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Discovering Urban Functional Zones Using
Latent Activity Trajectories
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Abstract—The step of urbanization and modern civilization fosters different functional zones in a city, such as residential areas,
business districts, and educational areas. In a metropolis, people commute between these functional zones every day to engage
in different socioeconomic activities, e.g., working, shopping, and entertaining. In this paper, we propose a data-driven framework
to discover functional zones in a city. Specifically, we introduce the concept of Latent Activity Trajectory (LAT), which captures
socioeconomic activities conducted by citizens at different locations in a chronological order. Later, we segment an urban area
into disjointed regions according to major roads, such as highways and urban expressways. We have developed a topic-modeling-
based approach to cluster the segmented regions into functional zones leveraging mobility and location semantics mined from LAT.
Furthermore, we identify the intensity of each functional zone using Kernel Density Estimation. Extensive experiments are conducted
with several urban scale datasets to show that the proposed framework offers a powerful ability to capture city dynamics and provides
valuable calibrations to urban planners in terms of functional zones.

Index Terms—Functional zones, latent activity trajectories, human mobility, points of interest
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1 INTRODUCTION
Modern cities develop with the gestation, formation and
maturity of different functional zones. These functional zones
provide people with various urban functions to meet their
different needs of socioeconomic activities (hereinafter in-
terchangeably referred to as “activities”), e.g., Wall Street
is a well-known financial district in New York City, and
Silicon Valley is a high-technology business region of the
San Francisco Bay Area. These functional zones can either be
artificially designed by urban planners (termed as zoning [2]),
or naturally formulated according to people’s actual lifestyles.
Meanwhile, both the territories and functions of these zones
can be reshaped during the evolution of a city. Discovering
functional zones is crucial for uncovering the physical and
social characters of a city, and can enable a variety of valuable
applications, such as tourism recommendation, business site
selection, and calibration for urban planning.

The recent proliferation of ubiquitous sensing technolo-
gies, intelligent transportation systems, and location based
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services increases the availability of human trajectories. For
example, in big cities like New York, Munich and Beijing,
most taxis are equipped with GPS devices for dispatching
and security management. These taxis regularly report their
locations to the data center at a certain frequency. Hence,
a large number of taxi trajectories are cumulated every day.
Another good example is smart cards and integrated ticketing,
which are provided by public transit operators in many
cities. Customers can swipe the purchased cards to check-
in and check-out when using public transport like subways
or buses. Examples include London’s Oyster Card, Dublin’s
Leap Card, Hong Kong’s Octopus Card, and Beijing’s BMAC
Card [3].

In addition to revealing human mobility, these trajectories
imply the socioeconomic activities of people at different
locations at different times, since the activities are actually the
essential reason that mobilizes people to commute between
different places. We term such a trajectory as a Latent Activity
Trajectory (LAT), where sequential locations visited by the
users are observable while socioeconomic activities implied
by the sequence of locations are latent. For instance, a taxi
trajectory can be segmented into multiple trips pertaining to
different customers, where each customer travels from an
origin to a destination for a certain activity, e.g., going to
work from home on a weekday morning, or going shopping
on a weekend evening.

In this paper, we aim to discover functional zones in urban
areas leveraging latent activity trajectories. Typically, a city is
naturally partitioned into individual regions by major roads,
like expressways and ring roads (refer to the white lines in
Figure 1(a)). A functional zone is comprised of a number
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Fig. 1. Territory and intensity of functional zones. (a)
functional zones identified in Beijing (indicated by differ-
ent colors); (b) intensity of the developed commercial
functional zone (labeled 5 in (a)); (c) intensity of the
developed residential functional zone (labeled 6 in (a)).

of regions (not necessarily connected) with similar urban
functions, where the function of a region is represented by
the distribution of socioeconomic activities. For example,
figure 1(a) shows the functional zones we have identified
in the urban area of Beijing, where different colors indicate
different functional zones. Furthermore, we analyze the func-
tionality intensity in different locations of a functional zone.
For instance, Figure 1 (b) and (c) show the functionality
intensity of developed commercial/entertainment areas and
residential areas respectively, where the higher hills suggest
a higher intensity.

To identify the function of a region (the unit of a functional
zone), we need to take into account two underlying signals
from LAT, which reveal the socio-economic activities of
citizens, thus reflecting urban functions:
1) Mobility Semantics. The activities conducted in a region
are strongly associated with the spatiotemporal patterns of
the people who visit that region. The knowledge that human
mobility contributes to reveal the urban function of a region
mainly is two fold. One is when people arrive at and leave a
region, and the other is where people come from and leave
for. Intuitively, in a workday people usually leave a residential
area in the morning and return in the evening. The major
time when people visit an entertainment area, however, is
the evening of workdays or the whole day of non-workdays.
Furthermore, different functional zones are correlated in the
context of human mobility. For instance, there is a high
probability that people reaching an entertainment area are
originating from a working area (on a workday) and a
residential area (on non-workdays). As a result, two zones
are more likely to have similar functions, if people traveling
to the two zones come from similar functional zones or leave
for similar ones.
2) Location Semantics. The urban road network is leveraged
as a kind of location semantics for segmenting the urban
area into regions, since different regions are geo-spatially
connected with each other through the road network. Another
form of location semantics, the allocation of Points of Interest
(POI), which are typically associated with a coordinate and
a category like restaurants or shopping malls, uncovers the
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Fig. 2. Beijing road network. red: level-0/1; blue: level-2

potential socioeconomic activities of a region. For example,
a region containing a number of universities and schools
has a high probability of being an educational area. A
region that usually contains a variety of POIs is probably
serving multiple socioeconomic activities instead of a single
one. Some regions may serve as both business districts and
entertainment areas in a city. In addition, the information
from POI data cannot differentiate the quality of different
venues and reflect the interactions between functional zones.
For instance, restaurants are everywhere in a city, but they
could denote different functions. Some small restaurants were
built just for satisfying local residences’ daily needs, while
a few famous restaurants attracting many people might be
regarded as a feature location of an entertainment area. As a
result, sometimes two regions sharing a similar distribution
of POIs could still have different functions.

This paper is an extension of our previous paper [1], in
which we presented a topic-modeling-based approach for
discovering region functions and intensity of functionality
using POIs and human mobility. In this paper, we further
offer the following contributions:
• We have introduced the concept of latent activity trajectory,
and generalized the problem of identifying functional zones
using both location and mobility semantics mined from latent
activity trajectories.
• We have developed and detailed a morphological approach
to segment a city into individual regions and presented a
collaborative-filtering-based approach to learn the location
semantics from POI configurations of a region, which outper-
forms the TF-IDF vectors (as metadata for topic modeling)
used in our previous paper based on experimental results.
• We performed exploratory study with extensive experi-
ments using large-scale and real-world datasets with regard
to Beijing. In addition to the taxi trajectory data used in
our previous work, we utilized pubic transit records of 1.5M
trips from 0.3M card holders. The results suggest that the
performance of our model is improved by integrating het-
erogeneous mobility datasets and considering collaborative
location semantics of different regions.

