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ABSTRACT
Express systems are widely deployed in many major cities. One
type of important tasks in the system is to pick up packages from
customers in time. As pick-up requests come in real time and there
are many couriers picking up packages, how to dispatch couri-
ers to ensure the cooperation among them and to complete more
pick-up tasks in a long time, is very important but challenging. In
this paper, we propose a reinforcement learning based framework
to learn courier dispatching policies. At first, we divide the city
into independent regions, inner each of which a constant number
of couriers pick up packages at the same time. Besides reducing
problem complexity, city division has practical operation benefits.
Afterwards, we focus on each region separately. For each region, we
propose a Cooperative Multi-Agent Reinforcement Learning model,
i.e. CMARL, to learn the optimal courier dispatching policy in it.
CMARL tries to maximize the total number of completed pick-up
tasks by all couriers in a long time. Our model achieves this target
by combining twoMarkov Decision Processes, one to guarantee the
cooperation among couriers, and the other one to ensure the long-
term optimization. After obtaining the value functions of these two
MDPs, a new value function is designed to trade off them, based
on which we can infer the courier dispatching policy. Experiments
based on real-world road network data and historical express data
from Beijing are conducted, to confirm the superiority of our model
compared with nine baselines.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • The-
ory of computation→ Reinforcement learning.
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1 INTRODUCTION
Express systems are widely deployed in many major cities, e.g.
Beijing, New York City, Paris, etc. providing much convenience
to citizens’ daily life and largely promoting the development of e-
commerce. One important type of tasks in express system is to pick
up packages from customers in time. For example, when a customer
wants to send a package, he or she logs in the express APP and
sends a request, which includes his or her location information,
then a courier will go to his or her location to pick up the package.
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Figure 1: An express system

Figure 1 describes how a courier worked in an express system.
Courier c1 first departed from transit station s1 and went to pick
up package v1. Later on, another customer sent a pick-up request
v2, then c1 left his or her current location and went to v2 to pick it
up, so on so forth. After some working time, c1 returned to transit
station s1 to unload the packages on his or her van. Couriers in the
system are required to depart from and return to transit stations by
specific time, to fit the schedule of trucks which pick up packages
from stations regularly [32][15]. We name this specific time interval
as an episode, e.g. 5 hours or one day, etc.

According to practical system operation, each pick-up request
should be served in a short waiting time, or its customer may
cancel this request. Besides, quick responses from the system can
largely improve customers’ experiences. Nowadays, many system
operators promise and try to serve each request with a waiting
time no longer than a threshold ϑ , e.g. one hour. If a customer has
waited for a time longer than ϑ , his or her request can be cancelled,
and a compensation will be paid to him or her.
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Currently, system operators try to complete the massive number
of pick-up tasks every day by hiring many couriers. However, this
strategy largely increases the operation cost. Besides, immoderate
recruitment cannot fundamentally improve operation efficiency.
In this paper, we try to operate the system via another strategy,
i.e. given a constant number of couriers, we intelligently dispatch
them at the beginning of each period, e.g. every ten minutes, thus
to complete the most pick-up requests within a waiting time ϑ in
each episode.

We partition the city into uniform grids. At the beginning of each
period t in the episode, we determine which surrounding grid each
courier cw should go or just stay at the current one. Afterwards, cw
will pick up packages only in the selected grid until the next period
t + 1, when new actions for all the couriers are required again. As
we can see, there are nine actions for each courier to select from in
each period, i.e.

{
1, 2, 3, ..., 8

}
for the eight surrounding grids and

0 for the current grid. By continuing choosing working grids for
couriers in each period until the end of the episode, we want to
maximize the total number of completed pick-up requests, which
have been served in a waiting time no longer than ϑ . However, it
is a very challenging problem because of the following reasons.

Express systems are large and dynamic. According to his-
torical express data collected in an area of 15×15 square kilometers
in Beijing, there are tens of thousands of packages generated in the
area every day. In order to complete these tasks, hundreds of couri-
ers are working at the same time in the area. Besides, as pick-up
requests can be made by customers whenever they want, practical
express systems are often very dynamic.
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Figure 2: Challenges in system operation

Online dispatching is hard to optimize for a long time. Af-
ter departing from transit station, each courier chooses where to
work in each period. However, each action taken by a courier has
long-term effect. Figure 2 gives an example. If courier c2 goes to
grid д3 instead of д2, he or she can pick up the same number of
packages in the current period because both д2 and д3 have only
one request. However, as he or she cannot arrive at grid д1 from д3
for the two pick-up requests in the next period, д3 may be a worse
choice than д2 for the current period. Considering this issue, we
want to optimize a sequence of actions instead of only the imme-
diate one for each courier. However, even for a single courier, the
solution space is too large, i.e. 9T whereT is the number of periods

in the episode, not to mention that there are many couriers working
at the same time.

Ensuring cooperation among couriers is nontrivial. From
Figure 2, we can see that couriers c1 and c2 cannot both go to gridд2
for the only one pick-up request, or there will be conflict between
them. However, as there are often hundreds or even thousands of
couriers working in the system at the same time, making them
work cooperatively is very hard. In each period, if we consider all
the n couriers together, the action space is 9n , which is impractical
to handle. If we consider the couriers one by one sequentially in the
period, it is very possible that we will get a greedy but not optimal
dispatching policy along the courier sequence.

Considering these challenges, we propose a reinforcement learn-
ing based framework to learn online courier dispatching policies.
Our contributions can be summarized into four-fold.

• We first try to formulate the courier dispatching problem
by Central-Agent Reinforcement Learning, i.e. CARL. By
theoretical analysis and experiments, we show that CARL
cannot ensure long-term optimization in our problem.

