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ABSTRACT
Emergency medical service provides a variety of services for
those in need of emergency care. One of the major chal-
lenges encountered by emergency service providers is select-
ing the appropriate locations for ambulance stations. Prior
works measure spatial proximity under Euclidean space or
static road network. In this paper, we focus on locating the
ambulance stations by using the real traffic information so
as to minimize the average travel-time to reach the emer-
gency requests. To this end, we estimate the travel-time
of road segments using real GPS trajectories and propose
an efficient PAM-based refinement for the location problem.
We conduct extensive experimental evaluations using real
emergency requests collected from Tianjin, and the result
shows that the proposed solution can reduce the travel-time
to reach the emergency requests by 29.9% when compared
to the original locations of ambulance stations.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining, Spatial database and GIS

General Terms
Algorithm
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City Planning, Emergency Medical Service

1. INTRODUCTION
Emergency medical service, a.k.a., EMS, is a system that

provides not only a variety of medical services, e.g., pre-
hospital medical and trauma care, but also the transporta-
tion for those in need of emergency care. One of the major
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challenges encountered by the emergency service providers
is selecting the appropriate locations for ambulance stations.
Regarding to the construction of an urban EMS system, it
is crucial that the emergency requests can be reached in a
time-efficient manner as saving time is saving lives. How-
ever, most of ambulance stations are not well located, and
currently they are located in or near the hospitals which do
not consider the distribution of real emergency requests.

A good criteria to measure the quality of the selected loca-
tions is computing the average response time for real emer-
gency requests. Through this data-driven approach, we aim
at optimizing the average travel-time to reach the locations
of real emergency requests. Thus the objective function is
the MinSum model and it is a NP-hard problem [2]. Previ-
ous works tackle this problem by using some approximate so-
lutions while they measure the spatial proximity, e.g., travel-
time between the ambulance station and real emergency re-
quest, under either Euclidean space or static road network.
In this work, we propose to select the locations under more
realistic spatial setting by taking the real traffic information
into consideration.
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Figure 1: Problem demonstration

Effect of Real Traffic Information. Figure 1 shows the
topology of a road network and four emergency requests
which are marked by red grid, i.e., R = {a, c, i, l}. We
are allowed to set up two ambulance stations. By using
the distance of road segments, the optimal locations are
F = {e, h} 1. However, the distance of a road segment
can not well capture its travel-time. For example, it costs a
lot of time to traverse road segments e(d, h) and e(g, h) even
their distance is short due to the traffic congestion. By con-
sidering the real traffic information, the optimal locations
should be changed to F = {e, k}.

Obviously, the real-time traffic condition will affect the se-
lection of locations. In this work, we estimate the travel-time
of each road segment by using the real trajectories and pro-
pose an effect solution based on fast PAM-based refinement

1It is sufficient to locate the stations only on the vertices.



[3] to solve the location problem. The proposed solution is
not only applicable in the construction of urban EMS, but
can also be adopted to other urban planning tasks, e.g., fire
stations, transit stations for city express and polling stations
for public election, etc.

The contribution of this paper can be summarized as:

I We propose to locate the ambulance stations based on
the MinSum model by well measuring the travel-time
of road segments.

II We propose an efficient PAM-based refinement method
to solve the location problem effectively.

III Extensive experimental results on real emergency re-
quests collected from Tianjin demonstrate the effective-
ness and efficiency of our proposed solution.

The rest of this paper is organized as follows. In Sec-
tion 2, we formally define the problem and give an overview
of our proposed framework. We present our solutions for
travel-time estimation and location selection in Section 3
and Section 4 respectively. In Section 5, we experimentally
evaluates the efficiency and effectiveness of the proposed so-
lutions. Finally, we conclude our work with a discussion
about future work in Section 6.

2. PRELIMINARY
Location Problem. In this work, the emergency requests
are mapped to the vertices and we only consider to locate
the ambulance stations on the vertices.