2 MAP SEGMENTATION

A road network is usually comprised of some major roads
like highways and ring roads, which naturally partition a city
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into regions. For example, as shown in Figure 2, the red
segments denote freeways and city expressways in Beijing,
and blue segments represent urban arterial roads. The three
kinds of roads are associated with a road level 0, 1, and 2
respectively (in a road network database), forming a natural
segmentation of the urban area of Beijing. Intuitively, we
consider each segmented region a basic unit carrying urban
functions since POIs often fall inside regions and people
perform socioeconomic activities (such as staying home and
working) inside regions, which is also the root cause of
human mobility.

Typically, in a Geographical Information System (GIS),
there are two models to represent spatial data: a vector-
based model and a raster-based model. The vector-based
model uses geometric primitives such as points, lines and
polygons to represent spatial objects referenced by Cartesian
coordinates, while the raster-based model quantizes an area
into small discrete grid-cells. Both models have advantages
and disadvantages depending on the specific applications.
For instance, on one hand, the vector-based method is more
powerful for precisely finding the shortest-paths, but requires
intensive computation when performing topological analysis,
such as map simplification[4], which is proven to be NP-
complete [4]. On the other hand, the raster-based model is
more computationally efficient and succinct for territorial
analysis, but the accuracy is limited by the number of cells
used for discretizing road networks.

We display the vector-based road network on a plane
by performing map projection [5], which transforms the
surface of a shpere (i.e., the Earth) into a 2D plane (we
use Mercator projection in our implementation [6]). Then we
convert the vector-based road network into the raster model
by gridding the projected map. 1 Intuitively, each pixel of the
projected map image can be regarded as a grid-cell of the
raster map. Consequently, the road network is converted to
a binary image, e.g., 1 stands for the road segments (termed
as foreground) and 0 stands for the blank areas (termed as
background).

This section introduces an image processing approach
for segmenting the raster-based road network into regions
through morphological operators.2

2.1 Dilation
In general, a morphological operator calculates the output
image given the input binary image and a structure element,
whose size and shape are pre-defined. Dilation is a basic
morphological operator. Let A be a binary image and B be
the structure element, the dilation of A by B is defined as:

A⊕B =
⋃

b∈B

Ab, (1)

1. We used a 2400× 2400 grid to rasterize the map of Beijing with left-
top geo-coordinates (40.09, 116.17), right-bottom geo-coordinates (39.77,
116.56), which covers the main area of downtown Beijing.

2. Sample dataset and code can be downloaded at http://1drv.ms/1lhQ4xn.

(a) Before dilation (b) After dilation

Fig. 3. Dilation operator
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where Ab = {a + b|a ∈ A}, i.e., the translation of A by
vector b. The dilation operator is commutative.

For any p in A, after the dilation, p = 1 iff the intersection
between A and B, centred at p, is not empty.

The purpose of the dilation operation is to remove the
unnecessary details for map segmentation, avoiding the small
connected areas induced by these unnecessary details such as
bridges and lanes. Figure 3(a) plots a portion of road network
before the dilation operator. As is shown, the small holes
between the lanes and viaducts are filled, where we use a
3×3 matrix with all values set to 1 as the structure element
B.

2.2 Thinning

As a consequence of the previous dilation operator, the road
segments are turgidly thickened. In this step, we aim to
extract the skeleton of the road segments while keeping the
topology structure (such as the Euler number) of the original
binary image. The thinning operator is performed to remove
certain foreground pixels from the input binary image. For a
given pixel in the input image, whether it should be removed
depends on its neighbouring pixels. For a given pixel x,
the neighbouring 4 pixels shown in Figure 4(a) are called
the 4-neighbours of x. Similarly, the 8 neighbouring pixels
shown in Figure 4(b) are called the 8-neighbours of x. Here,
we employ the subfields-based parallel thinning algorithm
proposed in [7]. This method first divides the binary image
space into two disjointed subfields in a checkerboard pattern,
then iterations are performed to remove foreground pixels.
Each iteration consists of two sub-iterations in these two
subfields:
• In the first sub-iteration, we check every pixel p in the first
subfield, delete p iff Condition 1, 2 and 3 are all satisfied.



4

(a) After 7 iterations (b) Until convergence

Fig. 5. Thinning operator

• In the second sub-iteration, we check every pixel p in the
second subfield, delete p iff Condition 1, 2 and 4 are all
satisfied.

Condition 1: XH(p) = 1, where

XH(p) =

4∑

i=1

bi

bi =

{
1 if x2i−1 = 0 and (x2i = 1 or x2i+1 = 1)
0 otherwise

Condition 2: 2 ≤ min{n1(p), n2(p)} ≤ 3, where

n1(p) =

4∑

k=1

x2k−1 ∨ x2k

n2(p) =

4∑

k=1

x2k ∨ x2k+1

Condition 3: (x2 ∨ x3 ∨ x̄8) ∧ x1 = 0
Condition 4: (x6 ∨ x7 ∨ x̄4) ∧ x5 = 0
The above conditions ensure that the connectivity of the

pixels is preserved when a certain pixel is deleted. Note that
in this operation, connectivity paradox may be induced if
we keep the same type of connectivity (4-connected or 8-
connected) for both the foreground and the background[8].
Since it is desired for the road segments (foreground) to
have unit width, typically, we preserve the 8-connectivity
of the foreground (i.e., the 8-connectivity does not change
before and after the thinning process for the road segments)
and the 4-connectivity of the background [9]. Figure 5(a)
and Figure 5(b) are the results after 7 iterations and until
convergence (no pixel will be deleted any more) respectively.

2.3 Connected Component Labeling
The connected component labeling operation finds the con-
nected 0 pixels (the blank area) in the binary image, after the
thinning operation. We call the sequence y1, y2, . . . , yn an 8-
path (4-path), if ∀i = 1, 2, . . . , n−1, yi+1 is an 8-neighbour
(4-neighbour) of yi. We say a region Q in a binary image
is 8-connected (4-connected) iff all the pixels in Q have
the same value and for any two pixels in Q, there exists
an 8-path (4-path) connecting the two pixels. There exist

(a) Local result (b) Global result

Fig. 6. Segmented regions after connected component
labeling

many algorithms for connected component labeling. Here,
we apply the classical two-pass algorithm introduced in [10]
to the binary image 5(b), and obtain the segmented regions
as shown in Figure 6(a). Figure 6(b) presents the result for
Beijing’s entire road network. We note that the computational
complexity of all the morphological operations in the map
segmentation method is linear in terms of number of pixels.

3 DISCOVERY OF ACTIVITIES IN A REGION

In this section, we infer the distribution of activities in each
region unit using a topic-model-based method.