• A Cooperative Multi-Agent Reinforcement Learning model,
i.e. CMARL, is proposed for our problem. CMARL consists
of two Markov Decision Processes, i.e. MDPs, respectively
denoted as M1 and M2. M1 is for long-term optimization
while M2 tries to ensure the cooperation among couriers.
Based on these two MDPs, we design a new value function
to guide where should each courier go and work in real time.

• Although CMARL is proposed for courier dispatching, it
is applicable to many systems. Applicable conditions are
summarized in this paper.

• Massive experiments based on real-world data from Beijing
are conducted to confirm the superiority of our model, com-
pared with nine baselines.

2 PRELIMINARY
Notations and terminologies used throughout this paper are defined
in this section.We first partition the city into uniform grids to obtain
an I×J gridmap. Each grid is about 500meters wide and long, which
is not large considering that each courier rides a small delivery van
when working. Based on the grid map, we then formally define
pick-up request and the problem investigated in this paper.

Definition 1. Pick-up Request. A pick-up request is a two-
entry tuple, which is denoted as vw =

(
vw .д,vw .τ

)
. It means that

there is a package pick-up task which was generated at timestamp
vw .τ with a pick-up location in grid vw .д. Its waiting time cannot
be longer than a threshold ϑ , otherwise the customer will cancel
vw and get a compensation.

Problem Statement. Given historical pick-up request data and
a constant number of couriers, we try to learn online courier dis-
patching policies, to guide where should each courier go and work
in each period of the episode. In each period t , for each courier,
there are nine possible actions for him or her, i.e. he or she can
go to one of the eight surrounding grids or just stay at his or her
current grid, to pick up packages generated there in t . By contin-
uing choosing working grids for couriers in each period until the



Table 1: Notations

Notations Descriptions
t A period in the episode
дw A grid in the city
cw A courier in the system
n Number of couriers
vw A pick-up request
Lwt Grid where courier cw is in t
Swt State of courier cw in period t
awt Action of courier cw in t
rwt Immediate reward of courier cw in t
γ Discount parameter in MDP

end of the episode, our target is to maximize the total number of
completed pick-up tasks, whose waiting time is no longer than ϑ .

3 METHODOLOGIES
Methodologies of our paper are elaborated in this section. Real-
world data from Beijing are adopted for examples.

3.1 City Division
As discussed above, the express system is large, making dispatching
couriers in it very challenging. Considering this issue, we divide the
city into independent regions and focus on each of them separately.
Besides to reduce problem complexity, city division also has practi-
cal operation benefits, i.e. system operators often prefer managing
each region separately instead of the entire city at the same time. In
addition, couriers in two areas far away are impossible to interact
with each other, thus it is not necessary to consider them together.
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Figure 3: Urban center and regions in it

According to practical settings of the system, there are many
choices to divide the city into independent regions, e.g. we can
divide the city based on road network, or simply based on geo-
graphical distance, etc. In this paper, we adopt an existing method
[15] directly. By this method, the city is divided based on historical
express data. Main idea of the method consists of two steps, i.e.
we first cluster transit stations based on the independence among
them, then grids covered by stations in the same cluster make up
one region. As city division is not the contribution of this paper,
and it is more like a preprocessing step, we do not go into more
details about the method but only show some city division results.

Figure 3 A) shows the urban center of Beijing which we inves-
tigate in this paper while Figure 3 B) shows the division results
of this area, where the grids with same color make up one region.
Blank grids mean that there is almost no request there because of
some geographical reasons, e.g. it is a lake there. As we can see,
we divide the area into four independent regions. In the following
context, we focus on each of these regions separately. For simplicity,
we still adopt I × J to denote the grid map of each specific region.

3.2 Courier Dispatching
In this section, we focus on the first region while the other regions
can be investigated in a similar way. After departing from transit
stations in the first region, couriers choose where to go and work
in each period of the episode. As pick-up requests come in real
time, and our target is to maximize the total number of completed
tasks in a long time, reinforcement learning is adopted to learn the
courier dispatching policy in this region.

3.2.1 Markov Decision Process. A reinforcement learning model
[26] is often described by aMarkov Decision Process, which is made
up by six components {S,A,TR,R, π ,γ }. State space S describes the
possible states of the agent. Action space Ameans the actions the
agent can take. S × A × S → TR is transition probability, which
describes how possible that an agent took action at under state
St will transit to the next state St+1. Immediate reward function
S ×A × S → R means the immediate reward received by the agent
after taking an action under a state and transiting to the next state.
Policy S × A → π describes the probability for the agent to take
each action under each state. γ ∈ [0, 1] is a discount parameter. In
each period t , the agent under the current state St takes an action
at according to policy π , then transits to the next state St+1, and
receives an immediate reward rt . In MDP, each action has a long-
term return which is defined as Equation 1, where T is the last
period of the episode.

Ut = rt + γ × rt+1 + γ
2 × rt+2 + ... + γ

T−t × rT (1)

Based on Equation 1, we can define the optimal long-term value
function as Equation 2. As we can see, it describes the maximum
expected long-term return of each action at under each state St , by
following any policy after period t .

Q(St ,at ) = maxπ E [Ut |St ,at , π ] (2)

After we obtain the long-term value function, we can easily
infer the corresponding optimal policy of this MDP by Equation 3,
i.e. we always choose the action which has the maximum optimal
long-term value under the current state.

