
54

Detecting Urban Anomalies Using Multiple Spatio-Temporal Data
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Urban anomalies, such as abnormal movements of crowds and accidents, may result in loss of life or property if not handled
properly. It would be of great value for governments if anomalies can be automatically alerted in their early stage. However,
detecting anomalies in urban area has two main challenges. First, the criteria to determine an anomaly on different occasions
(e.g. rainy days vs. sunny days, or holidays vs. workdays) and in different places (e.g. tourist attractions vs. office areas) are
distinctly different, as these occasions and places have their own definitions on normal patterns. Second, urban anomalies
often exhibit complex forms (e.g. road closure may cause decrease in taxi flow and increase in bike flow). We need an algorithm
that not only models the anomaly degree of individual data source but also the combination of changes in multiple data
sources. In this paper, we propose a two-step method to tackle those challenges. In the first step, we use a similarity-based
algorithm to estimate an anomaly score for each individual data source in each region and time slot based on the values of
historically similar regions. Those scores are fed into the second step, where we propose an algorithm based on one-class
Support Vector Machine to capture rare patterns occurred in multiple data sources, nearby regions or time slots, and give
a final, integrated anomaly score for each region. Evaluations based on both synthetic and real world datasets show the
advantages of our method beyond baseline techniques such as distance-based, probability-based methods.
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1 INTRODUCTION
Urban anomalies, like unexpected crowd gathering, may pose tremendous risks to public safety if not timely
handled. For example, on Dec. 31th, 2014, a tragic stampede took place in Shanghai, where more than 300,000
people flocked to the Bund (a famous riverfront promenade in Shanghai) for a popular light show on New Year’s
Eve. 36 people were killed and 49 injured. The authority later admitted that they had underestimated the crowd
size and were not well prepared for the event. A similar stampede happened in the 2010 German Love Parade. For
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government and policy makers, it would be of great value if anomalies can be timely detected or even reported at
its early stage, enabling them to take immediate actions and prevent serious incidents from happening.
In this paper, we focus on detecting urban anomalies like events (e.g. concerts, unexpected gatherings) or

accidents (e.g. traffic accident) which take place in a small range of regions [11, 31] rather than city-scale ones
[26] like thunderstorms or holidays. Detecting local urban anomalies has more practical value because they are
less foreseeable than city-scale ones. Also, it is a more challenging task because the criteria for anomaly will
change due to external influences (detailed later in this section). With the help of massive spatio-temporal data
such as traffic conditions, user check-ins generated in cities, we are able to detect these urban anomalies. When
an anomaly happens, uncommon pattern will be observed from these data sources. Moreover, values of these
data sources in nearby regions or previous time slots may also be influenced. The following are two examples:

Example 1.1: As illustrated in Figure 1a, a road located in the red area was temporally closed due to construction.
Drivers have to bypass it through other routes, causing the traffic flow in this area decreased by 10%. On the
contrary, more people chose to ride bikes rather than taxis when traversing this area, leading to a 10% increase of
the bike flow.

(a) Road Closure (b) Concert

Fig. 1. Examples of urban anomalies

Example 1.2: As shown in Figure 1b, an influential pop star held a concert in the stadium at 20:00. Many fans
arrived at the stadium several hours before the concert started, having dinner in nearby restaurants or wandering
around the stadium. As a result, the traffic flow around the stadium during 18:00-19:30 as well as that in nearby
regions all increased by 10-15%.
To accurately capture urban anomalies and timely alert for potential ones as shown in the above examples,

we propose a method to detect urban anomalies based on uncommon patterns observed from multiple spatio-
temporal data sources of a certain region along with values of nearby regions and time slots. Our approach has
two advantages beyond traditional methods:
1) Detecting underlying anomalies: Some anomalies may not be detected in terms of a single dataset, but
show unusual patterns if we check multiple datasets simultaneously. As illustrated in Example 1.1, if we check
the increase and decrease individually, they look like normal fluctuations over the corresponding dataset, thereby
cannot be detected as anomalies. However, if checking the two datasets simultaneously, we find the opposite
change (i.e. increase vs. decrease) of flows is quite abnormal, as they change with the same trend in most cases.
2) Earlier detection: When an event took place in a certain region, it might influence the behavior of nearby
regions or consecutive time slots. Sometimes the anomaly degree for the values in a single region or time slot
may not be large enough to be marked as an anomaly, however, when taking the values of nearby regions and
consecutive time slots into consideration, anomalies become obvious. This kind of pattern often appears in the
early stage of an event, enabling us to issue alert before the anomaly reaches its peak. As shown in Example 1.2,
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if we only check the traffic flow at the stadium during 18:30-19:00, 15% might not be a significant jump. But, with
the help of nearby regions and consecutive time slots like traffic flow during 18:00-18:30, the fact that all those
values increased by 10-15% is a relatively rare situation, and we can safely separate it from normal fluctuations
and mark the stadium as anomalous during 18:30-19:00.
While timely detect urban anomalies may benefit a lot for both governments and citizens, it is a challenging

problem for the following reasons:
1) Distinctiveness and uncertainty of urban data. Data in different regions and time or under different
external influences may have different definitions of normal patterns. For example, on holiday nights, the normal
value of taxi flow in office area should be much less than that in commercial area, while on weekday mornings,
the opposite holds. Furthermore, the normal bike flow in rainy day should be much less than that in sunny days.
We need to define different criteria for anomalies under those different conditions.
2) Complex forms of urban anomalies. As Figure 1a shows, anomaly lies in the combination of increase in
bike flow and decrease in taxi flow, which is a rare case. This requires the algorithm be capable of evaluating the
anomaly degree of different combinations of changes in multiple data sources.

