
1

T-Drive: Enhancing Driving Directions with
Taxi Drivers’ Intelligence

Jing Yuan, Yu Zheng, Xing Xie, Guangzhong Sun

Abstract—This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system,
GPS-equipped taxis are employed as mobile sensors probing the traffic rhythm of a city and taxi drivers’ intelligence in choosing
driving directions in the physical world. We propose a time-dependent landmark graph to model the dynamic traffic pattern as
well as the intelligence of experienced drivers so as to provide a user with the practically fastest route to a given destination
at a given departure time. Then, a Variance-Entropy-Based Clustering approach is devised to estimate the distribution of travel
time between two landmarks in different time slots. Based on this graph, we design a two-stage routing algorithm to compute the
practically fastest and customized route for end users. We build our system based on a real-world trajectory dataset generated
by over 33,000 taxis in a period of 3 months, and evaluate the system by conducting both synthetic experiments and in-the-field
evaluations. As a result, 60–70% of the routes suggested by our method are faster than the competing methods, and 20% of the
routes share the same results. On average, 50% of our routes are at least 20% faster than the competing approaches.

Index Terms—Spatial databases and GIS, data mining, GPS trajectory, driving directions, driving behavior

�

1 INTRODUCTION

FINDING efficient driving directions has become
a daily activity and been implemented as a key

feature in many map services like Google and Bing
Maps. A fast driving route saves not only the time of
a driver but also energy consumption (as most gas
is wasted in traffic jams). Therefore, this service is
important for both end users and governments aiming
to ease traffic problems and protect environment.

Essentially, the time that a driver traverses a route
depends on the following three aspects: 1) The phys-
ical feature of a route, such as distance, capacity
(lanes), and the number of traffic lights as well as
direction turns; 2) The time-dependent traffic flow
on the route; 3) A user’s driving behavior. Given
the same route, cautious drivers will likely drive
relatively slower than those preferring driving very
fast and aggressively. Also, users’ driving behaviors
usually vary in their progressing driving experiences.
E.g., traveling on an unfamiliar route, a user has to
pay attention to the road signs, hence drive relatively
slowly. Thus, a good routing service should consider
these three aspects (routes, traffic and drivers), which
are far beyond the scope of the shortest/fastest path
computing.

Usually, big cities have a large number of taxicabs
traversing in urban areas. For efficient taxi dispatch-

• Jing Yuan and Guangzhong Sun are with University of Science and
Technology of China, Email: yuanjing@mail.ustc.edu.cn.

• Yu Zheng and Xing Xie are with Microsoft Research Asia, Beijing,
China, Email:{yuzheng,xing.xie}@microsoft.com

This article is an expanded version of [1], which appeared In Proceedings
of ACM SIGSPATIAL 2010 as the Best Paper Runner-up.

ing and monitoring, taxis are usually equipped with
a GPS sensor, which enables them to report their
locations to a server at regular intervals, e.g., 2∼3
minutes. That is, a lot of GPS-equipped taxis already
exist in major cities, generating a huge number of
GPS trajectories every day[2]. Intuitively, taxi drivers
are experienced drivers who can usually find out the
fastest route to send passengers to a destination based
on their knowledge (we believe most taxi drivers are
honest although a few of them might give passengers
a roundabout trip). When selecting driving directions,
besides the distance of a route, they also consider
other factors, such as the time-variant traffic flows
on road surfaces, traffic signals and direction changes
contained in a route. These factors can be learned by
experienced drivers but are too subtle and difficult
to incorporate into existing routing engines. There-
fore, these historical taxi trajectories, which imply the
intelligence of experienced drivers, provide us with
a valuable resource to learn practically fast driving