Bellman equation as Equation 4 is often adopted to estimate the
optimal long-term value function via an iterative approach. As we
can see, it is based on a parametric form ofQ(x,y) and a sample pool
whose samples are four-entry tuples (St ,at , St+1, rt ). In real-world
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Figure 4: Courier dispatching methodologies

problems, because of the large state and action spaces, deep neural
networks are often adopted as the parametric form of Q(x,y).

a∗t = argmaxaQ(St ,a) (3)

Q(St ,at ) = rt + γ ×maxaQ(St+1,a |St ,at ) (4)

3.2.2 Sequential Dispatching Setting. Considering that there are
many couriers working in the region at the same time, we have
two choices to dispatch them in each period. First, we can consider
all the n couriers in the region at the same time, i.e. we choose a
joint action for them. By this strategy, the action space of each step
is 9n . As there are often tens or even hundreds of couriers in the
region, it is impractical to handle such a large action space. On the
contrary, the second choice is to consider the couriers one by one
sequentially, i.e. in each period t , we assign an action to courier c1
first, then we assign another action to c2, so on so forth until all the
n couriers have got their actions in t . After that, they will conduct
their actions simultaneously at the beginning of t , and work in their
new grids until t + 1, when new actions will be assigned to them
sequentially again. Figure 4 A) gives an example to elaborate this
sequential dispatching setting, where there are 4 couriers in the
region, i.e. along the horizontal axis, and 3 periods in the episode,
i.e. along the vertical axis.

Under sequential dispatching setting, there are only nine choices
at each step, which is very feasible. However, it brings another issue,
i.e. the cooperation among couriers is hard to guarantee because
we consider couriers one by one in each period. It is very possible
that we will get a greedy but not optimal result along the courier
sequence. In this paper, we focus on the second strategy to make
our model trainable and try to ensure cooperation among couriers.

In the following context, to ensure the cooperation among couri-
ers, we first try to formulate the dispatching problem based on
Central-Agent Reinforcement Learning, i.e. CARL, which considers
the system center as the central and only agent. As there is only
one agent, cooperation issue does not exist in CARL. However, by

theoretical analysis and experiments, we show that CARL sacrifices
long-term optimization for courier cooperation in our problem. Be-
cause of this, we try to formulate the problem based onMulti-Agent
Reinforcement Learning, i.e. MARL, which considers each courier
as an agent. By MARL, long-term optimization can be guaranteed
while cooperation among couriers becomes the issue. Considering
this, we improve MARL to Cooperative MARL model, i.e. CMARL,
which tries to maximize the total completed tasks by all couriers
in a long time. After investigating CARL, MARL, and CMARL, we
summarize the problems which CMARL is applicable to.

3.2.3 Central-Agent Reinforcement Learning. As claimed above,
CARL considers the system center as the central and only agent.
Based on the example given in Figure 4 A), we introduce CARL. In
each period t , the system center generates actionawt to each courier
cw one by one. As in Figure 4 A), the process of CARL in the episode
is S11

a11
−→ S21

a21
−→ S31

a31
−→ S41

a41
−→ S12

a12
−→ S22

a22
−→ ...

a33
−→ S43

where Swt means the state of cw in period t . In this example, it
means that the system center assigns action a11 to courier c1 in
t = 1, when the state is S11, and transits to the next state S21 of
courier c2 in t = 1, then the center assigns action a21 to c2, so on so
forth until the last courier c4 gets his or her action in t = 1. After
that, all the couriers conduct their actions simultaneously at the
beginning of t = 1. After t = 1, we go to the next period t = 2,
when the system generates actions to couriers in this period one
by one again, so on so forth until the last period.

Adopting Bellman iteration to train the MDP defined above, the
sample pool is made up by tuples

(
Swt ,awt , S(w+1)t , rwt

)
when

cw is not the last courier, or
(
Swt ,awt , S1(t+1), rwt

)
when cw is the

last courier in the region. However, in each period t , couriers get
their actions one by one but conduct them at once after all of them
have got their actions in t . It means we cannot observe S21 directly
after assigning a11 under S11 but can only approximate it.

State. For period t , a courier cw has a state consisting of four
elements as Swt = (ϒwt ,Wwt , Lwt , t). ϒwt means the already came
but not served pick-up requests.Wwt describes where the other
couriers are. Lwt is the current location of cw in period t . It is



intuitive that Wwt and Lwt vary over cw in the same period t .
Besides, as actions are generated to couriers one by one, the state
of a courier in t should also be impacted by the already determined
actions of other couriers before him or her, i.e. ϒwt varies over cw
in t as well. We elaborate this by a running example in Figure 5.

Assuming there are four couriers c1, c2, c3 and c4 in the region,
whose current locations are respectively д3, д9, д11 and д6 as shown
in Figure 5 A). Figure 5 B) describes the already came but not
completed pick-up requests, where each grid with a number means
how many requests are located there. For c1, the request matrix in
Figure 5 B), the distribution of the other three couriers in Figure 5
C), i.e. one in д9, one in д11 and one in д6, his or her current location
д3, and the current period t , make up the state S1t . Based on S1t , an
action is assigned to c1. We assume this action is go to д2 as shown
in Figure 5 D). After c1 got this action, we consider c2. Firstly, we
approximate [15] how many requests are expected to be completed
by c1 inner д2 in t after he or she will conduct the assigned action.
We assume this approximation as δ1 = 3 in our example. How
to obtain this approximation is very simple and will be intuitive
after designing the system simulator in section 4.1. Updating the
not completed request matrix in Figure 5 B) by reducing δ1 from
the entry corresponding to д2, we obtain the request matrix for
c2 as Figure 5 E). Generate the distribution of other couriers for
c2 as Figure 5 F), where the location of c1 has been updated to д2
considering the action he or she got. Finally, Figure 5 E), F), the
current location д9 and the current period t make up the state of c2.
Repeat these steps until all couriers are considered in period t , then
let them conduct their actions, and we then go to the next period.
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Figure 5: State for each courier in one period

Action and immediate reward are simply defined in CARL. Ac-
tion awt ∈ {0, 1, 2, ..., 8} means which grid the system center dis-
patches courier cw to at the beginning of period t . Immediate re-
ward rwt is the number of pick-up requests completed by courier
cw inner his or her new grid in period t .