To tackle the above challenges, we propose a two-step method for detecting urban anomalies, which consists
of a similarity-based method to compute individual anomaly scores (CIAS) and an algorithm based on one-class
Support Vector Machine [19] to aggregate the individual anomaly scores (AIAS). The contributions of our work
are as follows:
1) CIAS leverage the values of historically similar time series and give a precise estimation of the anomaly score
for values of each data source in each region or time slot under different external influences.
2) In AIAS , we perform a two-stage OC-SVM with radial basis function (rbf ) kernel using the input from CIAS to
select final anomalies. AIAS takes nearby regions and time slots into consideration. It also explicitly evaluates the
anomaly degree of different combinations of changes in multiple data sources.
3) We perform extensive evaluations on both synthetic and real world data. Our model outperforms baselines
in the quantitative test based on synthetic datasets where we manually inject anomalies and use them as the
ground truth. We also evaluate our method on real world event detection task and study two representative cases
which are detected by our method based on taxi and bike trip data of New York City.

2 OVERVIEW
In this section, we show some preliminary definitions and the goal of our work. We also provide an overview of
our method.

2.1 Preliminaries
Definition 2.1 (Region). There are many definitions of location in terms of different granularity and semantic

meanings. In this study, we partition a city into regions r = {r1, r2, . . . , rnr } by major roads, such as highways
and arterial roads, using a map segmentation method [29]. This is the practice adopted by previous reserach [31].
nr stands for the number of regions. Consequently, each region is bound by major roads, carrying a semantic
meaning of neighborhoods or communities, as illustrated in Figure 2.

Definition 2.2 (Data Sources). A data source s is a stream of values, each of which is a triplet < r , t ,v >
representing that value v is observed in region r at time slot t . From another view, each data source is consisted
of nr time series vr,s0:t which stands for the values of data source s observed in region r from time slot 0 to t . ns
stands for the total number of data sources in the dataset.
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(a) Raw road network (b) Segmented regions

Fig. 2. Map segmentation and regions

Definition 2.3 (Goal). Given rn regions and historical values of ns data sources, v
ri ,sj
0:t−1, i ∈ [1,nr ], j ∈ [1,ns ] and

all the newly observed values at time slot t , vri ,sjt , i ∈ [1,nr ], j ∈ [1,ns ], we aim at detecting k anomalous regions
A = {ri1 , ri2 , . . . , rik }, where k depends on the proportion of regions we want to mark as anomaly every day.
The degree of anomaly is evaluated based on the observed values of all data sources in each region r as well as
values in nearby regions and consecutive time slots.

2.2 Framework
Figure 3 shows the procedure of our method.CIAS takes all observed values as input and gives an anomaly score
for each individual data source s , region r and time slot t . The individual anomaly score computed represents
how much the observed value deviates from the normal value. These scores are then fed into AIAS where we try
to detect rare patterns occurred in the data and finally output anomalous regions.

Taxi Data

Bike Data

Road Network

Update
Pairwise

Similarity

Map 
Segmentation

Compute 
Individual 

Anomaly Score

Find Candidate 
Anomalous 

Region

Aggregate 
Individual 

Anomaly Score

Final 
Anomalies

Data Acquisition CIAS AIAS Services

Governments

Fig. 3. Framework

3 COMPUTE INDIVIDUAL ANOMALY SCORES

3.1 Insight
In this step, we aim at estimating the anomaly score for every < r , t ,v > triplet, a.k.a. computing individual
anomaly scores. CIAS transforms the raw observed values into same-scale anomaly scores which stand for how
much the newest values deviates from what they should be. These anomaly scores will be fed into the AIAS
(Section 4) for further process.
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As mentioned in Section 1, urban data are significantly influenced by complex factors, which makes it hard
to define how much the latest value deviates from its normal range. In [31][27][22], researchers first built a
prediction model based on historical values and external features, then calculated anomaly scores according to the
predictor. These kinds of solutions might work but they face some problems. Because urban data are influenced
by tons of factors, including time of day, function of regions, weather, temperature, holiday, government policies,
it is difficult to train a precise prediction model to cover so many different environmental situations. For example,
although people do not need to go to work on weekdays, Christmas and Thanksgiving Day, we still cannot treat
them altogether as holidays, for they clearly have different impacts on the traffic flow in cities. However, due to
lack of training data, most methods simply mark them as holidays in contrast to workdays, which will lead to
imprecise prediction.

In fact, in the context of anomaly detection, paying huge effort on building an accurate prediction model is not
necessary. As shown in Figure 4a, in prediction task, what we got is all the historical data and other environmental
features. We need to use those values to predict all the values in the latest time slot. However, as Figure 4b shows,
when detecting anomalies, we usually have access to all the values generated in the current time slot. This would
make a big difference because we can leverage the newest values of other data sources in other regions to evaluate
the anomalousness of the value in a certain region. With this observation in mind, we propose a similarity-based
method where we use historically similar regions as a guide and make full use of all the newly observed data.