Ph
ys

ic
al

 W
or

ld
C

yb
er

 W
or

ld

Web maps Weather forecast

Cloud

GPS-enabled Taxi
--Mobile Sensor

Ordinary Driver

Public transportation
Schedules

Q
ue

rie
s

D
ec

is
io

ns
 &

 ro
ut

es

Fig. 1. A cloud-based driving directions service

2

directions.
In this paper, we propose a cloud-based cyber-

physical system for computing practically fast routes
for a particular user, using a large number of GPS-
equipped taxis and the user’s GPS-enabled phone.
As shown in Fig. 1, first, GPS-equipped taxis are
used as mobile sensors probing the traffic rhythm
of a city in the physical world. Second, a Cloud in
the cyber world is built to aggregate and mine the
information from these taxis as well as other sources
from Internet, like Web maps and weather forecast.
The mined knowledge includes the intelligence of
taxi drivers in choosing driving directions and traffic
patterns on road surfaces. Third, the knowledge in
the Cloud is used in turn to serve Internet users
and ordinary drivers in the physical world. Finally,
a mobile client, typically running in a user’s GPS-
phone, accepts a user’s query, communicates with the
Cloud, and presents the result to the user. The mobile
client gradually learns a user’s driving behavior from
the user’s driving routes (recorded in GPS logs), and
supports the Cloud to customize a practically fastest
route for the user.

However, we need to face the following three chal-
lenges: 1) Intelligence Modeling. As a user can select any
place as a source or destination, there would be no
taxi trajectory exactly passing the query points. That
is, we cannot answer user queries by directly mining
trajectory patterns from the data. Therefore, how to
model taxi drivers’ intelligence that can answer a
variety of queries is a challenge; 2) Data Sparseness
and Coverage. We cannot guarantee there are sufficient
taxis traversing on each road segment even if we
have a large number of taxis. That is, we cannot
accurately estimate the speed pattern of each road
segment; and 3) Low-sampling-rate Problem. To save
energy and communication loads, taxis usually report
on their locations in a very low frequency, like 2-
5 minutes per point. This increases the uncertainty
of the routes traversed by a taxi[3]. As shown in
Fig. 2, there could exist four possible routes (R1-R4)
traversing the sampling points a and b.

R1 R2

R3

a

b
R4

Fig. 2. Low-sampling-rate problem

Since this paper is an extension of our previous
publication [1], we summarize the contributions (in-
cluding that of the previous paper) of our work as
follows:
1) In the previous paper [1], we propose the notion
of a time-dependent landmark graph, which well
models the intelligence of taxi drivers based on the

taxi trajectories. We devise a Variance-Entropy-Based
Clustering (VE-Clustering for short) method to learn
the time-variant distributions of the travel times be-
tween any two landmarks.
2) In this extension work:

• We further improve our routing service by self-
adaptively learning the driving behaviors of both
the taxi drivers and the end users so as to provide
personalized routes to the users.

• We present smoothing algorithms for removing
the roundabout part of the original rough routes.

• We build the improved system by using a real-
world trajectory dataset generated by 33,000+
taxis in a period of 3 months, and evaluate the
system by conducting both synthetic experiments
and in-the-field evaluations (performed by real
drivers). The results show that proposed method
can effectively and efficiently find out practically
better routes than the competing methods.

2 PRELIMINARY

In this section, we first introduce some terms used in
this paper, then define our problem.

Definition 2.1 (Road Segment): A road segment r is a
directed (one-way or bidirectional) edge that is asso-
ciated with a direction symbol (r.dir), two terminal
points (r.s, r.e), and a list of intermediate points
describing the segment using a polyline. If r.dir=one-
way, r can only be traveled from r.s to r.e, other-
wise, people can start from both terminal points, i.e.,
r.s → r.e or r.e → r.s. Each road segment has a length
r.length and a speed constraint r.speed, which is the
maximum speed allowed on this road segment.

Definition 2.2 (Road Network): A road network Gr is
a directed graph, Gr = (Vr, Er), where Vr is a set
of nodes representing the terminal points of road
segments, and Er is a set of edges denoting road
segments. The time needed for traversing an edge is
dynamic during time of day.

Definition 2.3 (Route): A route R is a set of connected
road segments, i.e., R : r1 → r2 → · · · → rn, where
rk+1.s = rk.e, (1 ≤ k < n). The start point and end
point of a route can be represented as R.s = r1.s and
R.e = rn.e.

Definition 2.4 (Taxi Trajectory): A taxi trajectory Tr is
a sequence of GPS points pertaining to one trip. Each
point p consists of a longitude, latitude and a time
stamp p.t, i.e., Tr : p1 → p2 → · · · → pn, where
0 < pi+1.t − pi.t < �T (1 ≤ i < n). �T defines the
maximum sampling interval between two consecutive
GPS points.