Long-term optimization issue. Although CARL does not have
cooperation issue, it can only maximize the total completed tasks
in a short but not a long time. Here is the reason. Assume that
we adopt Bellman iteration to train the MDP, and the discount

parameter γ in Equation 4 is not set large enough, e.g. γ = 0.9.
Under this setting, when there are n = 40 couriers in the region
for example, the cumulative discount coefficient after the current
period t will be smaller than γ 40 ≈ 0.01. It means that the following
periods are almost not considered, not to mention that there may
be much more than 40 couriers in the region. But on the contrary,
if we set γ larger, the training of CARL in our problem cannot
converge. It is also reasonable because how we define the state of
the MDP is based on approximating. In a very uncertain system,
setting the discount parameter too large is very possible to make
Bellman iteration not converge.

Although we only discuss about adopting Bellman iteration to
train MDP in this paper, similar issues also exist to other methods,
e.g. policy gradient and actor-critic [26], etc. Because by our se-
quential dispatching setting, we largely extend the length of the
MDP, making uncertainty accumulate more. If the uncertainty of
each state or state transition is nontrivial, it is too hard to ensure
the convergence of these training methods.

3.2.4 Multi-Agent Reinforcement Learning. As CARL cannot guar-
antee long-term optimization, we try to formulate the dispatching
problem based on MARL. Figure 4 B) gives an example of MARL,
where each courier is considered as an agent, and they share a
common MDPM1, which is denoted by black dashed lines. At this
time, the action generating process is still the same with that shown
in Figure 4 A), i.e. actions to couriers are generated one by one in
each period. But the MDP changes, i.e.M1 for each courier cw in
the episode is Sw1

aw1
−→ Sw2

aw2
−→ Sw3, meaning that the sample

pool to train M1 by Bellman iteration is made up by four-entry tu-
ples

(
Swt ,awt , Sw (t+1), rwt

)
. Here the state, action, and immediate

reward are defined in the same way as those in 3.2.3.
In fact, the current model is very similar with an existing one [15].

In this study, the authors claimed that their model can guarantee
the cooperation among couriers to some extent. Because when they
designed the state for courier cw in period t , actions already got by
couriers before cw in t were also considered. In our model, this is
also the case. For example, in Figure 5, when we design the state of
c2 in t , the action courier c1 got in t is considered. Becausewe update
the uncompleted request matrix ϒ21 and the courier distribution
matrixW21 for c2, after c1 got his or her action. Similarly, when we
design the state of c3 in t , the actions c1 and c2 got are considered,
when we design the state of c4 in t , the actions c1, c2, and c3 got
are considered, etc. Colorful arrows in Figure 4 B) describe this
correlation among states of couriers in the same period.

According to previous works [15], our analysis, and the exper-
iment results in this paper, we agree that MARL can guarantee
the cooperation among couriers to some extent. For example, in
Figure 2, after dispatching c1 to д2 in t , considering this action, the
expected number of uncompleted tasks in д2 becomes zero, making
dispatching c2 to д2 in t less possible, thus avoiding the conflict
between c1 and c2. However, this idea to guarantee the cooperation
among couriers is still a greedy strategy instead of an optimal one,
i.e. we choose the best action for courier c1 under his or her current
state, then we update the state of c2 and choose the best action for
c2, so on so forth. In order to guarantee the cooperation among
couriers better, we propose CMARL model.



3.2.5 Cooperative Multi-Agent Reinforcement Learning. In this sub-
section, we first design a third MDPM2 to guarantee the coopera-
tion among couriers in each period t .M2 is a central-agent MDP,
where the system center is the central and only agent, and gener-
ates actions to couriers in each period one by one. An example of
M2 is shown in Figure 4 C), i.e. the yellow dashed lines. It is shared
by all the periods in the episode.M2 tries to optimize the sequence
of actions generated to couriers by the system in each period. For
any period t , its process is S1t

a1t
−→ S2t

a2t
−→ S3t

a3t
−→ S4t , meaning

that the sample pool to trainM2 by Bellman iteration is made up by
four-entry tuples

(
Swt ,awt , S(w+1)t , rwt

)
. Here the state, action,

and immediate reward are defined in the same way as those in 3.2.3.
As we can see, becauseM2 is based on CARL, it does not have

the cooperation issue, i.e. couriers in each period can cooperate
well. However, as it only optimizes the sequence of actions in each
period separately, it cannot guarantee the long-term optimization
target in the episode. But on the contrary, we know thatM1 in 3.2.4
or Figure 4 B) can guarantee the long-term optimization but not the
cooperation among couriers. Consequently, we consider M1 and
M2 as two complementary MDPs. Specifically,M1 tells each courier
how to choose an optimal action considering a long time whileM2
tells each courier how to select an optimal action considering all
the couriers in the region. It is reasonable to combine them to guide
where each courier should go in each period, to maximize the total
completed tasks by all couriers in a long time.