3.1 Preliminary
Definition 1 (Transition): A transition Tr is a quadruple

containing the following four items: origin region (Tr .rO),
leaving time (Tr .tL), destination region (Tr .rD) and arrival
time (Tr .tA). Here, Tr .rO and Tr .rD are spatial features
while the others are temporal features.

Definition 2 (Mobility Pattern): A mobility pattern M
is a triple extracted from a transition. Given a transi-
ton Tr = (Tr .rO,Tr .rD,Tr .tL,Tr .tA), we obtain two
mobility patterns: the leaving mobility pattern ML =
(Tr .rO,Tr .rD,Tr .tL), and the arriving mobility pattern
MA = (Tr .rO,Tr .rD,Tr .tA).

Definition 3 (Transition Cuboids): A transition cuboid C
is an R×R×T cuboid, where R is the number of regions and
T is the number of time bins. Since there exist two types of
mobility patterns, we define two types of transition cuboids:
leaving cuboid CL and arriving cuboid CA. The cell with
index (i, j, k) of the leaving cuboid records the number of
mobility patterns that leave ri for rj at time tk, i.e.,

CL(i, j, k) = ‖{ML = (x, y, z)|x = ri, y = rj , z = tk}‖.
Similarly,

CA(i, j, k) = ‖{MA = (x, y, z)|x = ri, y = rj , z = tk}‖.
In order to derive mobility semantics (represented by

the transition cuboids defined above) from latent activity
trajectories, we project each trajectory on the segmented
region units, turning a trajectory into a transition (note that for
both taxi trajectories and public transit records, the transitions
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obtained pertain to a certain individual). Then, we discretize
time of day into time bins in each of which we deposit the
transitions and formulate mobility patterns. Here, we do not
differentiate different weekdays but differ the time bins in
weekdays from those in weekends. For example, setting 2
hours as a bin, we will have 24 bins (12 for weekdays and
12 for weekends) in total. Later, two transition cuboids are
built using LAT.

3.2 Collaborative POI Feature Vector
To learn the location semantics, we calculate the distribution
of POIs for each region. A POI is recorded with a tuple (in
a POI database) consisting of a POI category (as listed in
Table 2), name and a geo-position (latitude, longitude). For
each region ri, i = 1, 2, . . . , R, the number of POIs in each
POI category can be counted. Later, we calculate the term
frequency-inverse document frequency (TF-IDF) to measure
the importance of a POI in a region. Specifically, for a given
region ri, we formulate a POI vector, fi = (vi1, vi2, . . . , viC)
where vij is the TF-IDF value of the j-th POI category and
C is the number of POI categories. The TF-IDF value vij is
given by:

vij =
nj
Ni
× log

R

‖{ri|the j-th POI category ∈ ri}‖
, (2)

where nj is the number of POIs belonging to the j-th
category and Ni is the number of POIs located in region
ri. The idf term is calculated by computing the quotient of
the number of regions R divided by the number of regions
which have the j-th POI category, and taking the logarithm
of that quotient.

However, the TF-IDF vector is still not a good represen-
tation of a region’s location semantics, which mainly suffers
from the following limitations: 1) Missing values. There
might exist some POIs in a region, which are not in the
current POI database, while featuring the location semantics
of that region. 2) Latent structure. The frequency of POI is
not an intrinsic representation of the latent structure of the
POI configuration for each region [11], thus it is not suitable
for measuring the similarity of location semantics between
regions.

Motivated by the collaborative filtering techniques in rec-
ommender systems [12], we employ the Singular Value
Decomposition (SVD) method to obtain the latent seman-
tics of each region in terms of POI configuration, which
inherently tackles the above limitations. Specifically, let
F = (f1, f2, . . . , fR)ᵀ be the matrix containing the TF-IDF
vectors for all regions, with dimension R× C. As is shown
in Figure 7, F is a sparse matrix, since for many regions,
there may be no certain categories of POIs. We employ SVD
to decompose F by

F = UΣVᵀ, (3)

where U and V are orthogonal matrices with dimension
R × R and C × C respectively, and Σ is a diagonal matrix

0
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Fig. 7. Computing collaborative POI feature vector

with singular values of F. Then we can approximate F with
F̂ = UlΣlV

ᵀ
l , where Σl is a l×l low rank matrix containing

only the largest l singular values of Σ, and Ul, Vl are the
reduced matrices with corresponding l columns and C rows,
respectively. Now, the location semantics space is represented
by the R × l matrix Ul = (x1,x2, . . . ,xR)ᵀ, where row
xi = (xi1, xi2, . . . , xil) is termed as the collaborative POI
feature vector for region ri. This representation can be
regarded as the coordinates of each region in the location
semantics space.

As a result, the collaborative POI feature vectors
x1,x2, . . . ,xR are incorporated as metadata in our model
introduced below.

3.3 Topic Modeling

In text mining, probabilistic topic models have been success-
fully used for extracting the hidden semantic structure in large
archives of documents[13]. In this model, each document
of a corpus exhibits multiple topics and each word of a
document supports a certain topic. Given all the words of
each document in a corpus as observations, a topic model
is trained to infer the hidden semantic structure behind the
observations.

The problem of identifying the latent activities in a region
can be analogized to the problem of discovering the latent
topics of a document. As shown in Table 1, we regard a
region as a document and an activity as a topic. In other
words, a region having multiple activities is just like a
document containing a variety of topics. Meanwhile, we
deem the mobility patterns (representing mobility semantics)
associated with a region as words and collaborative POI
feature vectors (representing location semantics) as metadata
of a document. Since a functional zone is characterized
by its agglomeration of activities, its intraregional transport
infrastructure, mobility of people, and inputs are within its
interaction borders [14].

TABLE 1
Analogy from region-activities to document-topics

transition cuboids −→ vocabulary
regions −→ documents

activities of a region −→ topics of a document
mobility patterns −→ words

collaborative POI feature vector −→ metadata of a document
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Fig. 8. Analogy between mobility patterns and words
based on transition cuboids

Figure 8 further details the analogy using an example. In
our method, given the mobility dataset, we build the arriving
and leaving cuboids respectively according to Definition 3.
For a specific region ri, the mobility patterns associated with
ri are counted by CA(1:R, i, 1:T ) and CL(i, 1:R, 1:T ), which
are two “slices” extracted from the arriving cuboid and the
leaving cuboid (termed as arriving matrix and leaving matrix
respectively). The right part of Figure 8 shows a “document”
we compose for region r1, where a cell (in the matrices)
represents a specific mobility pattern and the numbers in the
cell denote the occurrences of the pattern. For example, in the
right most column of the arriving matrix, the cell containing
“5” means on average the mobility that went to r1 from rj
in time bin tk occurred 5 times per day.

