 
 Distance-based greedy. This method greedily chooses the far-

thest location to the existing stations as the target location to 
build new station. The central idea of this method is to evenly 
distribute stations in geographical space.   

 Temporal feature-dissimilarity greedy. This method greedily 
selects the locations with the most dissimilar meteorology fea-
tures with the existing stations as the candidates. We exploit the 
Pearson Correlation to measure the similarity between the can-
didate location and existing stations considering normalized 
meteorology features such as temperature, humidly, pressure 
and wind speed.  

 Spatial feature-dissimilarity greedy. Same as the previous 
methods, but replaces temporal features with spatial features.  

 Hybrid feature-dissimilarity greedy. Similar to the previous 
methods but considers both spatial and temporal features to-
gether. It assumes equal weights for spatial and temporal fea-
tures. 

 Entropy-based search. This method simply ranks locations 
using entropy of the inferred AQI distribution at each time in-
terval 𝑡𝑖 ∈ 𝑇. Nodes with the smallest k ranking values aver-
aged over intervals 𝑡𝑖 ∈ 𝑇 will be selected as the final recom-
mended locations. The entropy-based search cannot be per-
formed greedily. 

 Low edge weight search. For each time stamp, we sort the lo-
cations using their average edge weights to the neighbors. Con-
ceivably higher weights means better correlation with others. 
Eventually we choose the k locations with the smallest total 
weights, averaging over a span of time T.  

Note that since our model creates a ranking of locations for each 
time stamp, and then average the ranking over all time stamps to 
obtain the final ranking, the same procedure is applied to all of our 
competitors. 
Evaluating GEM with Top-rank ratio. In this experiment, we 
compare the TRR of each competitor. We vary the number of rec-
ommended locations k and report the TRR value in Figure 8. Note 
that we only report results for k=1~9 all candidates are selected. 
The left chart is for PM10 and the right one is PM2.5. The quality of 
entropy-based and low edge search decreases sharply when the 
number of combinations becomes large. It is probably because they 
do not take into account previously recommended locations while 
selecting the next location. In summary, we show that our method 
can steadily outperform other competitors with TRR value less than 
0.2.  
Evaluating GEM with RMSE-improvement. We also report how 
much RMSE improvement each model can obtain, with varying pa-
rameter k, in Figure 9. Theoretically, RMSE should improve more 
when k increases, as more locations are added into the training data. 
We find that our method generally brings much better improvement 
than others for PM10 and PM2.5. Note that here we also display the 
optimal improvement in RMSE (the result of the top-1 combination 
in the ground truth list) curve as black line in Figure 9. The results 
show that our model’s performance is not too far away from the 
optimal results. 

 
Figure 8. The TRR results for PM10 and PM2.5 with varying 
number of recommended locations. 

 

 
Figure 9. The improved RMSE results for PM10 and PM2.5 with 
varying number of recommended locations. 

  

 
Figure 10. The average entropy for PM10 and PM2.5 with vary-
ing number of recommended locations. 
Entropy variation. In Figure 10 we further report the model un-
certainty in entropy 𝐻(𝑃𝑈) as the number of recommended location 
k increases. We can observe that the average entropy in the affinity 
graph can effectively be reduced using our method for both PM10 
and PM2.5. This result together with Figure 9 verifies that entropy 
is highly correlated with improved RMSE. 
Evaluating GEM with different number of training stations. In 
Figure 11, instead of varying k, we vary the number of labeled 
nodes x and set k as 5. That is, the x-axis represents the total number 
of observed stations. There are 15 sites available to pick 5. When x 
becomes large, all models saturated to the same outcome since there 
are fewer combinations available to choose from.  It shows that bet-
ter quality can be obtained with more training stations available. 

Evaluating GEM with different time spans. In previous experi-
ments, the ranking at each time stamp is averaged to find the final 
ranking. Here we evaluate how the length of the time span affects 
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the outcome. We vary the span from 0.5 to 14 months and report 
the corresponding TRR in Figure 12. Note that the spatial-dissimi-
larity and distance-based greedy methods are not influenced by 
time span change since they only consider static spatial features. 
The results show that in general when we average a longer time 
span, the performance improves. With 6 months of data, the TRR 
can be lower than 0.2.   

 

 
Figure 11. The RMSE of recommending 5 locations for PM10 
and PM2.5 with varying number of labeled locations. 

  

 
Figure 12. The TRR results for PM10 and PM2.5 when varying 
the length of time span NT. 

6. RELATED WORK 
The research is a step towards urban computing [20], which aims 
to use big data to tackle big challenges in cities. The research is also 
the part of urban air project [18, 19]. 

6.1 Inferring Unobserved Sensor Values  
We first introduce four kinds of models to infer air quality: 
Emission Models. Two types of techniques exist under this cate-
gory.  Arguably the most popular is interpolation. Air quality val-
ues of a location can be derived through interpolating records from 
its nearby air-quality monitoring stations [3]. Two commonly used 
interpolation models are Inverse Distance Weighting (IDW) [2] and 
Ordinary Kriging (OK) [14]. However, the applicability of this type 
of model is questionable when trying to infer non-smooth values, 
as shown in our experiments. The dispersion model represents an-
other type of knowledge-driven techniques, which considers the air 
quality as a function of street geometry, meteorology, traffic con-
dition, and other emission factors (e.g. g/km per road segment or 
per vehicle) [6]. Representative dispersion models include Gauss-
ian Plum, Operational Street Canyon, and Computational Fluid Dy-
namics. However, the dispersion model requires detailed 
knowledge about the parameters of the spatial deployments (e.g. 
the height, orientation, and gaps between buildings and the rough-
ness coefficient of different urban surfaces), which could hinder its 
generality and applicability. 