(a) Prediction Task (b) Anomaly Detection Task

Fig. 4. Illustration of prediction and anomaly detection

As shown in Figure 5a, we plot one time series vr1,s1t1:t2 and the weighted average of time series which has high
similarity with vr1,s1t1:t2 (time series plotted are first standardized to have mean 0 and standard deviation 1). Here
we use Pearson Correlation Coefficient (PCC) as the similarity measurement, the reason of using PCC will be
explained later. From the figure, we can see that the weighted average is a good estimation of the value of vr1,s1t1:t2 .
But in Figure 5b, we observe that the new value deviates a lot from the new weighted average. This phenomena
indicates a potential anomaly. Generally speaking, if a group of urban time series has high similarity, it implies
that they may serve similar function in city, e.g. all of them are the taxi flow in office area. Since they serve
similar function, they tend to exhibit similar behavior even when external environment changes. For example,
suppose the government issued a temporary holiday decision due to bad weather, then the taxi flow in office
area would all decrease. If, however, some region r in the group does not behave like others, there is probably an
anomaly. Since we have access to all the latest observed data, we do not have to directly model the influence
these external factors exert on the data sources. Instead, we use the latest values of historically similar time
series to evaluate the anomaly degree for the current time series. This observation leads to the basic idea ofCIAS .
Suppose two time series vr1,s10:t−1 and v

r2,s2
0:t−1 has high similarity, if after observing value in time slot t , the similarity

drops significantly, then this is a sign for anomaly.
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(a) Normal (b) Anomalous

Fig. 5. Weighted average of similar regions

3.2 Methodology
For each time slot t , we compute a pairwise similarity matrix St ∈ Rr ·s×r ·s for each region r and data source s ,
where Str1,s1;r2,s2 stands for the similarity between data source s1 in region r1 and data source s2 in region r2 at
time slot t . Str1,s1;r2,s2 is calculated by the following equation:

Str1,s1;r2,s2 = ρ(vr1,s1(t−l+1):t ,v
r2,s2
(t−l+1):t ) (1)

where ρ is the Pearson Coefficient Correlation (PCC). l is a parameter controlling how many values we are
interested when computing similarity, since urban data usually exhibit strong weekly periodicity, we set l to be
the length covering a whole week. We choose PCC as the similarity measurement for the following two reasons.
First, PCC reveals the true similarity between time series regardless of the scale and length [12]. Second, PCC
is known to be vulnerable to outliers. This is one of the drawback of PCC. However, in the context of anomaly
detection, we exactly require the similarity measurement be sensitive to anomalous points.

After computing the pairwise similarity matrix at each time slot t , we define the concept of historically similar
series as < r1, s1 >, < r2, s2 > pair whose PCC is larger than a certain threshold θ . That is, < r1, s1 > and < r2, s2 >
are regarded as historically similar at time slot t if St−1r1,s1;r2,s2 > θ . Also, we useHStr,s as the set of all historically
similar series < r ′, s ′ > for < r , s > at time slot t .

Then we calculate a Similarity Decrease Matrix SCt ∈ Rr ·s×r ·s . SCt stands for the decrease of pairwise similarity
from time slot t − 1 to time slot t . SCt

r1,s1;r2,s2 represents the drop in similarity of data source s1 in region r1 and
data source s2 between time slot t − 1 and time slot t , which is calculated by the following equation.

SCt
r1,s1;r2,s2 =max(0, St−1r1,s1;r2,s2 − S

t
r1,s1;r2,s2 ) (2)

since we are only interested in the drop in similarity, negative values which represents an increase in similarity
will be omitted.

We compute the anomalous degree adr,st for vr,st based on Equation 3

adr,st =

∑
<r ′,s ′>∈HStr ,s S

t−1
r,s ;r ′,s ′ · SCt

r,s ;r ′,s ′∑
<r ′,s ′>∈HStr ,s S

t−1
r,s ;r ′,s ′

(3)

Notice that adr,st only depicts the anomalous degree for vr,st , it cannot tell if vr,st is abnormally larger than its
normal value or smaller than what it should be. To differentiate between those two conditions, we need to add a
positive or negative sign for adr,st . If vr,st is larger than the average value of all its historically similar regions, we
multiply adr,st by +1 otherwise −1. However, since data of different regions or data sources have different scales,
we cannot directly use the average of raw data as the estimation of normal value. Instead, we first normalized the
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data and use the weighted average of standardized value to decide if a positive sign or negative sign should be
added. Basically, we transform the raw data by removing the mean value of each time series, then scale it by
dividing by their standard deviation, as Equation 4 shows.

v_scaledr,st =
vr,st −mean(vr,s(t−l+1):t )

std(vr,s(t−l+1):t )
(4)

Then we compute the sign for adr,st by the following equation.

siдn(adr,st ) =


+1, v_scaledr,st >

∑
<r ′,s′>∈HStr ,s

St−1r ,s ;r ′,s′ ·v_scaled
r ′,s′
t∑

<r ′,s′>∈HStr ,s
St−1r ,s ;r ′,s′

−1, otherwise

Finally, the individual anomaly score score_indr,st is calculated based on the following equation.

score_indr,st = adr,st × siдn(ad
r,s
t )

4 AGGREGATE ANOMALY SCORES
In this section, we introduce how we aggregate the individual anomaly scores (AIAS). AIAS takes score_inds
computed by CIAS as input, and find anomalous regions based on the score_inds of all data sources in that
region as well as score_inds in nearby regions and consecutive time slots. We adopt OC-SVM with rbf kernel as
detection algorithm because rbf kernel introduces higher order terms which explicitly represent the interaction
between different data sources and nearby regions. AIAS consists of two stages. In the first stage, we compute the
anomaly score by OC-SVM for each region using score_ind of the data sources in that region. We select regions
with top anomaly scores as candidate anomalous regions. Then in the second stage, we perform OC-SVM again
using the score_inds of each region as well as score_inds in its nearby regions and time slots. Candidate regions
with top anomaly scores computed in the second stage will be output as final anomalies.