3 TIME-DEPENDENT LANDMARK GRAPH

This section first describes the construction of the
time-dependent landmark graph, and then details the
travel time estimation of landmark edges.

3

3.1 Building the Landmark Graph

In practice, to save energy and communication loads,
taxis usually report on their locations in a very low
frequency, like 2-5 minutes per point. This increases
the uncertainty of the routes traversed by a taxi [3],[4].
Meanwhile, we cannot guarantee there are sufficient
taxis traversing on each road segment anytime even
if we have a large number of taxis. That is, we
cannot directly estimate the speed pattern of each
road segment based on taxi trajectories.

In our method, we first partition the GPS log of a
taxi into some taxi trajectories representing individual
trips according to the taximeter’s transaction records.
There is a tag associated with a taxi’s reporting when
the taximeter is turn on or off, i.e., a passenger get on
or off the taxi. Then, we employ our IVMM algorithm
[4], which has better performance than existing map
matching algorithms when dealing with the low-
sampling-rate trajectories. This algorithm utilizes the
spatial-temporal restrictions to obtain candidate road
segments, then considers the mutual influences of the
GPS points in a trajectory to calculate static/dynamic
score matrix for a trajectory and performs a voting-
based approach among all the candidates. As a result,
each taxi trajectory is converted to a sequence of road
segments. We formally define the landmark as follows:

Definition 3.1 (Landmark): A landmark is one of the
top-k road segments that are frequently traversed by
taxi drivers according to the trajectory archive.

Based on the preprocessed taxi trajectories, we de-
tect the top-k frequently traversed road segments,
which are termed as landmarks. The reason why we
use “landmark” to model the taxi drivers’ intelligence
is that: First, the sparseness and low-sampling-rate
of the taxi trajectories do not support us to direct-
ly calculate the travel time for each road segment
while we can estimate the traveling time between
two landmarks (which have been frequently traversed
by taxis). Second, the notion of landmarks follows
the natural thinking pattern of people. For instance,
the typical pattern that people introduce a route to
a driver is like this “take I-405 South at NE 4th
Street, then change to I-90 at exit 11, and finally
exit at Qwest Field”. Instead of giving turn-by-turn
directions, people prefer to use a sequence of land-
marks (like NE 4th Street) that highlight key directions
to the destination. Later, we connect two landmarks
according to definitions 3.2, 3.3 and 3.4.

Definition 3.2 (Transition): Given a trajectory archive
A, a time threshold tmax, two landmarks u, v, arriving
time ta, leaving time tl, we say s = (u, v; ta, tl) is a
transition if the following conditions are satisfied:
(I) There exists a trajectory Tr = (p1, p2, . . . , pn) ∈ A,
after map matching, Tr is mapped to a road segment
sequence (r1, r2 . . . , rn). ∃ i, j, 1 ≤ i < j ≤ n s.t.
u = ri, v = rj .
(II) ri+1, ri+2, . . . , rj−1 are not landmarks.

(III) ta = pi.t, tl = pj .t and the travel time of this
transition is tl − ta ≤ tmax.

Definition 3.3 (Candidate Edge and Frequency):
Given two landmarks u, v and the trajectory archive
A, let Suv be the set of the transitions connecting
(u, v). If Suv �= ∅, we say e = (u, v;Tuv) is a candidate
edge, where

Tuv = {(ta, tl)|(u, v; ta, tl) ∈ Suv}

records all the historical arriving and leaving times.
The support of e, denoted as e.supp, is the number of
transitions connecting (u, v), i.e., |Suv|. The frequency
of e is e.supp/τ , denoted as e.freq, where τ represents
the total duration of trajectories in archive A.

Definition 3.4 (Landmark Edge): Given a candidate
edge e and a minimum frequency threshold δ, we say
e is a landmark edge if e.freq ≥ δ.

Definition 3.5 (Landmark Graph): A landmark graph
Gl = (Vl, El) is a directed graph that consists of a
set of landmarks Vl (conditioned by k) and a set of
landmark edges E conditioned by δ and tmax.