Latent Dirichlet Allocation (LDA) is a generative model
that includes hidden variables. The intuition behind this
model is that documents are represented as random mixtures
over latent topics, where each topic is characterized by a
distribution over words [15]. Let α and η be the prior
parameters for the Dirichlet document-topic distribution and
topic-word distribution respectively. Assume there are K
topics and β is a K ×M matrix where M is the number
of words in the vocabulary (all the words in the corpus
D). Each βk is a distribution over the vocabulary. The topic
proportions for the dth document are θd, where θd,k is the
topic proportion for topic k in the dth document. The topic
assignments for the dth document are zd, where zd,n is the
topic assignment for the nth word in the dth document.
Finally, the observed words for document d are wd, where
wd,n is the nth word in document d, which is an element
from the fixed vocabulary.

Using the above notations, the generative process can be
described as follows:
1) For each topic k, draw βk ∼ Dir(η).

2) Given the dth document d in corpus D, draw θd ∼
Dir(α).

3) For the nth word in the dth document wd,n,
a) draw zd,n ∼ Mult(θd);
b) draw wd,n ∼ Mult(βzd,n).

Here, Dir(·) is the Dirichlet distribution and Mult(·) is the
multinomial distribution. The central problem of topic model-
ing is to estimate the posterior distribution P (θ, z, β|w,α, η),
which can be accomplished by different approaches, such as
Gibbs sampling and variational inference [15].

Using the basic LDA model, region topics can be discov-
ered using mobility patterns. However, as stated in Section 1,
the region topics (i.e., activities) are products of both mobility
semantics and location semantics. In order to combine the
information from both of them, we utilize a more advanced
topic model based on LDA and Dirichlet Multinomial Re-
gression (DMR) [16].

Specifically, we incorporated the learned collaborative POI
feature vectors (introduced in Section 3.2) into our model.
The collaborative POI feature vector of ri is denoted by
xi = (xi1, xi2, . . . , xil, 1) where the last “1” is a default
feature (as shown in Figure 8 for region r1) to account for the
mean value of each topic, as explained in [16]. This vector is
regarded as the metadata of each region, which is an analogue
of the observed features such as author/email/institution of a
document. Such information is used as a prior knowledge to
generate the “topics” of a document.

The DMR-based topic model (for simplicity, DMR in
the rest of the paper) takes into account the influence of
the observable metadata in a document by using a flexible
framework, which supports arbitrary features [16]. Compared
to other models designed for specific data such as Author-
Topic model and Topic-Over-Time model (a member in the
supervised-LDA family of topic models), DMR achieves sim-
ilar or improved performance while is more computationally
efficient and succinct in implementation [16].

As presented in Figure 9, the generative process of the
DMR model is:
1) For each activity k,
a) draw λk ∼ N (0, σ2I);
b) draw βk ∼ Dir(η).

2) Given the ith region ri,
a) for each activity k, let αi,k = exp(xT

i λk);
b) draw θi ∼ Dir(αi);
c) for the nth mobility pattern in the ith region mi,n,

i) draw zi,n ∼ Mult(θi);
ii) draw mi,n ∼ Mult(βzi,n).

Here, N is the Gaussian distribution with σ as a hyper
parameter, and λk is a vector with the same length as the
collaborative POI feature vector. The nth observed mobility
pattern of region ri is denoted as mi,n. Other notations are
similar to the previous LDA model. In our implementation,
the parameters of this model are trained using Gibbs sampling
following the method provided in [16].
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Fig. 9. DMR-based topic model

TABLE 2
POI category taxonomy

code POI category code POI category
1 car service 16 banking and insurance service
2 car sales 17 corporate business
3 car repair 18 street furniture
4 motorcycle service 19 entrance/bridge
5 café/tea bar 20 public utilities
6 sports/stationery shop 21 Chinese restaurant
7 living service 22 foreign restaurant
8 sports 23 fastfood restaurant
9 hospital 24 shopping mall

10 hotel 25 convenience store
11 scenic spot 26 electronic products store
12 residence 27 supermarket
13 governmental agencies and

public organizations
28 furniture building materials

market
14 science and education 29 pub/bar
15 transportation facilities 30 theaters

Unlike the basic LDA model, here, the Dirichlet prior
α is now specified to individual regions (αi) based on the
observed collaborative POI feature vector of each region, i.e.,
αi,k = exp(xT

i λk). Therefore, for different combinations of
POI category distributions, the resulting α values are distinct.
Thus the activity distributions extracted from the data are
induced by both the collaborative POI features and mobility
patterns. As a result, by applying DMR, given the mobility
patterns and collaborative POI feature vectors, we obtain the
activity assignment for each region and the mobility pattern
distribution of each activity.

4 TERRITORY IDENTIFICATION

4.1 Region Aggregation
This step aggregates similar regions in terms of activity
(topic) distributions by performing a clustering algorithm.
Regions from the same cluster have similar functions, and
different clusters represent different functions. For region
ri, after parameter estimations based on the DMR model,
the topic distribution is a K dimensional vector θi =
(θi,1, θi,2, . . . , θi,K), where θi,k is the proportion of topic k
for region ri. We perform the k-means clustering method on
the K-dimensional points θi, i ∈ 1, 2, . . . , R. The number
of clusters can be predefined according to the needs of an
application or determined using the average silhouette value
as the criterion [17]. The silhouette value of a point i in
the dataset, denoted by s(i) is in the range of [−1, 1], where
s(i) close to 1 means that the point is appropriately clustered
and very distant from its neighboring clusters; s(i) close to
0 indicates that the point is not distinctly in one cluster
or another; s(i) close to -1 means the point is probably
assigned to the wrong cluster. The average silhouette value

of a cluster measures how tightly the data in this cluster
is grouped, and the average silhouette of the entire dataset
reflects how appropriately all the data has been clustered.
In practice, we perform cross validation on the dataset for
different k multiple times and choose an appropriate k with
the maximum overall silhouette value. Consequently, we
aggregate the regions into k clusters, each of which is termed
as a functional zone.

4.2 Functionality Intensity Estimation

On one hand, the functionality of a functional zone is
generally not uniformly distributed within the entire region.
On the other hand, sometimes, the core functional area may
span multiple regions and may have an irregular shape, e.g., a
hot shopping street crossing several regions. In order to reveal
the degree of functionality and glean the essential territory
of a functional zone, we estimate the functionality intensity
for each aggregated functional zone (a cluster of regions).

Intuitively, the number of visits implicitly reflects the
popularity of a certain functional zone. In other words, peo-
ple’s mobility patterns imply the functionality intensity. As
a result, we feed the origin and destination of each mobility
(represented by latitude and longitude) into a Kernel Density
Estimation (KDE) model to infer the functionality intensity in
a functional zone. Note that the real place that an individual
visited may not be the destination that we can obtain from
a mobility dataset. For example, the drop-off points of taxi
trajectories may not be people’s final destinations like a
shopping mall. However, the pick-up/drop-off points should
not be too far from the really-visited locations according to
commonsense knowledge. The farther distance a location to
the drop-off point, the lower probability that people would
visit the location.