4.1 One Class Support Vector Machine
First, we briefly review the concept of OC-SVM algorithm. Suppose we are given a dataset with n d-dimension
points where most points are considered normal, i.e. drawn from a certain distribution, while a small part of
points are anomalous, i.e. drawn from other distributions. OC-SVM tries to find those anomalous points without
explicitly telling it which points are anomalous and which are normal. It is basically an unsupervised version
extension of Support Vector Machine. It first maps the data into feature space corresponding to the kernel. Then
instead of separating the dataset according to their label, it separates them from the origin ®0 using a hyperplane.
The algorithm tries to maximize the distance from this hyperplane to the origin ®0. Additionally, similar to SVM,
OC-SVM also introduces slack variables ξ s. Slack variables let OC-SVM tolerate some data points (anomalous)
falling into the other side of the hyperplane. For a new point x, if it falls in the same side of hyperplane where
most training data fall, then x is marked as a normal data points, otherwise anomalous. Moreover, the distance
from new point x to the separating hyperplane can be used as the measurement of degree of anomalousness.
The quadratic programming minimization for OC-SVM is slightly different from SVM, as Equation 5 and 6

shows.

min
w,ξ ,ρ

1
2
∥w ∥2 + 1

νn

∑
i

ξi − ρ (5)

subject to (w · Φ(xi)) ≥ ρ − ξi , ξi ≥ 0 (6)
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Where parameter ν characterizes the fractions of support vectors and outliers. ξ s are the nonzero slack variables.
Φ is the function that maps original points into high dimensional feature space. The minimization problem also
has a dual form where only the inner product of data points are interested, thus we can use all the kernel trick
same as SVM.

4.2 Methodology
Definition 4.1 (Proportion of anomaly α ). α is a manually set parameter. It stands for the expected proportion of

anomalous regions for each day (consecutive 24 hours). For example, suppose the length of each time slot is 30
minutes, then there are 60/30 · 24 · nr < r , t > pairs for every 24 hours. Given α , the number of anomalies we
expected to report during every 24 hours will be 60/30 · 24 · nr · α .

First stage. In the first stage, we aim at finding candidate anomalous regions. These are the regions which are
relatively anomalous by only checking the data sources of its own, without considering nearby regions or other
time slots. Specifically, for every region r at time slot t , we construct a data point

x_rrt =< score_indr,s1t , score_ind
r,s2
t , . . . , score_ind

r,sns
t >

Xr is a set containing all x_rrts. An OC-SVM with rbf kernel will be trained on Xr . Rbf kernel maps the original
training data into infinite dimension space. Higher order terms like score_indr,s1t · score_indr,s2t , score_indr,s1t ·
score_indr,s2t · score_indr,s4t explicitly model the combinations of changes in multiple data sources, enabling the
algorithm to identify underlying anomalies, e.g. the one specified in Figure 1a.
For each time slot T , we first construct data points x_rrT for r ∈ [1,nr ]. Then we use the previously trained

OC-SVM model to evaluate an anomaly score score_r rT for each region, i.e. the distance from x_rrT to the separating
hyperplane. x_rrTs will be added to Xr for future training. Next, we select top-β score_r rt during the last 24 hours
and their corresponding < r , t > index as the candidate anomalous regions. Here β is a parameter larger than α .
For example, in the experiments setting, we set α to 1% and β to 5%. Formally, the candidate set C is given by

C = argmax
r,t

[l · nr · β] {score_r rt |r ∈ [1,nr ], t ∈ [T − l + 1,T ]}

Where l is the number of time slots which can cover 24 hours, argmax[k] stands for the function which returns
the index of largest k values.

Second stage. In this stage, we take nearby regions and consecutive time slots into consideration. The
difference with the first stage lies in the construction of data points. Specifically, for every region r at time slot t ,
we construct a data point

x_intrt =< score_indr,s1t , score_ind
r,s2
t , . . . , score_ind

r,sns
t ,

score_indr,s1t−1 , score_ind
r,s2
t−1 , . . . , score_ind

r,sns
t−1 , . . . ,

score_indr,s1t−t∆+1, . . . , score_ind
r,sns
t−t∆+1,

score_nearbyr,s1t , score_nearby
r,s2
t , . . . , score_nearby

r,sns
t >

Line 1 is exactly the same as x_rrt . Line 2 to Line 3 are the score_inds of region r in previous t∆ − 1 time slots,
where t∆ is a manually set parameter. t∆ represents the number of consecutive time slots we want to check. Line
4 stands for the score_inds of r ’s nearby regions. score_nearbyr,st is the average of score_indr

′,s
t s, where r ′ are

the neighbors of r . As illustrated in Figure 6a, two regions are regarded as neighbors if their centers are within
distance R. R is set empirically depending on the dataset. Take regions in NYC as example, we plot the histogram
of distances between each region and its 5 nearest regions in Figure 6b. Since most distances are around 800m,
we set R to 800m for NYC dataset. Similar to Xr , Xint denotes the set containing all x_intrts.
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(a) Neighbor of a region (b) Histogram of distances

Fig. 6. Settings of score_nearby

For each time slot T , we follow the same process as stage one and get score_intrT s through an OC-SVM trained
on Xint . Finally, we sort score_intrt for all < r , t > in the candidate set C and select < r , t > with highest scores.
< r , t > with t = T will be identified as anomalies at time slot T . Formally,

A = {r | < r ,T >∈ argmax
r,t

[l · nr · α] {score_intrt | < r , t >∈ C}} (7)

Notice that if we only perform the second stage and mark regions with highest score_ints as anomalies, we
may select regions with low score_inds but high score_nearbys. This conflicts with our original goal. We leverage
the values of nearby regions and time slots in order to better evaluate the anomaly degree of each region. If a
region is anomalous, the anomaly degree within the region itself should at least be relatively high.
Algorithm 1 summarizes AIAS . In practice, we retrain the OC-SVM in a daily basis.