Motivated by the above idea, our CMARL model is made up by
M1 and M2. Bellman iteration to train M1 is as Equation 5 while
Bellman iteration to trainM2 is as Equation 6, where γ1 and γ2 are
discount parameters respectively forM1 andM2. From Equation 5,
we can see that the state transits from Swt to Sw (t+1), i.e. vertically,
while in Equation 6, it transits from Swt to S(w+1)t , i.e. horizontally,
matching their definitions shown in Figure 4 B) and C). In other
words,M1 is for long-term optimization whileM2 is for cooperation.

Q1(Swt ,awt ) = rwt + γ1 ×maxaQ1(Sw (t+1),a |Swt ,awt ) (5)

Q2(Swt ,awt ) = rwt + γ2 ×maxaQ2(S(w+1)t ,a |Swt ,awt ) (6)

After obtaining Q1 and Q2, a new value function is defined as
Equation 7, where α is a parameter to trade off M1 and M2. In
the online dispatching process, for each courier cw in period t , we
obtain its state Swt first, then choose the action whose new value
is the maximum, i.e. a∗wt = argmaxawt

Q(Swt ,awt ).

Q (Swt ,awt ) = Q1 (Swt ,awt ) + α ×Q2 (Swt ,awt ) (7)

Deep networks are designed to estimate the value functions Q1
and Q2 via Bellman iteration. Many studies [17][28][31][30][11] in
deep learning [6] can be referred to. In our work, we simply adopt
very basic layers, e.g. convolutional layers, fully connected layers,
embedding layers, etc. to construct the networks for Q1 and Q2.

3.3 Model Applicability
Although we propose CMARL for courier dispatching problem, the
model can be widely applied to many similar problems. As we can
see, except when designing each component of the MDPs, i.e. state,
action, and immediate reward, no more specific settings of express
system are considered or incorporated in CMARL. By reviewing
3.2.3, 3.2.4, and 3.2.5, we summarize that to any problem, which
meets the following two conditions, CMARL is applicable.

Condition 1. Many agents work in the system at the same time.
Specifically, the number of agents is not strictly constrained. It can
be tens or even hundreds.
Condition 2. System dynamics is stochastic, thus how the states
of the MDPs transit is very unsure. For example, in express system,
when adopting Bellman iteration to train the MDPs, the discount
parameters cannot be set too large.

For problems which meet these two conditions, CMARL tries
to generate actions to all agents one by one in each period of the
episode, thus to optimize the final target. In other words, CMARL
tries to guarantee the cooperation among agents and the long-term
optimization in the episode at the same time.

Although in this paper, we only adopt Bellman iteration for
model training, other existing methods can be adopted as well, e.g.
policy gradient and actor-critic [26], etc. Issues discussed in CARL
and MARL still exist when adopting other methods. For example,
about the long-term optimization issue in 3.2.3, because by our
sequential dispatching setting, we largely extend the length of the
MDP of CARL, making uncertainty accumulate. If the uncertainty
of state or state transition is nontrivial, no matter by which method,
it is too hard to ensure the convergence when training the model.
About the cooperation issue in MARL, it obviously cannot be ad-
dressed by any training method. As a result, CMARL is still a better
choice than CARL and MARL to this kind of problems, no matter
which training method is chosen.

4 EVALUATION
Based on road network data and historical express data in Beijing,
we conduct experiments by CMARL and nine baselines. Express
data are provided by one of the largest e-commerce platforms in
China. Figure 3 A) shows the urban center where the data have
been collected. Data details are summarized in Table 2. In our exper-
iments, we set the episode as 8:00am - 1:00pm, i.e. half day, because
it matches how couriers work in the real system. Besides, we also
conduct experiments when setting the episode as 2:00pm - 7:00pm
while dismissing the analysis and discussions, since the results are
similar with those of 8:00am - 1:00pm.

As introduced in 3.1, we first divide the urban center into four re-
gions, then we separately focus on each of the regions. Experiment
settings for each region are summarized in Table 3. In the table, #
requests means the number of requests each region is expected to
have in the episode, which is estimated based on historical express
data. According to the workload in each region, we allocate a num-
ber of couriers to work in it. In fact, the number of couriers being
allocated to each region needs to be decided based on practical
system settings, e.g. the workload, the budget, etc. However, in our
experiments, we try different settings of the number of couriers



Table 2: Real-world data and simulator parameters

Data

time 1st, Aug. - 15th, Aug. 2018
Range ≈ 15 × 15 km
# grids 30 × 30

# transit stations 106
# couriers 1, 786
# parcels 531, 920

Simulator
Courier speed 5 meters / second

ϑ 1 hour
tϵ 2 minutes

Table 3: Experiment settings for each region

Region # requests / episode # couriers
1 2365 {10, 20, ..., 70}
2 3338 {10, 20, ..., 70}
3 6854 {80, 90, ..., 150}
4 4190 {10, 20, ..., 70}

in each region, because our target is to evaluate the dispatching
performance of each model under a random given number of couri-
ers. As we can see from Table 3, because the workload in the third
region is obviously larger than the others, we set the number of
couriers in it as n = {80, 90, ..., 150} while n in other regions is
set as n = {10, 20, ..., 70}. Other values can also be tried, but these
values we used are representative enough considering the workload
in each region. Figure 6 shows the expected request distribution in
each region, the darker, the more requests located in the grid in the
episode. Some blank grids do not necessarily mean that there is no
request in them, but the requests in them are too few to be shown.
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Figure 6: Request distribution in each region

4.1 System Simulator
A system simulator is required to train and evaluate our model and
baselines. It simulates how the express system operates in each
period of the episode.