Given n points x1, x2, . . . , xn located in a 2D spatial
space, we estimate the intensity at location s using a kernel
density estimator, defined as:

λ(s) =

n∑

i=1

1

nr2
K(

di,s
b

), (4)

where di,s is the distance from xi to s, b is the bandwidth
and K(·) is the kernel function whose value decays with the
increasing of di,b, such as the Gaussian function, Quartic
function, Conic and negative exponential. The choice of
the bandwidth usually determines the smoothness of the
estimated density – a large b achieves smoother estimation
while a small b reveals more detailed peaks and valleys.
In our case, we choose the Gaussian function as the kernel
function, i.e.,

K(
di,s
b

) =
1√
2π

exp(−
d2i,s
2b2

), (5)

and the bandwidth b is determined according to MISE
criterion [18].
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4.3 Region Annotation
In this step, given the results we have obtained, we try
to annotate each cluster of regions with some semantic
terms, which can contribute to the understanding of its real
functions. Note that region annotation is a very challenging
problem in both traditional urban planning and document
processing. Essentially, the issue is the visualization of the
topic model, which is listed as a future direction of topic
modeling in the recent survey paper by Blei [13]. A com-
promised method used thus far is to utilize the most frequent
words in a discovered topic to annotate a document. But in
our case, listing the frequent mobility patterns (analogue to
words) is far from enough to name a functional zone.

In our method, we annotate a functional zone by consid-
ering the following 4 aspects: 1) The POI configuration in a
functional zone. We compute an average POI density vector
across the regions in functional zone, where the density ρj
of the jth POI category in region ri is calculated by:

ρj =
Number of POIs of the jth POI category

Area of region ri (measured by grid-cells)
. (6)

According to density value of each POI category in the
calculated POI density vector, we rank POI categories in
a functional zone (termed as internal ranking) and rank all
functional zones for each POI category (referred to as the
external ranking). We will give an example in the experiment
as shown in Table 5. 2) The most frequent mobility patterns
of each functional zone. 3) The functionality intensity. We
study the representative POIs located in each functionality
kernel, e.g., a function region could be an educational area if
its kernel is full of universities and schools. 4) The human-
labeled regions. People may know the functions of a few
well-known regions, e.g., the region contains the Forbidden
City is an area of historic interests. After clustering, the
human labeled regions will help us understand other regions
in a cluster. Refer to the experiments for the detailed results
and analysis.

5 EXPERIMENTS
5.1 Settings
5.1.1 Datasets
We use the following datasets for the evaluation:
1) Data representing location semantics.
• Points of Interest (POI): The Beijing POI dataset covers
328,669 POIs from the year 2011, where each POI is asso-
ciated with the information of its latitude, longitude and the
category (see Table 2 for a complete list of categories).
• Road Networks: The road network of Beijing is used to
segment the urban area into regions, with statistics shown in
Table 3.
2) Data representing mobility semantics.3

3. Although we used taxi trajectories and public transit data to evaluate
our framework, we note that other mobility data such as mobile phone traces
can also be directly incorporated into this framework.

TABLE 3
Statistics of taxi & public transit trips and road networks

Ta
xi

#taxis 13,597
#occupied trips 8,202,012
#effective days 92
average trip distance(km) 7.47
average trip duration(min) 16.1
average sampling interval(sec) 70.45

PT
C #trips 1,503,101

#card IDs 295,720

R
oa

d

#road segments 162,246
percentage of major roads 17.1%
#segmented unit regions 554
size of “vocabulary” (non-0 items) 3,244,901

• Taxi Trajectories: We used a GPS trajectory dataset
generated by Beijing taxis in the year 2011, with the statistics
shown in Table 3. We only chose occupied trips (identified
by the information of a taxi meter) from the data, and ac-
cordingly segmented the trajectories to individual transitions
(refer to Definition 1). It is worth noticing that there are over
30 cities in the world with over 10,000 taxicabs, and Beijing
has over 67,000 taxis. The taxi trips represent a significant
portion of people’s urban mobility. According report by the
Beijing Transportation Bureau, taxi trips occupy over 12
percent of traffic flows on road surfaces[19].
• Public Transit Data (PTC): This dataset logs the transac-
tions of public transit including buses and subways in 2011.
By pre-processing the transactions, we obtained a total of
1.5M trips (after removing the trips that have no information
of origins and destinations), which is complementary to the
taxi trips for representing urban mobility.

5.1.2 Platforms and baselines
We implement our method on a 64-bit server with a Quad-
Core 2.67G CPU and 16GB RAM. We train our model with
10 topics for 1000 iterations, and optimize the parameters
every 50 iterations. For k-means clustering, we incorporate
the average silhouette value to determine the k and use
the average results based on a 5-fold cross-validation. The
efficiency (on average) is presented in Table 4.

TABLE 4
Overall efficiency

operation time(min)

map segmentation 0.325
building transition cuboids 41.3
learning location semantics using SVD 2.127
estimating topic model(1000 iterations) 1372
region aggregation 0.124

total 1394

We compare our method with several baselines:
• TF-IDF-based Methods, which include two approaches:
1) using POI distribution as feature vectors and 2) using
collaborative POI feature vectors (introduced in Section 3.2).
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Fig. 10. Functional zones discovered by different methods ((a),(b) share the left-top label legend, and (c)–(f) share
the right-bottom label legend)

A k-means clustering is employed to cluster the regions into
k functional zones based on their POI feature vectors.
• LDA-based Topic Model, which uses only the mobility
semantics. Similar to our analogy from regions to documents,
this method feeds the mobility patterns (the analogue to
words) into an LDA model. Later, we perform a k-means
clustering, similar to the method we used when grouping
all regions based on their topic distributions learned from
LDA. The parameters such as number of iterations, number
of topics are set in accordance with the DMR-based method.
As the number of POI categories usually has the same scale
as the topics, applying the LDA model solely to POIs (as
words) will not reduce the dimension of words.

We carried out the following studies to evaluate the ef-
fectiveness of our framework (though it is very difficult).
1) We invited 12 local people (who have been in Beijing
for over 6 years) and asked them to label two representative
regions for each kind of function (in total 24 labeled regions).
We checked whether the regions having the same labels
are assigned into the same functional zone and whether the
regions with different labels are improperly clustered into one
functional zone. 2) We matched our results against the land
use planning of Beijing.

Compared to our experiments in [1], we further conducted

the following experiments to examine the proposed DMR-
based method:
• We compared the performance when using different TF-
IDF-based feature vectors (i.e., non-collaborative TF-IDF
feature vector / collaborative POI feature vector).
• We investigated whether the public transit data can further
improve the performance of the proposed framework by
comparing the results using solely the taxi data against using
the combined data.