Algorithm 1: Aggregating Individual Anomaly Scores
input :score_ind , current time slot T
output :Anomalous regions, A

1 Construct x_rrT for r ∈ [1,nr ];
2 Xr ← Xr ∪ {x_rrT |r ∈ [1,nr ]};
3 score_r rT←OCSVMr .predict(x_rrT) for r ∈ [1,nr ];
4 C ← argmax

r,t
[l · nr · β] {score_r rt |r ∈ [1,nr ], t ∈ [T − l + 1,T ]};

5 Construct x_intrT for r ∈ [1,nr ];
6 Xint ← Xint ∪ {x_intrT |r ∈ [1,nr ]};
7 score_intrT←OCSVMint .predict(x_intrT) for r ∈ [1,nr ];
8 A ← {r | < r ,T >∈ argmax

r,t
[l · nr · α] {score_intrt | < r , t >∈ C}};

9 OCSVMr .train(Xr);
10 OCSVMint .train(Xint);
11 return A

5 EXPERIMENTS
We conduct experiments on both synthetic and real world datasets to show the effectiveness of our method. Due
to lack of labeled urban anomalous events, we first conduct quantitative analysis on synthetic datasets. Data
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sources are generated manually and several types of anomalies are injected. Those anomalies serve as the ground
truth. We also evaluate our method on real world event detection task and perform two case studies on real world
data to show some of the advantages of our method. Code and data are available on Github1.

5.1 Experiments Based on Synthetic Datasets
5.1.1 Data Generation. We generate two data sources, taxi and bike flow, on the map of Manhattan. To mimic

real world situation, we divide Manhattan into five functional regions. Notice that the partition is not exactly the
same as real world, we just used Manhattan as a map. As shown in Figure 7a, regions are marked by color, each
of which represents a certain function in city. For each function, we first design a base curve (standardized) for
both taxi and bike flows. We try to simulate the behavior of each functional region in real world. As shown in
Figure 7b, we plot the base curve for sightseeing and residency area. We let traffic flow in sightseeing area be high
at weekends and low at weekdays. For residency area, we make the traffic flow in peak hours higher than other.
Besides the base curve, we also design three types of anomalies and two types of external influences, as shown in
Table 1. We will show that our method can robustly detect anomalies without knowing the external influences
and its effects on data. The anomalies and external influences will be randomly injected to the base curve. After
that, we add a Gaussian noise with mean 0 and standard deviation 0.03. Finally, we randomly draw mean and std
for taxi and bike flow for each region from a Gaussian distribution and use them to transform the base curve
to final values. For the experiments, we generate 6 weeks of data. We randomly inject 240 anomalies for each
anomaly type in the first 4 weeks and 120 each in the last 2 weeks. Besides, we randomly inject 3 rainy days in
the first 4 weeks and 3 in the last 2 weeks. Also, we randomly inject 4 holidays in the first 4 weeks and 3 in the
last 2 weeks. The method will be trained upon the first 4 weeks and tested on the last 2 weeks.

(a) Partition (b) Base curve

Fig. 7. Synthetic data generation

5.1.2 Baselines and Metric. We first compare our method with three classical and widely used anomaly
detection methods. Since we are dealing with urban data, we follow the traditional process [5] to divide data
by region r , data source s , time slot t and weekends or weekdays. For example, data with same r ,s ,t and are all
collected weekdays will be grouped together. Anomaly detection method will be conducted on each group. We
compare with the following baselines.
• EE: Fit an elliptic envelope and use Mahalanobis distance as the anomaly score. [17]
• Neiдhbor : Use the Euclidean distance between the values of a region and the mean value of its nearby
regions as the anomaly score.

1https://github.com/uc-zhc/DetectUrbanAnomalies
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Table 1. Anomalies and external influences

Anomalies Effect

ID increase bike flow by 0.15 and decrease taxi flow by 0.15
TS increase or decrease the taxi or bike flow by 0.15 for two consecutive time slots
R increase or decrease the taxi or bike flow by 0.15 for region r and regions within 800m
External Influences Effect

Rain Decrease all traffic flow by 0.5 in one day
H Mimic holiday, decrease traffic flow in office area by 0.5 and increase traffic in sightseeing

and commercial by 0.5

• LRT : Fit a Poisson distribution on historical data and use likelihood ratio test as the anomaly score.
Besides the classical baselines, we also show the effectiveness of both components CIAS and AIAS by substi-

tuting or simplifying the components. Also, we show the advantages of checking multiple data sources, nearby
regions and time slots. Specifically, we compare our full method with the following baselines.
• ind + inttaxi : Perform the full method but with only taxi flow.
• ind + intbike : Perform the full method but with only bike data.
• ind + ints : Do CIAS and only perform the first stage of AIAS , i.e. only check score_ind of all data sources
of a region, without considering nearby regions or time slots.
• ind + intstr : Do CIAS and only perform the second stage of AIAS , i.e. without first selecting candidate
anomalous regions.
• raw + int : Use raw values instead of score_inds computed by CIAS as the input of AIAS
• ARIMA+int : Use predictionmethod to evaluate score_inds instead ofCIAS , notice that external information
like Rain and H are not available for the prediction algorithm.
• ind + int : Full method

We use the hit rate (recall) of anomalies injected as main metric. Also, we evaluate parameter sensitivity of our
method and compare with other baseline methods using F1-Score.