Definition 1 (Location Problem). Given a road
network G(V,E), a set of emergency requests R and the
number of ambulance stations to be established k, the lo-
cation problem aims at finding a set of locations F such
that F ⊆ V , |F | = k and

∑
r∈R

tF (r) ≤
∑

r∈R tF ′(r) for all

F ′ ⊆ V , |F ′| = k.

where tF (r) is the minimum time to reach the emergency
request r by dispatching the ambulance from stations in F
at the time when r issued. As a remark, two requests located
at the same location but in different time slots will require
different travel-time to be reached from the same station.

Figure 2 presents the framework of our proposed solution.
We first estimate the travel-time of each road segment using
real trajectories, then pre-compute the travel-time to reach
requests by all the vertices. Finally we propose an efficient
PAM-based refinement to find the appropriate k locations.

Emergency 

Rquests

Road 

Network
Taxi 

Trajectories

Travel-time 

matrix

Matrix

Decompisition

Selecting k 

initial stations

k-medoids 

clustering

PAM-based 

refinement

Fini Fkm
F

Map- 

Matching

k-medoids clustering

PAM-based refinement

L
o
c

atio
n
 se

lec
tio

n

Emergency 

Rquests

Road

Network
Trajectories

D
ata

 p
rep

ro
ce

ssin
g

R
o

ad
 ed

g
es

Time V
ertices

Requests

Routing
F

Figure 2: Framework of the proposed solution

3. TRAVEL-TIME ESTIMATION
To estimate the travel-time of road segments, we first map

the trajectories of taxicab onto the road network using a
map-matching algorithm [4], then we estimate the travel-
time of road segments covered by trajectories. We divide a
day into 24 hours and the average travel-time of road seg-
ments in each hour are calculated. Due to the data sparsity,
i.e., the trajectories of taxicab cannot cover all roads at all
time slots, we follow a matrix-factorization approach in [6, 8]
to compute the travel-time of road segments that are absent
of trajectory data.

During the selection of locations, the travel-time of each
vertex in V to all requests R need to be used several times.
Computing these travel-time on demand will introduce a
lot of shortest path computations. We are aware of the
methods for efficient shortest path computation in the road
network [7]. Nervelessness, we pre-compute the travel-time
matrix M , e.g., vertices to requests, and store it in memory.

4. PAM-BASED REFINEMENT
Among many algorithms for the location problem, parti-

tioning around medoids (PAM) is known to be most pow-
erful [5]. Even though, PAM is a local search heuristic, it
can provide the approximation guarantee with a factor of at
most 5 from the global optimum [1, 2]. In practice, the gap
is usually much smaller [2]. Alg. 1 shows its pseudo codes.
Given the initial stations Fini, the PAM-based refinement
tentatively replaces each current medoids p ∈ Fini by every
vertex p′ ∈ {V − Fini}, and the overall travel-time of this
replacement is estimated, cf. Line 3 - 7. Among all these
tentative replacements, the one with the maximum travel-
time reduction is carried out, cf. Line 9. The PAM-based
refinement repeats this kind of replacements until the overall
travel-time cannot be further reduced, cf. Line 11.

Algorithm 1 PAM-based refinement algorithm

Input Road network G, Emergency requests R, Travel-time
matrix M , Initial k ambulance stations Fini

Output k ambulance stations F
1: bsf :=

∑
r∈R tFini

(r), Fbsf := Fini

2: while true do
3: for each p ∈ Fini do . O(k2|R||V |)
4: for each p′ ∈ V do . O(k|R||V |)
5: F := Fini − p+ p′

6: if
∑
r∈R

tF (r) < bsf then . O(k|R|)

7: bsf :=
∑
r∈R

tF (r);Fbsf := F

8: if Fini! = Fbsf then
9: Fini := Fbsf

10: else
11: return Fini

The PAM-based refinement is effective for the location
problem, but it works inefficiently for large datasets due
to its time complexity. The time complexity of PAM-based
refinement in one iteration is O(k2|R||V |). More specifically,
it need to carry out k · |V | replacements in each iteration.
For each replacement, it takes k · |R| to estimate the overall
travel-time. To reduce the number of iterations, we apply a
fast heuristic method in selecting the k initial stations, then
we propose two optimizations to boost up the PAM-based
refinement in each iteration.