5.2 Results

5.2.1 Discovered Functional Zones
Figure 10 shows the aggregated functional zones discovered
by different methods, with different colors indicating differ-
ent functions. Note that in different figures, the same color
may stand for different functions. As a result, TF-IDF-based
methods forms 7 clusters (c0–c6) while LDA-based methods
and DMR-based methods form 9 functional zones.

The TF-IDF-based methods considering only the loca-
tion semantics perform the worst compared with other ap-
proaches. For example, as shown in Figure 10(a), region B
is a university, which should be clustered with region A (an-
other university) and region D (a high school). Meanwhile,
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region F (the Forbidden City) is not distinguished from other
commercial areas like region E (Xidan). Another example
is the Wangjing area (C), which is an emerging residential
area with some companies and many living services, like
apartments, shopping malls and restaurants. Unfortunately,
the TF-IDF method improperly divides this area into many
small functional zones as this method only considers POI
distributions. The TF-IDF method using collaborative feature
vectors tends to smoothen the distribution of POIs, thus
merging a large portion of regions into one cluster. However,
it still suffers from only considering location semantics, e.g.,
as shown in Figure 10(b), region A is the university campus,
while region B is a developed commercial area, which should
not be clustered together with A, although some universities
lie in region B.

Basically, the LDA-based method and DMR-based method
have a similar output of functional zones. However, there
still exist several exemplary regions where using both mo-
bility and location semantics (DMR-based) outperforms us-
ing only mobility semantics (LDA-based) obviously. For
example, region F in Figure 10(c) is a developing com-
mercial/entertainment area in the Wangjing area. But LDA
aggregates it with the Forbidden City (Region E in Fig-
ure 10(a))), which is a region of historical interests; Area
B (China Agricultural University) and Area D (Tsinghua
University) are typical science and education areas where
LDA fails to correctly cluster them together; Area A around
Sanlitun is a well-known diplomatic district of Beijing, which
is mixed with a developing commercial area C. The LDA-
based method only using mobility semantics overlooks the
location semantics implied by the POIs, thereby drops behind
the DMR-based method (shown in Figure 10(d)).

Figure 10(e) presents the identified functional zones using
DMR combing both the taxi trips and public transit data.
Compared with solely using the taxi data (shown in Fig-
ure 10(d)), some previous sparse regions, such as region D
in Figure 10(d) (where the taxi trajectories are not sufficient
to train the model), can now be identified4. In addition,
some mis-identified functional regions are further corrected
by incorporating diverse types of human mobility data. For
example, region A in Figure 10(d) is a residential area (with
many ancient “hutongs” and old neighborhoods), which is
wrongly clustered into the diplomatic area if we only use
the taxi data. Region B in Figure 10(d) is the famous
SOLANA Mall (an emerging commercial district in Beijing),
which should be in the same cluster with the new CBD
area (region C in Figure 10(d). Figure 10(f) shows the
results of DMR with collaborative POI feature vectors as the
metadata, which further improves the performance. As shown
in Figure 10(e), region A, B and C are actually all residential
areas, which failed to be identified until we fed the DMR
with collaborative feature vectors. The reason behind this is

4. Note that if we solely use the public transit data as mobility semantics,
many regions will be identified as “sparse” regions due to the insufficiency
(only 1/5 of the taxi trips on average for each region) for learning the model.

TABLE 5
Overall POI density vector and ranking of functional
zones. (FD: frequency density, IR: internal ranking)

POI FD IR FD IR FD IR FD IR FD IR FD IR FD IR FD IR FD IR

CarServ 0.025 26 0.140 11 0.063 26 0.045 18 0.079 17 0.030 24 0.061 24 0.011 25 0.063 22

CarSale 0.016 27 0.018 25 0.067 25 0.012 25 0.010 26 0.005 28 0.019 27 0.005 28 0.008 27

CarRepa 0.014 28 0.063 17 0.073 23 0.049 17 0.064 18 0.023 26 0.062 23 0.010 26 0.041 25

MotServ 0.003 29 0.001 28 0.005 30 0.001 28 0.002 29 0.004 29 0.001 29 0.000 29 0.003 28

Caf/Tea 0.285 13 0.085 16 0.277 12 0.068 15 0.139 13 0.141 13 0.268 14 0.132 15 0.192 12

StaStor 0.116 18 0.052 18 0.141 19 0.038 20 0.057 20 0.068 18 0.139 18 0.128 16 0.088 18

LivServ 1.400 2 0.611 1 1.523 2 0.413 1 0.744 1 0.807 1 1.523 2 0.832 1 1.174 1

Sports 0.069 20 0.039 19 0.129 21 0.031 22 0.045 22 0.039 22 0.095 20 0.041 20 0.103 16

Hospital 0.198 14 0.096 14 0.268 13 0.082 11 0.166 11 0.140 14 0.299 12 0.163 13 0.223 10

Hotel 0.177 16 0.033 22 0.150 18 0.057 16 0.082 16 0.096 15 0.226 15 0.161 14 0.076 20

SceSpo 0.033 24 0.009 26 0.043 27 0.011 26 0.019 25 0.031 23 0.054 25 0.035 21 0.039 26

Residen 0.880 3 0.217 6 0.693 6 0.185 6 0.383 5 0.482 5 0.900 4 0.421 5 0.568 3

Gov/Pub 0.414 9 0.104 13 0.363 10 0.079 12 0.166 10 0.173 12 0.470 7 0.289 7 0.309 7

Sci/Edu 0.445 8 0.255 5 1.325 3 0.112 8 0.212 8 0.305 6 0.579 6 0.232 11 0.296 8

TrasFac 0.453 6 0.141 10 0.514 7 0.079 13 0.180 9 0.213 10 0.416 8 0.255 9 0.326 6

Bank/Fina 0.445 7 0.092 15 0.497 8 0.069 14 0.133 14 0.226 9 0.357 11 0.187 12 0.210 11

CopBusi 1.984 1 0.602 2 2.501 1 0.257 3 0.501 3 0.657 2 1.701 1 0.605 2 1.063 2

StrFur 0.000 30 0.001 30 0.005 29 0.001 30 0.001 30 0.001 30 0.000 30 0.000 30 0.000 30

Entr/Bri 0.365 12 0.128 12 0.240 14 0.090 10 0.155 12 0.182 11 0.268 13 0.270 8 0.138 15

PubUti 0.396 10 0.141 9 0.339 11 0.111 9 0.283 6 0.234 8 0.378 10 0.293 6 0.165 13

ChiRes 0.650 5 0.281 3 1.102 4 0.291 2 0.537 2 0.567 3 0.880 5 0.444 4 0.421 4

ForRes 0.168 17 0.027 23 0.106 22 0.007 27 0.009 27 0.042 21 0.068 22 0.034 22 0.161 14