At first, we estimate the distance between any two tasks in each
grid based on road network data. Assuming that the distance be-
tween any two road nodes ev and ek is ϕvk , we estimate the task
distance inner grid дw with a Normal Distribution Nw which fits
ϕvk , where ev , ek ∈ rnw , and rnw is the road network in дw . Sec-
ondly, based on historical request data, we fit Normal Distributions
to generate the number of pick-up requests that will come in each
period and located in each grid. After obtaining these distributions,
we simulate how the system operates.

Each courier is initially at a random station. In each period t of
the episode, we first generate the number of requests that will come
to each grid in t , then we update the requests in the system, i.e. we
delete the requests which have waited for a time longer than ϑ and
add those that will come in t . Afterwards, our simulator simulates
the activities of each courier in t one by one. Each courier in the
region works as follows.

Step 1. Courier cw conducts his or her action, i.e. goes to grid Lwt
to work in period t .
Step 2. If there is any not completed request in Lwt and there is
remaining time in period t , generate a distance dx ∼ Nwt for cw to
go and pick up a package, here Nwt is the task distance distribution
in grid Lwt . Duration for this pick-up task is estimated by Equation
8, where vr is the speed of the courier or the delivery van, and tϵ
is a constant additional time needed by each task, e.g. the time for
package checking or form filling, etc.

tx =
dx
vr
+ tϵ (8)

Check whether the remaining time in t is enough for tx . If yes, let
cw conduct this pick-up task; update the remaining time in t by
deducting tx ; update the remaining requests in Lwt by deducting
one; then we repeat step 2. Otherwise, cw terminates his or her
working in period t .

Parameters in our simulator, i.e. waiting time thresholdϑ , courier
speedvr , and tϵ , are summarized in Table 2. Simulating the activities
of each courier one by one in each period t matches the sequential
action generating process, forcing each courier to consider the
already determined actions of others properly, i.e. the meaning of
those colorful arrows in Figure 4.

4.2 Metric and Baselines
Metric. Percent of Completed pick-up Requests, i.e. PCR, in the
episode is adopted as the metric in our experiments.

Nine baselines are adopted to compare with CMARL, among
which the first three are heuristic algorithms while the others are
reinforcement learning based models.

• Random. Select a random possible action each time.
• Greedy. Select the grid whose number of remaining pick-up
requests is maximum among the nine choices.

• Cooperative Greedy - CG. Similar with Greedy, but each
time a courier gets his or her action, we update the expected
remaining pick-up tasks in the corresponding grid. It is the
same with what we do when designing the state.



• Independent DQN - IDQN [4][27]. Consider each courier
as an agent but ignore the cooperation among them. Couriers
share a common MDP. IDQN is simple but often adopted to
solve multi-agent problems.

• tMARL [12]. tMARL is similar withM1. However, in each
period t , for each courier cw , the state is Swt = (ϒwt , Lwt , t),
i.e. we do not know the global information of other couriers
in the region.

• M1 in CMARL [15]. Only consider the MDPM1 in 3.2.4. It
is almost the same with an existing model [15].

• DegeneratingM2 - DM. Similar with the MDPM2 in 3.2.5
but do not update the expected remaining requests according
to those already generated actions.

• M2 in CMARL. Only consider the second MDPM2 in 3.2.5.
• CARL. Central-Agent Reinforcement Learning introduced
in section 3.2.3.

4.3 Parameters
As we can see, there are three parameters to tune in CMARL, i.e.
the discount parameter γ1 inM1, the discount parameter γ2 inM2,
and the parameter α in Equation 7 to trade offM1 andM2. In this
subsection, we elaborate how to tune each parameter for the first
region when the number of couriers is set as n = 20. How to tune
the parameters when n varies or for other regions is similar.

For parameter γ1, we respectively set it as γ1 = {1, 0.9, ..., 0.6}
and conduct M1 to compare the PCR under each setting. Results
are shown in Figure 7 A). As we can see, when γ1 = 0.7,M1 obtains
the largest PCR, thus we set γ1 = 0.7 when n = 20 in the first
region. For γ2, we respectively set it as γ2 = {0.6, 0.5, 0.4, 0.3, 0.2}
and conductM2 to compare the PCR under each setting. Results are
shown in Figure 7 B). As we can see, when γ2 = 0.4,M2 obtains the
largest PCR, thus we set γ2 = 0.4 when n = 20 in the first region.
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Figure 7: Parameter tuning

For α , under γ1 = 0.7 and γ2 = 0.4, we respectively set it as
α = {0.4, 0.8, 1.2, 1.6, 2} and conduct CMARL to compare the PCR
under each setting. We dismiss the figure because of space reason.
But from the results, we know that when α = 1.2, CMARL obtains
the largest PCR, thus we set α = 1.2 when n = 20 in the first region.

After tuning parameter α under each value of n in the first
region, we obtain α = 0.8, 1.2, 1.2, 1.2, 1.6, 1.6, 1.6 respectively for
n = 10, 20, 30, 40, 50, 60, 70. As we can see, when the number of
couriers increases, the more important the cooperation among
couriers becomes, thus a larger weight α is assigned toM2, trying
to guarantee the cooperation among couriers better.

Table 4: PCR in Region 1

# couriers 10 20 30 40 50 60 70
Random 0.10 0.19 0.27 0.34 0.41 0.47 0.53
Greedy 0.30 0.44 0.49 0.51 0.52 0.52 0.52
CG 0.30 0.46 0.51 0.53 0.54 0.55 0.56

IDQN 0.29 0.49 0.60 0.65 0.74 0.80 0.83
tMARL 0.28 0.50 0.65 0.76 0.84 0.86 0.91
M1 0.28 0.51 0.66 0.78 0.84 0.88 0.92
DM 0.29 0.49 0.65 0.79 0.85 0.90 0.92
M2 0.28 0.52 0.72 0.80 0.88 0.94 0.95

CARL 0.27 0.50 0.70 0.79 0.88 0.94 0.96
CMARL 0.31 0.54 0.73 0.85 0.92 0.95 0.96

4.4 Performance Comparison
In this section, we focus on the first region. Experiment results and
analysis of other regions are similar. Given a constant number of
couriers in the first region, i.e. n = {10, 20, ..., 70}, we respectively
conduct experiments by the nine baselines and our model. PCR of
each model is summarized in Table 4.