4.1 Selecting k initial stations
One can arbitrary select k vertices as Fini. However, if

the selected Fini can produce a smaller overall travel-time,
fewer swaps are required to reach the final solution in PAM.
[2] suggests to employ the k-means clustering algorithm on
R in selecting Fini. In this work, we suggest to apply k-
medoids clustering [5] in selecting Fini as it can provide more
better initial stations. The k-medoids clustering algorithm
performs similar to k-means clustering algorithm. It refines
Fini by iteratively assigning and updating the medoids for
the emergency requests. The major difference between these
two clustering algorithms is the medoids (i.e., centers) up-
dating of clusters. Please refer [5] for more detail.

4.2 Fast PAM-based Refinement
Even by properly selecting the initial stations, we can re-

duce the iteration of replacements in PAM-based refinement.
However, it still takes quite a few iterations to reach the fi-
nal solution according to the experimental evaluation. To
boost up the PAM-based refinement, we propose two opti-
mizations which aim at pruning unpromising replacements
by batch and reduce the estimation cost of each replacement.

Prune unpromising replacements: To prune unpromis-
ing replacements by batch, we first group the vertices accord-
ing to their spatial proximity. Instead of checking the vertex
replacement directly, we first estimate the travel-time lower
bound for each group replacement. The travel-time lower
bound of a group replacement can be easily derived by pre-
computing minimum travel-time to reach each request by all
vertices in a group. If the travel-time lower bound of this
group replacement is already larger than bsf , then vertex
replacements in this group can be safely pruned.

Efficient estimation of (group) replacement: Accord-
ing to the aforementioned method, unpromising vertex re-
placements can be pruned by batch. However, it still takes
O(k|R|) to estimate the travel-time lower bound for a group
replacement. If a group replacement is survived from the
pruning phase, it takes the same cost, i.e., O(k|R|), to esti-
mate the overall travel-time of a vertex replacement.

To reduce the estimation cost for group replacement, we
propose to divide the requests into m groups. We denote
the travel-time lower bound of replacing a station p in F by
a vertex group Vi as LB(F, p, Vi), and it can be calculated
according to the following equation.

LB(F, p, Vi) =

m∑
i=1

{
(|Ri| · LBF−p(Ri) if LBF−p(Ri) < LBVi(Ri)

|Ri| · LBVi(Ri) if LBF−p(Ri) ≥ LBVi(Ri)

Ri is the i-th request groups. LBF−p(Ri) is the travel-time
lower bound for a station in {F − p} to reach a request in
Ri. It is formally defined as below.

LBF−p(Ri) = min
p′∈{F−p},r∈Ri

tp′(r)

Similarity, the LBVi(Ri) is the travel-time lower bound of a
vertex in Vi to reach a request in Ri. LBVi(Ri) for all Vi and
Ri combinations can be pre-computed with the time com-
plexity of O(|R||V |). In order to estimate the lower bound
of group replacement, it still need to compute LBF−p(Ri).
In one iteration of PAM-based refinement, F is fixed. The
LBF−p(Ri) for all station p ∈ F and all request partitions

can be pre-computed in O(k2|R|). As a consequence, these
precomputations can reduce the estimation cost of a group
replacement from O(k|R|) to O(m). As a remark, the cost of
these two precomputations are trivial as they can be amor-
tized by ξ · k · n and k · n group replacements respectively, ξ
is the number of iterations in PAM-based refinement.
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Figure 3: Affected requests