FasRes 0.104 19 0.033 21 0.213 15 0.035 21 0.058 19 0.083 17 0.139 17 0.071 18 0.103 17

ShopMal 0.720 4 0.270 4 1.020 5 0.240 4 0.433 4 0.537 4 0.943 3 0.580 3 0.365 5

ConvStor 0.381 11 0.158 7 0.365 9 0.136 7 0.277 7 0.257 7 0.400 9 0.236 10 0.234 9

EOStor 0.038 23 0.020 24 0.172 17 0.027 23 0.044 23 0.060 20 0.068 21 0.029 23 0.042 24

SupMar 0.051 22 0.009 27 0.068 24 0.021 24 0.041 24 0.030 25 0.049 26 0.020 24 0.051 23

FurBuil 0.066 21 0.143 8 0.184 16 0.208 5 0.099 15 0.090 16 0.136 19 0.074 17 0.076 21

Pub/Bar 0.196 15 0.037 20 0.138 20 0.040 19 0.051 21 0.066 19 0.147 16 0.069 19 0.085 19

Theater 0.029 25 0.001 29 0.007 28 0.001 29 0.006 28 0.010 27 0.008 28 0.006 27 0.002 29

c7 c8c0 c1 c2 c3 c4 c5 c6

probably that both the mobility data and POI configurations
of these regions are biased due to the small sizes, but could be
smoothed by collaborative filtering considering the semantic
similarity with other regions.

Overall, the method combing location semantics and mo-
bility semantics (including both taxi trajectories and public
transit data) outperforms other approaches in terms of the
accordance with the labeled functional regions.

5.2.2 Annotation of Functional Zones
Table 5 shows the average POI density vector of each region
cluster (c0–c8, remember that DMR-based method generated
9 clusters) and the corresponding internal and external rank-
ings, where the external rank is represented by the depth of
the color (1 darkest, 4 lightest). Clearly, clusters (functional
zones) c0, c2, c5, c6, c7, and c8 are more mature and more
developed areas as compared to other clusters, since they
have more high ranked POI categories, which are annotated
as follows:
Diplomatic/Embassy Areas[c0]. The most characteristic
POI categories in this functional zone are the international
restaurants, pubs/bars, theaters, cafés and tea bars, with a
significantly higher frequency density than other functional
zones. Most embassies are located in these areas, which
are well configured for the diplomatic function, e.g., they
have the second highest external rank of residential buildings,
hospitals, bank and insurance services.
Science/Education/Technology Areas[c2]. This functional
zone contains the maximum number of science and educa-
tion POIs (e.g., Tsinghua university and Beijing university),
banks and corporate business POIs. In addition, the biggest
electronic market in China, called “ZhongguanCun”, known
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Fig. 13. Weekday transitions of c1, c5
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Fig. 14. Weekend transitions of c1, c5
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Fig. 15. Weekday transitions of c3, c4
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Fig. 16. Weekend transitions of c3, c4

as the Silicon Valley in China, is located in this functional
zone.
Developed Residential Areas[c6]. This functional zone is
clearly a mature residential area with the most residential
buildings, hospitals, hotels, and convenience stores. Within
this functional zone, an adequate number of services supports
the people’s living, such as the restaurants, shopping malls,
banking services, schools, and sports centers.
Emerging Residential Areas[c8]. This area is annotated as
the emerging residential area since it has a balanced POI
configuration (similar to, but less than c6), such as living
services, residential buildings, sports centers, hospitals and
some companies.
Old Neighborhoods[c7]. The areas within this functional
zone are mostly residential building built before the year 1995
or even more anciently, where the old streets are known as
“hutongs”. The POI configuration shows that this type of
zone is less developed than both c6 and c8.
Developed Commercial/Entertainment areas[c5]. This is a
typical entertainment and commercial zone containing several
mature business circles in Beijing, such as the Xidan business
circle5, Financial Street6, and Gongzhufen business circle7.
Emerging Commercia/Entertainment Areas [c1]. The POI

5. http://en.wikipedia.org/wiki/Xidan
6. http://en.wikipedia.org/wiki/Beijing Financial Street
7. http://en.wikipedia.org/wiki/Gongzhufen

configuration (the internal rank) of this cluster is similar to
cluster c5, but in terms of the absolute quantity, c1 is less
than c5. A certain number of shopping malls, restaurants
and banking services feature this cluster as a developing
commercial/ business/ entertainment functional zone (either
of them is possible). In the meantime, the functionality
intensity provides another corroboration for this annotation.
As depicted in Figure 17(a), the core of this functional zone
is the new CBD of Beijing.

Figure 11 and Figure 12 show the arriving/leaving transi-
tions matrix of c0 and c2 during weekdays and weekends
respectively, where the x-axes are time of day (by hour)
and y-axes are the functional zones that people come from
and leave for. Both c0 and c2 can generally be considered
the working areas, since trends reveal for both of them that
people come at the morning peak time (8-9am) and leave
in the early evening (5-6pm). The results also indicate that
c6, c7, c8 are residential areas since most people come to
c0 and c2 in the morning are originated from these zones
(Figure 11 (a) and (c)).

Figure 13 and Figure 14 show transition matrices of
c5 and c1 on weekdays and weekends. It’s clear that on
weekdays, most people reach and leave these areas after work
(5pm-6pm), while during weekends, people (mostly from the
residential areas such as c6 and c8) come to and leave for
these zones throughout the day, which is a typical pattern of
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(a) functional zone c1 (b) functional zone c4

Fig. 17. Functionality intensity of the emerging and
developed commercial functional zones

the commercial area. Another signal showing the commercial
function of c5 is that people go to c5 more often on weekends
(as shown in Figure 12 (b) and Figure 14).

With regard to the other identified functional zones, since
the frequency densities of POIs are much lower than the
above functional zones, we identify their semantic functions
with more consideration of functionality intensity and fre-
quent mobility patterns derived for each functional zone in
addition to the POI configurations.
Historical Interests/Parks[c4]. If we only consider the POI
configuration, the characteristic of this cluster does not re-
veal obviously. However, by considering the functionality
intensity estimated by mobility patterns, we find that they
are places of historic interests in Beijing. As shown in Fig-
ure 17(b), famous historical sites like the Forbidden City and
the Temple of Heaven are located in these areas. In addition,
some parks like the Purple Bamboo Park8, Happy Valley9,
and Wangxinghu Park10 are also successfully clustered into
this functional zone.
Nature areas[c3]. These areas have the fewest POIs in most
POI categories. Actually, a lot of forests and mountains cover
this cluster, e.g., the Xishan Forest Park, Century Forest Park,
and Baiwang Moutain.

Figure 15 and Figure 16 show that people come to c3
following similar temporal patterns as c4, but the diversity
and quantity are reasonably weaker than c4, since many POIs
in c4 are very famous scenic spots. In addition, people travel
to c3 and c4 more often on weekends, which coincides with
expected tendencies at that time.