5.1.3 Settings. The threshold for historically similar regions θ is set to 0.8, since a Pearson Correlation
Coefficient larger than 0.8 is considered as strongly correlated according to [32]. R which defines the neighbors
of each region is set to 800m as mentioned in section 4. Number of consecutive time slots considered t∆ is set to 2.
The expected proportion of anomalous regions α is set to 1% and β is set to 5%. Note that t∆ and α can be adjusted
to meet the need for different real world scenario. If more anomalies are expected then α can be increased. For
OC-SVM, we set hyperparameter ν to 0.1 as it is used in the original paper [19].

5.1.4 Results. Table 2 shows the results of different baselines and our method. As we can see, the full method
ind + int gets the highest overall hit rate. It detects 91.06% of all types of anomalies and remain high hit rate even
when there are external influences, i.e. Rain and Holiday. For the first three classical methods, the performance is
extremely poor, indicating that classical anomaly detection methods are not capable of handling the complex
nature of urban data. For the ID anomaly, ind + ints performs slightly better than the full method, because it
focuses on detecting anomalous patterns of region r , regardless of the situation of nearby regions and time
slots. The performance of ind + intstr is not satisfying, which proofs that without selecting candidate anomalous
regions, one may incorrectly mark regions as anomalies due to the anomaly scores of nearby regions or time slots.
The low hit rate in ind + inttaxi and ind + intbike shows the importance of detecting anomalies using multiple
data sources. Poor performance of raw + int indicates that it is necessary to first transform raw urban data into
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some kind of anomaly scores. One can’t directly apply classic anomaly detection method on raw urban data.
Lower hit rate in ARIMA + int shows the advantages of similarity-based CIAS . We are able to recover the true
anomaly degree even when external influences are unknown, while prediction model will certainly fail.

Table 2. Comparison between baselines and our method on synthetic data. For the definition of ID,TS,R,Rain,H please refer
to Table 1

anomalies ID R TS ID,TS,R ID,TS,R(w/ Rain) ID,TS,R(w/ H)
count 120 120 120 358 80 45

EE hit 10 15 9 34 7 11
hit rate 8.33% 12.50% 7.50% 9.50% 8.75% 24.44%

Neiдhbor hit 3 1 2 6 3 1
hit rate 2.50% 0.83% 1.67% 1.68% 3.75% 2.22%

LRT hit 8 6 3 17 10 2
hit rate 6.67% 5.00% 2.50% 4.75% 12.50% 4.44%

ind + inttaxi hit 97 55 64 216 50 31
hit rate 80.83% 45.83% 53.33% 60.34% 62.50% 68.89%

ind + intbike hit 107 57 51 214 51 24
hit rate 89.17% 47.50% 42.50% 59.78% 63.75% 53.33%

ind + ints hit 117 94 90 300 64 40
hit rate 97.50% 78.33% 75.00% 83.80% 80.00% 88.89%

ind + intstr hit 103 91 93 285 63 38
hit rate 85.83% 75.83% 77.50% 79.61% 78.75% 84.44%

raw + int hit 6 9 7 22 3 3
hit rate 5.00% 7.50% 5.83% 6.15% 3.75% 6.67%

ARIMA + int hit 3 3 1 7 5 0
hit rate 2.50% 2.50% 0.83% 1.96% 6.25% 0.00%

ind + int hit 114 106 107 326 72 42
hit rate 95.00% 88.33% 89.17% 91.06% 90.00% 93.33%

5.1.5 Parameter Analysis. In this section, we evaluate the performance of our method under different parameter
settings, i.e. α , β and R. The result is shown in Figure 8. α controls the expected proportion of anomalous regions
each day. Larger α will result in more anomalies as well as false alarms, smaller α will result in less anomalies
and lower hit rate. It is similar to the threshold parameter in other anomaly detection algorithms. As shown
in Figure 8a, we test different α values, i.e. {0.001, 0.002, . . . , 0.019, 0.02, 0.04, . . . , 0.08, 0.1}, no matter how we
choose α , our method ind + int consistently outperforms all other baselines with respect to F1-Score. β controls
the proportion of candidate anomalous regions. We fix α to 0.01 and test with β ranging from 0.01 to 0.10. As
shown in Figure 8b, β does not largely impact the performance, this is mainly because candidate anomalous
regions with high anomaly scores are very likely to be real anomalies. But we do see that best performance is
achieved when β is 5 or 6 times α . R defines the neighbor of a region. As shown in Figure 8c, we achieve highest
F1-Score when R is 800m, which corresponds with the underlying ground truth (see Table 1). However, other
choices of R also show comparable performance with the best choice.

5.2 Experiments Based on Real World Datasets
5.2.1 Datasets. We evaluate our method on two real world datasets generated in New York City:

1) Taxi data: This dataset is generated by over 14,000 taxicabs in NYC. Data includes pick-up and drop-off locations
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(a) α (b) β (c) R

Fig. 8. Parameter Analysis

and times, the duration and distance of each trip, taxi ID and the number of passengers for each trip.
2) Bike renting data: The data is generated by the bike sharing system in NYC, which has 340 bike stations and
about 7,000 bikes. Each record in the data includes the time, bike ID, station ID, and an indication of check-out or
return. The location of each station is also disclosed to the public.
Figure 9 presents the geographical distributions of the taxi and bike on a digital map. As shown in Figure 9a,

each red point stands for a bike station and a blue edge denotes the aggregation of bike commutes between two
stations. Figure 9b is a heat map of the drop-off and pickup points of all the taxi trips. The lighter the denser.

(a) Bike data (b) Taxi data

Fig. 9. Visualization of data

5.2.2 Settings. We partition each day into 48 30-minutes time slots and count the volume of taxi and bike flow
for each time slot. For other parameters, we follow exactly the same setting in the synthetic experiments.