As we can see, among the first three heuristic algorithms, Ran-
dom performs the worst. It is reasonable as Random does not con-
sider any optimization target. Unexpectedly, when there are not
too many couriers, i.e. when n = 10, Greedy and CG, which do not
consider any cooperation or do not consider cooperation enough,
can work as well as our model. However, it is also reasonable be-
cause there is rare competition among couriers when n = 10, i.e.
the region is not crowded at all. Besides, considering that pick-up
requests in the region are too many for only n = 10 couriers, long-
term optimization is not necessary to be explicitly considered under
this situation. In other words, because couriers always have enough
packages to pick up in each period, there is almost no labor waste.
However, when the number of couriers increases, Greedy and CG
perform worse than those reinforcement learning based baselines
and our model obviously. CG obtains better results than Greedy. Be-
cause CG considers the cooperation among couriers to some extent,
i.e. when assigning actions to couriers, the actions already gener-
ated to some couriers before are also considered, which is similar
with the way howM1 considers the cooperation among couriers.
However, CG performs worse than M1 when n > 10, because it
does not have a long-term optimization target asM1 does.

Besides the three heuristic algorithms, we have another six rein-
forcement learning based baselines, among which the first three are
existing models while the other three are degenerated from CMARL
proposed in this paper. IDQN is the simplest one which considers
each courier as an independent agent without any cooperation with
others, thus it is reasonable that it performs worse thanM1 which
considers the cooperation among couriers to some extent, when
n > 10. However, as IDQN has a long-term optimization target, it
is still better than the three heuristic algorithms. tMARL does not
consider the global information of all couriers in the region asM1
does, therefore, it also performs worse thanM1, proving that the
second componentWwt in our state is reasonable and necessary.

DM,M2, and CARL are degenerated from CMARL proposed in
this paper. As introduced in 3.2.5, M2 tries to maximize the com-
pleted pick-up tasks by all couriers in each period. As we can see,



Table 5: PCR in Region 2

# couriers 10 20 30 40 50 60 70
Random 0.09 0.17 0.24 0.31 0.37 0.43 0.48
Greedy 0.24 0.39 0.46 0.50 0.52 0.53 0.54
CG 0.24 0.40 0.48 0.52 0.54 0.56 0.57

IDQN 0.22 0.38 0.52 0.61 0.67 0.69 0.74
tMARL 0.22 0.39 0.53 0.62 0.72 0.78 0.81
M1 0.22 0.40 0.54 0.65 0.74 0.78 0.83
DM 0.23 0.39 0.59 0.69 0.77 0.83 0.85
M2 0.21 0.40 0.59 0.70 0.80 0.85 0.90

CARL 0.21 0.40 0.61 0.67 0.77 0.85 0.89
CMARL 0.23 0.43 0.61 0.73 0.81 0.87 0.91

whenn is small, it performsworse thanmany other models. Because
at this time, the region is not crowded at all, thus the cooperation
among couriers is not very necessary to be considered explicitly.
Besides, M2 does not consider the long-term optimization target,
and the additional cooperation constraint may make M2 harder to
train, leading to its poorer performance. However, as n increases,
M2 performs better and better because the region becomes more
and more crowded, improving the possibility for couriers to have
competition. At this time, the cooperation among couriers becomes
more and more important. DM performs worse thanM2, proving
the reasonableness of our state formulation in 3.2.3, i.e. the ne-
cessity of those colorful arrows in Figure 4. CARL can guarantee
the cooperation among couriers as M2 does, but because of the
long-term optimization issue, it cannot guarantee long-term opti-
mization. Besides, the MDP of CARL is much longer than others,
making it harder to train. As a result, we can see its performance is
very unstable, i.e. sometimes it is better thanM2 while sometimes
it performs worse thanM2. Our model CMARL, which tries to en-
sure the long-term optimization in the episode and the cooperation
among couriers in the region at the same time, performs obviously
better compared with the nine baselines.

Besides the final PCR results, we also investigate the convergence
processes of the reinforcement learning based models in this paper,
i.e. CMARL and the last six baselines. We see that all these models
converge well. However, because of the space reason, we dismiss
their figures in this section.

Experiment results in other regions are summarized in Table 5,
Table 6 and 7. Specifically, in the third region, the number of couriers
is respectively set asn = 80, 90, ..., 150 instead ofn = 10, 20, ..., 70 as
those in the other regions. Because the workload in it is much larger
than those in the first, second, and fourth regions. As we can see,
experiment results in the other three regions are very similar with
those in the first region, confirming that our model is applicable to
and has stable performances in different environments.