The threshold δ is used to eliminate the edges
seldom traversed by taxis, as the fewer taxis that pass
two landmarks, the lower accuracy of the estimated
travel time (between the two landmarks) could be.
Additionally, we set the tmax value to remove the
landmark edges having a very long travel time. Due
to the low-sampling-rate problem, sometimes, a taxi
may consecutively traverse three landmarks while no
point is recorded when passing the middle (second)
one. This will result in that the travel time between
the first and third landmark is very long. Such kinds
of edges would not only increase the space complexity
of a landmark graph but also bring inaccuracy to the
travel time estimation (as a farther distance between
landmarks leads to a higher uncertainty of the tra-
versed routes). We use the frequency instead of the
support of a landmark edge (to guarantee efficient
transitions) because we want to eliminate the effect
induced by the scale of the trajectory archive.

We observe (from the taxi trajectories) that dif-
ferent weekdays (e.g., Tuesday and Wednesday) al-
most share similar traffic patterns while the weekdays
and weekends have different patterns. Therefore, we
build two different landmark graphs for weekdays
and weekends respectively. That is, we project all
the weekday trajectories (from different weeks and
months) into one weekday landmark graph, and put
all the weekend trajectories into the weekend land-
mark graph. We also find that the traffic pattern
varies in weather conditions. Therefore, we respec-
tively build different landmark graphs for weekday
and weekend, and for normal and severe weather
conditions, like storm, heavy rain, and snow. In total,
2×2 = 4 landmark graphs are built. The weather con-
dition records are crawled from the weather forecast
website.

4

Fig. 3 (A)-(C) illustrate an example of building the
landmark graph. If we set k = 4, the top-4 road
segments (r1, r3, r6, r9) with more projections are de-
tected as landmarks. Note that the consecutive points
(like p3 and p4) from a single trajectory (Tr4) can only
be counted once for a road segment (r10). This aims
to handle the situation that a taxi was stuck in a
traffic jam or waiting at a traffic light where multiple
points may be recorded on the same road segment
(although the taxi driver only traversed the segment
once), as shown in Fig. 3 (C). After the detection of
landmarks, we convert each taxi trajectory from a
sequence of road segments to a landmark sequence,
and then connect two landmarks with an edge if the
transitions between these two landmarks conform to
Definition 3.4 (supposing δ=1 in this example).

3.2 Travel Time Estimation

In this step, we aim to automatically partition time
of a day into several slots (for different landmark
edges)(see Fig. 4(c)) according to the traffic conditions
reflected by the raw samples (as shown in Fig. 4(a))
pertaining to a landmark edge. Then we estimate the
travel time distribution of each time slot for each
landmark edge.

3.2.1 VE-Clustering

Since the road network is dynamic (refer to Definition
2.2), we can use neither the same nor a predefined
time partition method for all the landmark edges.
Meanwhile, as shown in Fig. 4(a), the travel times of
transitions pertaining to a landmark edge clearly gath-
er around some values (like a set of clusters) rather
than a single value or a typical Gaussian distribution,
as many people expected. This may be induced by
1) the different number of traffic lights encountered
by different drivers, 2) the different routes chosen by
different drivers traveling the landmark edge, and
3) drivers’ personal behavior, skill and preferences.
Therefore, different from existing methods [5], [6]
regarding the travel time of an edge as a single-
valued function based on time of day, we consider
a landmark edge’s travel time as a set of distributions
corresponding to different time slots. Additionally, the
distributions of different edges, such as e13 and e16,
change differently over time.

0 5 10 15 20
0

100

200

300

400

500

time of day (hour)

tra
ve

l t
im

e
(s

ec
on

ds
)

(a) Transitions of a landmark Edge

0 5 10 15 20
0

100

200

300

400

500

time of day (hour)

tra
ve

l t
im

e
(s

ec
on

ds
)

cluster 0
cluster 1
cluster 2

(b) V-Clustering result

6.9 8.6 10.9 15.5 19.1 21.7 24
0

0.2

0.4

0.6

0.8

time of day (hour)

pr
op

or
tio

n

cluster 0
cluster 1
cluster 2

(c) VE-Clustering result

Fig. 4. An example of VE-Clustering Algorithm

To address this issue, we develop the VE-Clustering
algorithm (refer to [1] for the pseudo-code), which is
a two-phase clustering method, to learn different time
partitions for different landmark edges based on the
taxi trajectories. In the first phase, called V-clustering,
we cluster the travel times of transitions pertaining
to a landmark edge into several categories based
on the variance of these transitions’ travel times. In
the second phase, termed E-clustering, we employ
the information gain to automatically learn a proper
time partition for each landmark edge. Later, we can
estimate the distributions of travel times in different
time slots of each landmark edge.