5.2.3 Calibration for Urban Planning
The discovered functional zones provide calibration and
reference for urban planning. For example, Figure 18 presents
the comparison between governmental land use planning
(2002-2010) and the results of our method in 2011. This
area forms an emerging residential area as planned by the
government, while some small regions become developing
commercial areas, such as A, B and C after 2 years’
development.

8. http://bit.ly/RwzcWs
9. http://bit.ly/14YDRUG
10. http://bit.ly/14YDgCi
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Fig. 18. (a) governmental land use planning (2002-
2010) (b) discovered functional zones in 2011

6 RELATED WORK

6.1 Urban computing with taxicabs
In recent decades, urban computing has emerged as a concept
where every sensor, device, person, vehicle, building, and
street in urban areas can be used as a component to probe
city dynamics and further enable a city-wide computing for
serving people and their cities. The increasing availability of
GPS-embedded taxicabs provides us with an unprecedented
wealth to understand human mobility in a city, thereby
enabling a variety of novel urban computing research re-
cently. For example, [20] and [19] studied the strategies
for improving taxi drivers’ income by analyzing the pick-
up and drop-off behavior of taxicabs in different locations.
[21] aimed to find the fastest practical driving route to a
destination according to a large number of taxi trajectories.

The work presented in this paper is also a step towards
urban computing, but unlike the above-mentioned research,
, we focus on the discovery of functional zones in a city,
which we have never seen before in this research theme.

6.2 Map Segmentation
Grid-based map segmentation is extensively used in
geospatial-related analysis. [23] provided a method for pre-
dicting drivers’ destination by mapping past trips into grid-
cells and learning the destination probabilities with respect
to each cell. [24] proposed an approach to suggest maximum
profit grid for taxi drivers by constructing a spatio-temporal
profitability map with a grid-based segmentation, where the
probabilities are calculated using historical data. Compared
with a grid-based segmentation, our solution, which considers
high-level roads as the boundary, is more natural for studying
the human mobility on a map, as described in Section 1.

[25] proposed a novel road network partition approach
based on road hierarchy. Specifically, road networks are first
divided into areas by high level roads, then the partition
process is recursively performed for each area. The partition
process is implemented by finding the strongly connected
components after the removal of the intersection nodes
connected to high level roads as well as the terminals of
high level road segments themselves. Figure 19(b) presents
the results of this approach for a portion of the Beijing
road network. However, this method does not work in our
scenario since 1) our desired region is bound by high level
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road segments and may contain several strongly connected
components, and 2) we aim to segment the whole area instead
of just the road nodes into regions, i.e., we need a mapping
from any locations represented by latitudes and longitudes
(within the bounding box of the road network) to the region
IDs.

Morphology operators are widely used in geographical
information systems as well as image processing. [26] em-
ployed mathematical morphology for map simplification from
remote sensing images by extracting skeletons from the im-
age and converting the structure into vectors. Similar works
are presented in [27], [28] and [29]. Different from the above
methods which are based on remote sensing images, we aim
to segment the urban area represented by vector-based model
into regions, instead of simplifying the map or extracting
structures from the map. Figure 19(c) plots the result using
the proposed morphological-based algorithm, as compared
to the grid-based method and hierarchy-based method with
respect to the same area of Beijing.

6.3 Discovery of functional zones

Functional zones [30] have been studied in traditional fields
of GIS and urban planning for years, as their discovery
can benefit policy making, resource allocation, and related
research. As early as 1970, [31] provided a case study on
functional regions within Central London using surveyed data
of taxi flows collected in 1962, which is part of the London
Traffic Survey. [14] gave a good survey on related works
which are mainly based on clustering algorithms. Some
algorithms classify regions in urban area based on remote-
sensing data, as thoroughly compared in [32]. Other network-
based clustering algorithms (e.g., spectral clustering), how-
ever, employed interaction data, such as economic transac-
tions, communication records [33] and people’s movement
between regions. In [33], the authors exploited telecommu-
nication data to partition the Great Britain into regions. They
first rasterized the map into pixels, then built a transition
matrix using telecommunication data with respect to each
partitioned pixel, which can be regarded as the adjacent
matrix of a graph. The technique used for partitioning the
map is the spectral method based on modularity, which is
usually utilized in community detection. As a result, the
detected boundaries coincided well with either the official
administrative boundaries of these regions, or results from
existing literatures.

As the capital of China, Beijing has experienced profound
changes especially during the past two decades. [34] pre-
sented a historical review of urban planning in Beijing, with
a focus on the period during 1979-1995, where they indicated
that the “new urban-planning ideas, complex landuse and
transportation patterns” are blended by the evolving form.
The work reported in this paper, however, focuses on contem-
porary Beijing and potentially enables calibration for urban
planners in the near future.

Recently, a series of work has aimed to study the geo-
graphic distribution of some topic in terms of user-generated
social media [35, 36]. For example, [37] studied the distri-
butions of some geographical topics (like the beach, hiking,
and sunsets) in the USA using geo-tagged photos acquired
from Flickr. [38] explored the space-time structure of top-
ical content from numerous geo-tweets. The social media
generated in a geo-region is still used as static features to
feature a region. Meanwhile, a few works have reported that
human mobility can describe the functions of regions. For
instance, [39] observed that the getting on/off amount of taxi
passengers in a region can depict the social activity dynamics
in the region.

Our work is different from the research mentioned above in
the following aspects. First, to the best of our knowledge, our
method is the first one that simultaneously considers location
semantics (e.g., POIs) of a region and mobility semantics
(i.e., human mobility intentions) between regions when iden-
tifying functional zones. Second, rather than directly using
some clustering algorithm, we propose a topic-model-based
solution which represents a region with a distribution of
socio-economic activities. Moreover, it reduces data sparsity
by clustering regions into functional zones. We demonstrate
the advantage of our method over just using the clustering
approach in our experiments.

7 CONCLUSION
This paper has proposed a framework for discovering func-
tional zones (e.g., educational areas, entertainment areas,
and regions of historic interests) in a city using human
trajectories, which imply socio-economic activities performed
by citizens at different times and in various places. We have
evaluated this framework with large-scale datasets including
POIs, road networks, taxi trajectories and public transit data.
According to extensive experimental results, our method
using both location and mobility semantics outperforms the
baselines solely using location or mobility semantics in terms
of effectively finding functional zones. Meanwhile, we have
found that public transit data can be used as a comple-
ment to the taxi trips in representing urban mobility, so as
to achieve a better performance for discovering functional
zones. In addition, by matching the discovered functional
zones against Beijing land use planning (2002-2010), we have
shown exemplary calibrated results. The proposed framework
provides a powerful tool for computational urban science, and
offers emerging implications for human mobility analytics
and location-based services.
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