5.2.3 Results. Quantitatively evaluate urban anomaly detection algorithm on real world settings is an open
challenge, mainly because it is impossible to achieve a full set of ground truth, leading to inaccurate false alarm
rate. In this paper, we evaluate our method by the same procedure done in a previous work [31], where they
correlated the anomalies detected with the events reported by nycinsiderguide2 during Nov. 1st 2014 to Nov. 30th
2014. Time and location of the 20 reported events are listed in Table 3.

2https://www.nycinsiderguide.com/
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Table 4 shows the results of our method and different baselines. Following the same procedure in [31], a
detected anomaly is regarded as a correct recall if the anomaly has an overlap with a reported event in both spatial
and temporal spaces. Among all methods, our method ind + int detects 12 out of 20 events, outperforms all other
baselines. Lower hit rate of ind + inttaxi and ind + intbike demonstrates the importance of using multiple data
sources. Notice that in this experiment, all we get is the taxi and bike flow data, the result shows that our method
is able to detect real world events without knowing any information about external influences (e.g. working day,
holiday, weather).

Table 3. Events reported by nycinsiderguide

Event Name Address Start Time End Time

1 Bowlloween 2014 New York Halloween 624 W 42nd St 10/31 9PM 11/1 2AM
2 Largest Halloween Singles Party in NYC 247 W 37th St 10/31 7AM 11/1 3AM
3 Kokun Cashmere Sample and Stock Sale 237 W 37th St 11/5 10:30AM 11/1 3AM
4 Big Apple File Festival 54 Varick St 11/5 6PM 11/9 11PM
5 InterHarmony Concert: The Soul of Elegiaque 881 7th Ave 11/6 8PM 11/6 10PM
6 Hiras Master Tailors New York Trunk Show 301 Park Ave 11/6 9AM 11/9 1PM
7 First Fridays! 881 7th Ave 11/7 6PM 11/7 10PM
8 Thomas/Ortiz Dance Show 248 W 60th St 11/7 7PM 11/8 9PM
9 Rebecca Taylor Sample Sale 260 5th Ave 11/11 10AM 11/15 8PM
10 The News NYC Sample Sale 495 Broadway 11/13 9AM 11/15 6AM
11 Giorgio Armani Sample Sale 317 W 33rd St 11/15 9:30AM 11/19 6:30PM
12 Get Buzzed 4 Good Charity Event NYC 200 5th Ave 11/15 1PM 11/15 4PM
13 Ment’ or Young Chef Competition 462 Broadway 11/15 2PM 11/15 6PM
14 Gotham Comedy Club 208 W 23rd St 11/17 6PM 11/17 9PM
15 Kal Rieman NYC Sample Sale 265 W 37th St 11/18 11AM 11/20 8PM
16 Inhabit Cashmere Sample Sale 250 W 39th St 11/18 10AM 11/20 6PM
17 Shoshanna NYC Sample Sale 231 W 39th St 11/19 10AM 11/20 6:30PM
18 ICB/J. Press NYC Sample Sale 530 7th Ave 11/19 12AM 11/21 12AM
19 Thanksgiving in New York City 2014 1675 Broadway 11/27 6AM 11/27 10PM
20 Thanksgiving Day Dinner 108 W 40th St 11/27 12PM 11/27 9PM

Table 4. Results on real world event detection

EE Neighbor LRT ind+int ind+int raw+int ind+int

hit 5 2 5 10 9 4 12
hit rate 25% 10% 25% 50% 45% 20% 60%

5.2.4 Case Studies. Among the all anomalies detected, we selected two representative cases to illustrate the
advantages of our method.
Macy’s Thanksgiving Day Parade. The first example is the famous macy’s thanksgiving day parade. The

parade started at 9:00a.m., Nov. 27th, 2014. As Figure 10a shows, our algorithm raised alert for anomaly at 8:00a.m.
The following are two main advantages of our algorithm implied by this example:
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1)The algorithm is capable of finding anomalies evenwhen external environment changes.On Thanks-
giving Day, traffic flow will differ greatly from regular Thursdays. The algorithm is totally unaware of the
Thanksgiving Day, all it had is the raw data. However, with the similarity-based CIAS , our method is capable of
handling these kind of external influences and evaluate anomalies based on the normal values on Thanksgiving
Day. Figure 10a shows the normal values and values on Thanksgiving Day for the detected region r , while Figure
10b shows the same information for regions which are historically similar to it. As we can see, data for region r
clearly differs from its historically similar regions. It supposed to decrease like its historically similar regions
on Thanksgiving Day, however, due to the Macy’s Thanksgiving Day Parade, values in region r increased. Our
method captures this difference and successfully detect the anomaly.
2) Checking nearby regions and consecutive time slots helps us detect anomalies before it reaches its
peak. We detect the anomaly one hour earlier than the parade started, before the anomaly reaches its peak
during 8:30a.m. to 9:00a.m., as shown in Figure 10a. We plot the traffic flow on the region near region r in Figure
10c. Although it is not the starting point of the parade, it still shows a deviation from its normal value. The
anomaly scores in those nearby regions, along with the scores at previous time slot, i.e. 7:00a.m.-7:30a.m., helps
us confidently mark the region as an anomalous region during 7:30a.m.-8:00a.m. If we only check the values of a
single region and time slot, we may not be able to detect the anomaly as earlier as we can now.