For a group replacement which is survived, each vertex
replacement in this group need further refinement. A naive
method takes O(k|R|) to estimate each vertex replacement.
Actually, the overall travel-time of a vertex replacement can
be measured by only checking the affected requests. More
specifically, the affected requests of a vertex replacement
are the requests whose nearest station changed after this
replacement. Figure 3 shows the affected requests of a ver-
tex replacement. It is obvious that the affected requests
of a vertex replacement is the subset of its corresponding
group replacement. For an un-pruned group replacement,
we first calculate the affected requests of this group replace-
ment with the cost of O(k|R|), then for each vertex replace-
ment in this group, we only need to estimate the overall
travel-time by using these affected requests. As a remark,
the early abandon technique can be applied to further im-
prove the performance as we only need to carry out the best
vertex replacement in one iteration of PAM-based refine-
ment.

5. EXPERIMENT
In this section, we evaluate the efficiency and effectiveness

of our proposed methods. All methods are implemented in
C# and performed on a windows server 2012 with 2.4GHz
Intel Core E5-2665 CPU and 128GB main memory.

5.1 Dataset
Road networks: We use the road network of Tianjin, which
is comprised of 99,007 vertices and 133,726 road segments.

Emergency requests: The real emergency requests were
collected from Tianjin during three weeks. This dataset con-
tains 9913 emergency requests.

Taxi trajectories: We use a GPS trajectory dataset which
is generated by 3,501 taxicabs from Tianjin in 61 days. The
number of GPS points reaches 753,059,212, and the total
length of the trajectories is over 46,028,698km.

5.2 Experiment Results

5.2.1 Overview
Figure 4(a) shows the original locations of 34 ambulance

stations in Tianjin 2. The stations are marked by yellow tri-

2We only show the ambulance stations in the given region.
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Figure 4: Ambulance stations in Tianjin, k = 34

angles and the emergency requests which are served by the
same station are marked by the same color. It takes 534.5
seconds on average to reach the emergency requests by orig-
inal stations. However, our solution as shown in Figure 4(b)
only takes 374.6 seconds on average to reach the emergency
requests and it can saves 29.9% travel-time.

Regarding to the travel-time distribution of requests, only
85.2% emergency requests can be reached in 15 minutes by
original locations. However, our solution can reach 90.6%
emergency requests in 15 minutes. For the time efficiency
of our proposed solution, it only takes 2960 seconds to
find these locations by utilizing the proposed optimizations
which enables the possibility to further explore real big re-
quest data to improve the quality of the selected locations.

5.2.2 Effectiveness Study
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Figure 5: Travel-time by iterations, k = 34

Exp-1. Effect of refinement methods. In Figure 5, we
study the effect of refinement methods, i.e., k-medoids clus-
tering and PAM-based refinement. According to the result,
the k-medoids clustering algorithm can reduce the average
travel-time significantly in a few iterations, e.g., it reduces
the average travel-time from 587.9 seconds to 404.2 seconds
in 10 iterations. The PAM-based refinements further reduce
the travel-time by 7.4% in 31 iterations.

Exp-2. Impact of real-time traffic information. To
study the impact of real-time traffic information, we com-
pare the locations selected by distance of road segments us-
ing the same algorithm. To make a fair comparison, once
the locations are selected by distance of road segments, we
measure the average travel-time of these locations by using
the real travel-time matrix M . According to the experimen-
tal result, the locations selected by real travel-time perfor-
mances better than distance by 8.4%.

5.2.3 Efficiency Study

The efficiency of PAM-based refinement comes from two
methods, (i) batch pruning, (ii) efficient estimation of re-
placements. According to our experimental evaluations, our
methods can prune 97% unpromising replacements. To esti-
mate a vertex replacement, our methods only need to check
497 (among 9913) emergency requests on average.

6. CONCLUSION
In this paper, we propose to locating the ambulance sta-

tions by using the data-driven approach. We take the real
emergency requests and traffic information into considera-
tion. The experimental evaluation verified the efficiency and
effectiveness of our proposed solution. As a future work, we
plan to study the prediction of emergency requests and dy-
namic ambulances dispatching.
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