The reason why we conduct the following V-
Clustering instead of using some k-means-like algo-
rithm or a predefined partition is that the number of
clusters and the boundaries of these clusters vary in
different landmark edges.

V-Clustering: We first sort Tuv according to the
values of travel time (tl − ta), and then partition the
sorted list L into several sub-lists in a binary-recursive
way. In each iteration, we first compute the variance of
all the travel times in L. Later, we find the “best” split
point having the minimal weighted average variance

7 9 14 17 19 24

0.2
0.4
0.6
0.8

1

time of day (hour)

pr
op

or
tio

n

3-5min
5-10min
10-14min

r2

Tr1 r3

r9

r8

r6

r1

Tr2

Tr5

Tr3

Tr4

A) Matched taxi trajectories B) Detected landmarks C) A landmark graph

r9

r3r1

r6

r9

r3r1

r6

p1 p2

D) Travel time estimation

p3 p4

r4

r5
r7

r10

e16

e96
e93

e13

e63
7 11 16 19 21 24

0.2
0.4
0.6
0.8

1

time of day (hour)

pr
op

or
tio

n

2-4min
4-9min

e13

e16

Fig. 3. Landmark graph construction

5

(WAV) defined as Equation 1:

WAV(i;L) =
|L(i)

A |
|L| V(L

(i)
A) +

|L(i)
B |
|L| V(L

(i)
B) (1)

where L
(i)
A and L

(i)
B are two sub-lists of L split at the

ith element and V represents the variance. This best
split point leads to a maximum decrease of

�V
(i)(L) = V(L)− WAV(i;L). (2)

The algorithm terminates when maxi{�V(i)} is less
than a threshold (this will definitely happen due to
Theorem 3.6, refer to the appendix part for the strict
proof). As a result, we can find out a set of split points
dividing the whole list L into several clusters C =
{c1, c2, . . . , cm}, each of which represents a category
of travel times. As shown in Fig. 4(b), the travel times
of the landmark edges have been clustered into three
categories plotted in different colors and symbols.

Theorem 3.6: L = {xi}Ni=1 is a sorted list, denote

L
(i)
A = {xj}ij=1 and L

(i)
B = {xj}Nj=i+1, let

�V
(i)(L) = V(L)− |L(i)

B |V(L(i)
B) + |L(i)

B |V(L(i)
B)

|L| .

If �V(L) = maxi{�V
(i)(L)}, then �V(L)|L| ≥

�V(L
(i)
A)|L(i)

A | and �V(L)|L| ≥ �V(L
(i)
B)|L(i)

B | for ∀i =
1, 2, . . . , N , the equality holds only if �V(L

(i)
A) = 0

and �V(L
(i)
B) = 0 respectively.

E-Clustering: This step aims to split the x-axis into
several time slots such that the travel times have a
relatively stable distribution in each slot. After V-
Clustering, we can represent each travel time yi with
the category it pertains to (c(yi)), and then sort the
pair collection Sxc = {(xi, c(yi))}ni=1 according to
xi (arriving time). The information entropy of the
collection Sxc is given by:

Ent(Sxc) = −
m∑
i=1

pi log(pi) (3)

where pi is the proportion of a category ci in the col-
lection. The E-Clustering algorithm runs in a similar
way to the V-Clustering to iteratively find out a set
of split points. The only difference between them is
that, instead of the WAV, we use the weighted average
entropy of Sxc defined as:

WAE(i;Sxc) =
|Sxc

1 (i)|
|Sxc| Ent(Sxc

1 (i))+
|Sxc

2 (i)|
|Sxc| Ent(Sxc

2 (i))

in the E-Clustering, where Sxc
1 and Sxc

2 are two subsets
of Sxc when split at the ith pair. The best split point
induces a maximum information gain which is given
by

�E(i) = Ent(Sxc)− WAE(i;Sxc).

As demonstrated in Fig. 4(c), we can compute the
distribution of the travel times in each time slot after
the E-Clustering process.