(a) r (b) Similar region (c) Nearby region

Fig. 10. Taxi flow for the parade

July 4th Firework Show. The second example is the July 4th Firework Show which took place along East
River at 9:00p.m., on Independence Day. This case also shows two strong points of our method, which are as
follows:
1) The first point is similar to the first case. However, besides the difference between the Independence Day and
regular Fridays, it was also raining on that day which would clearly affect the taxi and bike flow. Our algorithm
is still capable of detecting anomalies even when there are complex external influences.
2) Discovering rare patterns in multiple data sources helps us better detect anomalies. As Figure 11
shows, the taxi flow of region r decreased, while the bike flow, in contrary, increased. This kind of pattern of taxi
and bike flow rarely happened, thus the algorithm confidently report region r as an anomaly. The underlying
reason for this kind of pattern is that on that day, some roads of region r were closed due to firework show.

6 RELATED WORK

6.1 General Anomaly Detection
Anomaly detection has been studied extensively in the past decades [2][8]. Most anomaly detection method
[24][14][20][16][25][28], focus on building a unified model to detect anomalies. In their problem settings, e.g.
network anomaly detection, anomalous image classifying, the definition of normal data points is static.
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(a) Taxi flow (b) Bike flow

Fig. 11. Taxi and bike flow for firework show

In our work, we focus on urban anomaly detection where data are influenced by many factors, e.g. the location
and time collected, weather, etc. The underlying distribution which generates normal data may vary greatly. Thus
the above mentioned methods are not suitable for urban anomaly detection.

6.2 Urban Anomaly Detection
Some previous works focus on urban anomaly detection with spatio-temporal data, e.g. detecting anomalous
trajectories [10][30][1], identifying traffic anomalies based on trajectories [15], diagnosing traffic anomalies [3],
and gleaning problematic design in urban planning [13]. However, they try to detect anomalies using only one
data source and cannot be directly applied to multiple data sources. In [31][27][22], they detect spatio-temporal
anomalies based on multiple data sources. The idea of their method is to first build a prediction or probabilistic
model, then detect anomalies based on that model. The effectiveness of these methods largely depend on the
accuracy of the prediction model. For example, in [27][22][23], they built probabilistic graphical model to predict
the underlying distribution of a new value. However, these methods are not able to handle complex external
influences in city. In [31], they trained prediction model on weekdays and holidays respectively, but they did not
model the effect of weather and other conditions.
In this work, we use multiple data sources simultaneously to identify urban anomalies. Also, we consider

combinations of changes in multiple data sources and check nearby regions and consecutive time slots to help us
detect anomalies better and earlier. Moreover, with the help of similarity based CIAS , our model can accurately
detect anomalies without any additional environmental information, such as weather, holiday, etc.

6.3 Similarity-Based Anomaly Detection Method
Similarity-based anomaly detection approaches [9][6] have generated much interest due to their relative simplicity
and robustness as compared to model-based, cluster-based, and density-based approaches, especially in the filed
of time series anomaly detection [4][21]. These methods involves choosing a proper similarity measurement and
identify anomalies based on the similarity or dissimilarities between data samples.

In our work, we don’t directly use the similarity measurement as a criteria for identifying anomalies. Instead,
we use the change (sudden drop) in Pearson Correlation Coefficient with other historically similar regions as
the measurement for anomaly score. The anomaly score computed by our approach is still accurate even when
external environment changes. One previous work [11] also considered change in similarity measurement to
evaluate the anomaly degree of vehicle traffic data. However, the similarity measurement in their method is the
L −∞ distance, which cannot accurately represents the true similarity between two time series.
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7 CONCLUSION AND FUTURE WORK
In this paper, we propose a two-step method to detect urban anomalies using multiple spatio-temporal data
sources. We propose the similarity-based CIAS to give an anomaly score for each data source of each region at
each time slot. Instead of building a prediction model, we use historically similar regions as guides. This enables
us to evaluate how much the value deviates from what it should be, without knowing any information other
than the data itself, e.g. POI of region, holiday, weather, etc. These anomaly scores are fed into step two, AIAS .
In AIAS , we leverage the power of OC-SVM and rbf kernel, and detect anomalies based on rare patterns of the
individual anomaly scores of a region as well as its nearby regions and previous time slots.
We conduct quantitative experiments on synthetic datasets. Data sources are generated by simulating real

world behavior and several types of anomalies and external influences are injected. These injected anomalies serve
as the ground truth. The result shows the advantages beyond baseline techniques. It also shows the effectiveness
of both components of our algorithm. We also demonstrate the main advantages of our method through event
detection task and two case studies on real world datasets, i.e. being able to detect anomalies even with unknown
complex external influences, being able to detect anomalies before it reaches its peak and being able to detect
underlying anomalies.

There are several improvements and potential extensions that could be addressed in future work. For CIAS part,
in this paper, we only consider sudden drop in Pearson Coefficient Correlation with historically similar regions
as the indicator of anomaly. However, if values in two regions are consistently different, i.e. consistently negative
Pearson Coefficient Correlation, but after new observations PCC rises significantly, this may also be a sign of
anomaly. For AIAS part, it would be interesting to see if recent advances in Generative Adversarial Nets [7]
performs better than traditional methods like One-Class SVM. For example, Schlegl et. al proposed AnoGAN and
demonstrated the ability to detect more known anomalies and even novel ones in an unsupervised manner[18].
With the help of generator-discriminator framework, GAN based methods might capture more complex form of
anomalies. Also notice that, in this paper we evaluated our method on two real world datasets, i.e. taxi and bike
flow, due to limited data availability. In fact, our method can be naturally applied to any real-valued time series
data, such as volume of cellular signals in base stations or number of yelp check-in records. We would release
code and documents for organizations with richer data to detect anomalies based on their own data.
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