5 RELATEDWORK
Express System Studies. Express systems are widely deployed in
many major cities, promoting many studies on large-scale city ex-
press [24][21][32][2][15]. In an express system, there are often two
types of tasks, i.e. delivering parcels to customers and picking up
packages from customers. Zhang et al. [32] proposed some heuristic
algorithms to guide couriers to deliver and pick up packages at the

Table 6: PCR in Region 3

# couriers 80 90 100 110 120 130 140 150
Random 0.28 0.31 0.34 0.37 0.40 0.42 0.45 0.47
Greedy 0.48 0.50 0.51 0.52 0.52 0.53 0.53 0.54
CG 0.52 0.53 0.54 0.55 0.56 0.57 0.57 0.58

IDQN 0.52 0.50 0.55 0.58 0.60 0.62 0.62 0.66
tMARL 0.52 0.59 0.62 0.66 0.70 0.69 0.72 0.73
M1 0.53 0.61 0.61 0.67 0.70 0.70 0.75 0.76
DM 0.54 0.60 0.66 0.71 0.74 0.77 0.79 0.82
M2 0.56 0.61 0.66 0.71 0.76 0.79 0.81 0.83

CARL 0.59 0.62 0.66 0.70 0.75 0.79 0.82 0.85
CMARL 0.61 0.64 0.69 0.75 0.77 0.82 0.83 0.87

Table 7: PCR in Region 4

# couriers 10 20 30 40 50 60 70
Random 0.05 0.11 0.16 0.20 0.25 0.29 0.33
Greedy 0.18 0.33 0.43 0.50 0.55 0.58 0.61
CG 0.19 0.34 0.45 0.53 0.58 0.63 0.66

IDQN 0.17 0.32 0.42 0.51 0.55 0.61 0.61
tMARL 0.17 0.32 0.46 0.55 0.69 0.72 0.81
M1 0.18 0.32 0.48 0.58 0.69 0.72 0.82
DM 0.18 0.33 0.45 0.56 0.63 0.72 0.75
M2 0.17 0.31 0.45 0.58 0.67 0.73 0.79

CARL 0.17 0.31 0.47 0.60 0.67 0.76 0.82
CMARL 0.19 0.36 0.51 0.64 0.71 0.80 0.85

same time in the system. Li et al. [15] proposed a multi-agent rein-
forcement learning based model to manage the couriers to complete
these two types of tasks. Problem settings of their study [15] are
similar with ours, except that we focus on the pick-up tasks only in
this paper. However, our setting is also reasonable, because in many
express systems, system operators adopt two different groups of
couriers to deliver and pick up packages separately. Besides, our
model can be easily extended to solve the problem where both of
these two kinds of tasks are considered at the same time. Some
studies tried to adopt crowdsourcing to complete the package de-
livering tasks, e.g. Sadilek et al. [24] asked a group of twitter users
to deliver packages, Mclnerney et al. [21] employed mobile users
to help to deliver packages, Chen et al. [2] exploited existing taxi
business to deliver packages to their customers. As our problem is
to cooperatively manage a constant number of couriers to complete
more requests in a long time, previous models cannot solve our
problem properly.

System Operation. Besides studies on express system, many
studies on operation of spatio-temporal systems have also been
conducted. Lin et al. [18] gave a solution to manage the large-
scale fleet for ride-sharing platform. Wei et al. [29] tried to intelli-
gently control the traffic light to minimize the average waiting time
of each vehicle. For bike-sharing system, there are many studies
[14][8][19][5][13][16] about how to predict bike usage demand,
and then redistribute bikes among stations in the city to reduce the
customer loss. As a specific operation problem with specific system
settings, we cannot directly adopt these previous models to solve
our problem.



Deep and Multi-Agent Reinforcement Learning. In many
practical problems, the state or action space is large, therefore, tra-
ditional reinforcement learning cannot perform effectively. Deep
Reinforcement Learning, i.e. DRL, which adopts the amazing repre-
sentation extraction ability of deep learning, addresses this issue in
many spatio-temporal system operation problems [18][14][29][15].

Besides, many models based on DRL for recommendation prob-
lem have been proposed, e.g. Chen et al. [3] designed a robust DQN
method to provide better recommendation in an e-commerce plat-
form, Hu et al. [7] used DRL to learn an optimal ranking policy for
search engine, etc. In some problems, DRL can even beat human
[22][23][25]. Multi-agent reinforcement learning [1][20] has also
attracted much attention. Tampuu et al. [27] analyzed the coopera-
tion and competition among two agents in reinforcement learning
by carefully designing the reward schemes. Kok et al. [9] tried to
learn the coordinated actions of a group of cooperative agents by
using sparse representation of joint state-action space. Lin et al.
[18] designed a multi-agent model to manage many vehicles in the
city. Lee et al. [10] further improved cooperative models by mixing
demonstrations from centralized policy. However, these models
cannot be directly adopted to solve our problem considering the
practical settings of express system.

6 CONCLUSION
In this work, we try to dispatch couriers in express system in real
time, thus they can pick up packages from customers cooperatively
and optimally in a long time.

At first, to reduce the problem complexity and because of some
practical system management benefits, we divide the city into in-
dependent regions, in each of which there are a constant number
of couriers working at the same time. Afterwards, we respectively
focus on each region without considering the others. Before go-
ing into our proposed model, we theoretically analyze why CMRL
cannot guarantee long-term optimization in the episode, and why
MARL cannot guarantee global cooperation among couriers. Af-
ter that, we propose CMARL to dispatch couriers in each region
in real time. CMARL is based on two MDPs, one for long-term
optimization and one to ensure the cooperation among couriers.
After obtaining the optimal long-term value functions of these two
MDPs, we design a new value function to trade off them, based
on which we can easily guide where should each courier go and
work in each period of the episode. Our model tries to maximize
the total completed pick-up tasks by all couriers in a long time, i.e.
guarantee both cooperation and long-term optimization at the same
time. Massive experiments based on real-world road network data
and historical express data from Beijing are conducted, to confirm
the superiority of our model compared with nine baselines.
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