3.2.2 Differentiate Taxi Drivers’ Experiences
For a big city like New York and Beijing, not all the
taxi drivers are familiar with the traffic flows of the
whole city. According to the learning theory, typically,
the taxi driver’s knowledge of the traffic flow in a
ceratin area of a city will grow with the cumulative
number that he traveled to that area. Suppose a
landmark edge euv was traversed by n different taxi
drivers. The transition set Suv can be accordingly
categories into n sample spaces. After VE-Clustering,
the time during a day is partitioned into several time
slots. Let Di be the travel time distribution during
a certain time slot using only the sample from taxi
driver i, denoted as(

1 2 . . . k
pi1 pi2 . . . pik

)
(4)

where 1, 2, . . . , k stand for k different travel time clus-
ters of this landmark edge and pi1, p

i
2 . . . , p

i
k represent

the proportion based on the sample space of taxi
driver i. The growing of the familiarity is modeled
using a Sigmoid learning curve [7], defined as:

f(ni) =
1

1 + e−(ani+b)
(5)

where f(ni) is the familiarity, a, b are the coefficients,
and ni is the number of times traversed by taxi driver
i. ani + b is the linear transformation which maps ni

from [min,max] to [−6, 6], where min and max are the
minimum number of transitions and maximum num-
ber of transition on this landmark edge respectively.
Then the refined distribution of this time slot, denoted
by D , is computed by the weighted average:(

1 2 . . . k∑
wip

i
1

∑
wip

i
2 . . .

∑
wip

i
k

)
(6)

where the weight wi is the normalized familiarity of
taxi driver i:

wi =
f(ni)∑n
i=1 f(ni)

(7)

4 ROUTE COMPUTING

This section introduces the routing algorithm, which
consists of two stages: rough routing in the landmark
graph and refined routing in the real road network.

4.1 Rough Routing
4.1.1 Rough Route Generation
Besides the traffic condition of a road, the travel time
of a route also depends on drivers. Sometimes, differ-
ent drivers take different amounts of time to traverse
the same route at the same time slot. The reasons lie
in a driver’s driving habit, skills and familiarity of
routes. For example, people familiar with a route can
usually pass the route faster than a new-comer. Also,
even on the same path, cautious people will likely

6

c1 c2 c3 c4 c5
0

0.1

0.2

0.3

0.4

clusters

 0.10

 0.30 0.32

 0.25

 0.03

pr
op

or
tio

n

(a) Travel time distribution

150170 225 255 305 350
0

0.3

0.7

1

 0.10

 0.40

 0.72

 0.97 1.00

travel time (seconds)

1−
α

272197

(b) Cumulative frequency

Fig. 5. Travel time w.r.t. custom factor

drive relatively slower than those preferring to drive
very fast and aggressively. To catch the above factor
caused by individual drivers, we define the custom
factor as follows:

Definition 4.1 (Custom Factor): The custom factor α
indicates how fast a person would like to drive as
compared to taxi drivers. The higher rank (position
in taxi drivers), the faster the person would like to
drive.

For example, α = 0.7 means that you can outperfor-
m 70% taxi drivers in terms of travel time under the
same external conditions (traffic flow, signal, weather
etc.). Initially, we set a default value for different
users. Later in Section 4.3, we will detail our approach
for learning the custom factor for each user in a self-
adaptive way with the continuous use of our service
and providing a personalized route for different users.

Given a user’s custom factor α, we can determine
his/her time cost for traversing a landmark edge e
in each time slot based on the learnt travel time
distribution. For example, Fig. 5(a) depicts the travel
time distribution of an landmark edge in a given time
slot (c1 ∼ c5 denotes 5 categories of travel times).
Then, we convert this distribution into a cumulative
frequency distribution function and fit a continuous
cumulative frequency curve shown in Fig. 5(b). Note
this curve represents the distribution of travel time in
a given time slot. That is, the travel times of different
drivers in the same time slot are different. So, we
cannot use a single-valued function. For example,
given α=0.7, we can find out the corresponding travel
time is 272 seconds, while if we set α=0.3 the travel
time becomes 197 seconds.