Satellite Remote Sensing. Satellite remote sensing [8] is a top-
down approach to derive the air quality of urban surface, which has 
been used for many years. One of the most representative studies is 
conducted by A. V. Donkelaar et al. [3] who propose to estimate 
PM2.5 using the modern resolution imaging spectroradiameter. 
However, this method suffers from following limitations. First, the 
imaging technique considers only the atmosphere effect but not the 
human factors such as traffic and land usage. Second, its outcome 
is quite sensitive to the weather condition, thus might not be appli-
cable to every city. 
Crowdsourcing. The crowdsourcing approach provides an alterna-
tive approach to track the air quality [5, 17] using wearable gas sen-
sors. The basic idea of crowdsourcing is to solicit the contribution 
of probed air quality from a large group of people. Crowdsourcing-
based methods, however, suffers several limitations. First, the cur-
rent wearable sensors are only capable of probing certain gas like 
CO2 but not PM2.5 or NO2, and the cost is still pretty high (e.g. 300 
USD).  Second, the portable sensors usually need a much longer 
sensing time (up to 1 hour) for accurate sensing.  
Machine Learning methods.  Recently, machine-learning tech-
niques have been proposed as alternatives to model air quality. 
There have been several learning-based techniques for air quality 
inference based on ANN [7, 13] and SVMs [12], such as U-Air [18]. 
However, our experiment results show that given sparse data, none 
of the above methods is capable of producing reasonably good re-
sults. The most similar model to what we proposed might be U-Air, 
but there are still several main differences. First, U-Air adopts ex-
isting classifiers to create accurate AQI classification based on fea-
tures while this work aims to make the unlabeled nodes whose 
neighboring nodes with similar features tend to have similar AQI 
values. Our experiments confirm that our feature modeling method 
is more effective than U-Air’s for spatial-temporal case. Second, 
U-Air exploits CRF to handle the temporal dependency for the past 
few hours. However in our model we can associate a node with not 
only recent layers but also far-away layers with similar conditions. 
Finally, the U-Air model does not explicitly minimize and output 
the uncertainty of the model, thus it is not apparent how such ap-
proach can be incorporated into a station-recommendation model. 

6.2 Sensor Deployment Strategies 
Another relevant thread of research focuses on selecting proper lo-
cations to place sensors such that the benefits can be maximized. 
This section discusses some relevant works in this direction. Gen-
erally, existing works can be categorized based on two factors:  
1. Does it focus on deploying sensors from scratch, or it focuses 

on adding sensors incrementally? Our work belongs to the 
later as it assumes some sensors have already been deployed 
and the goal is to recommend locations for new ones.  

2. Does it exploit observed sensor data during the process of de-
ployment? In our solution the observed data is used. 

Deploying from scratch without observed data. Krause et al. [10] 
proposes a deployment model with the goal to detect water contam-
inations as early as possible.  Krause et al. [11] propose to find a 
set of locations such that the wireless sensors can best predict some 
future events, such as road speeds on a highway. Erdos et al. [5] 
aim to deploy sensors in an information delivery network to opti-
mize the detection of duplicate data contents. The above works for-
mulate the task as optimization problems and propose approxima-
tion solutions to deal with them.  
Deploying from scratch using observed data. Pourali et al. [16] 
utilize Bayesian brief network to find a set of functional locations 
such that the placement of sensors can best monitor a complex 
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power systems. Du et al. [4] aim to find a set of locations for sensor 
deployment to best measure the surface wind distribution over a 
large urban reservoir. They solve this problem by finding locations 
with the largest mutual information with others based on some heu-
ristics. Their solutions cannot be directly applied to our problem 
since they do not consider incremental deployment.  
Incremental deployment using observed data. This type of 
works is the most relevant to our task, though we have only identi-
fied one work in this category. Karamshuk et al. [9] aim to find a 
set of locations such that the placement of new retail stores can 
bring maximum number of customers. They formulate the task as a 
learning-to-rank problem based on geographical and human mobil-
ity features. However, we find it hard to adopt their methods to our 
problem because of several reasons. First, they aim to find locations 
that have higher potential to attract more customers while our ob-
jective is to find locations that can boost the model’s AQI inferring 
accuracy. Second, they only focus on predicting the overall popu-
larity of a location, while we want to infer the AQI values at differ-
ent time steps.  
To summarize, although there are existing studies proposed to find 
locations to deploy sensors under different scenarios, to the best of 
our knowledge, the goal we are achieving given sparse data is 
unique and challenging. The models we propose, however, might 
be applicable to solve the problems they are facing.  

7. CONCLUSIONS 
This paper proposes a model to recommend the most proper loca-
tions in which building new air-quality monitoring stations can lead 
to the largest accuracy improvement on air quality inference. A 
framework that jointly infers air quality and recommends new lo-
cations is developed. We believe the proposed framework is gen-
eral enough to be applied to the inference and deployment of other 
kinds of sensors. For example, it can be applied to the monitoring 
of traffic flows and noise at arbitrary locations and time. Several 
reasons lead to the success of the proposed model. First, the Affin-
ity Graph seamlessly integrates spatial and temporal correlations 
together. Second, the weights are learned to not only capture the 
correlation between features and AQI but also to minimize the un-
certainty of the model.  Finally, the proposed entropy-minimization 
greedy tries to identify a set of nodes that are uncorrelated with the 
more confident (i.e. low entropy) ones most of the time as the rec-
ommended locations for deployment. It is much more effective than 
myopically minimize entropy or other heuristics. In the future, we 
will focus on improving the efficiency of this model through paral-
lelization. Moreover, we will seek for more applications of our 
model, in particular in the area of traffic monitoring and surveil-
lance in urban areas. 
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