Now the rough routing problem becomes the typi-
cal time-dependent fastest path problem. The complexity
of solving this problem depends on whether the net-
work satisfies the “FIFO” (first in, first out) property
“In a network G = (V,E), if A leaves node u starting
at time t1 and B leaves node u at time t2 ≥ t1, then B
cannot arrive at v before A for any arc (u,v) in E”. In
practise, many networks, particularly transportation
networks, exhibit this behavior [8]. If a driver’s route
spans more than one time slot, we use can refine the
travel time cost to be FIFO (refer to Appendix).

In the rough routing, we first search m (in our
system, we set m = 3) nearest landmarks for qs
and qd respectively (a spatial index is used), and

formulate m×m pair of landmarks. For each pair of
landmarks, we find the time-dependent fastest route
on the landmark graph by using the Label-Setting
algorithm [8], which is a generalization of the Dijkstra
algorithm. For any visited landmark edge, we use
the custom factor to determine the travel time. The
time costs for traveling from qs and qe to their nearest
landmarks are estimated in terms of speed constraint.

For example, in Fig. 6 (A), if we start at time td = 0,
the fastest route from qs to qd is qs → r3 → r4 → qd.
When we arrive at r3, the time stamp is 0.1, the travel
time of e34 is 1, then the total time of this route is
0.1+1+0.1=1.2. However, if we start at td = 1, the route
qs → r1 → r2 → qd now becomes the fastest rough
route since when we arrive at r3, the travel time of
the e34 becomes 2 and the total time of the previous
route is now 2.2.

r4

r1

qd

0.1 r3

r2

0.1

0.1

qs

C12(0.1)=2 C34(0.1)=1

0.1

qd

r1.s

qs

r1.e

ri.s ri+1.s rn.s

ri.e ri+1.e rn.eiTee

A) Rough routing B) Refined routing

C12(1.1)=1 C34(1.1)=2

iTes

iTse

iTss

e12 e34

Fig. 6. Rough routing and refined routing

4.1.2 Rough Route Smoothing

Even using the state-of-the-art map matching algo-
rithm, the accuracy is less than 70%[4] for the low-
sampling-rate trajectories. For example, as shown in
Fig. 7, r2 and r4 are wrongly mapped road segments,
the actual route is along the horizontal road from qs
to qd. The map matching error results in that r2 and r4
are recognized as landmarks and brings noise when
estimating the travel time, e.g., the real travel time
for r2 → r3 is very likely to be much longer than the
estimated time due to the map matching error, which
leads to r2 → r3 becomes a part of this rough route.

r1 r2 r3 r4 qdqs

Fig. 7. An example of a roundabout rough route

Let qs → l1 → l2 → l3 → . . . → ln−1 → ln → qd
be the rough route computed based on Section 4.1
, where each li is a landmark (i = 1, 2, . . . , n). We
present a post-processing to smooth the roundabout
rough route. We summarize three key characteristics
of a non-roundabout route, termed as Non-roundabout
Principles. Given a rough route Rrough : qs → l1 →

7

TABLE 1
A Running Example of Algorithm 1

(a) SL(j), j = 1, 2, 3 before i = 5

SL(1) SL(2) SL(3)
l1 → l3 l2 → l3 → l4 l3 → l4
l1 → l2 l2 → l4
l1 → l4

(b) SL(j), j = 1, 2, 3, 4 after i = 5

SL(1) SL(2) SL(3) SL(4)

l1 → l3 → l
(j=1,w=1)
5 l2 → l3 → l4 l3 → l

(j=3,p=0)
5 l4 → l

(j=4)
5

l1 → l2 → l
(j=1,w=2)
5 l2 → l

(j=2,p=1)
5 l3 → l4

l1 → l
(j=1,p=2)
5 l2 → l4

l1 → l4

l2 → l3 → . . . → ln−1 → ln → qd, we say Rrough

satisfies

I. Source-Farther Principle if ∀i = 1, 2, . . . n − 1,
dist(li+1, qs) > dist(li, qs)

II. Destination-Closer Principle if ∀i = 1, 2, . . . n − 1,
dist(li+1, qd) < dist(li, qd)

III. Next-Nearest Principle if ∀i = 1, 2, . . . n −
1,dist(li, li+1) = minj>i{dist(li, lj)}

where dist(li, lj) is the road network distance from li
to lj .

The source-farther principles states that the distance
from each landmark to the source should be farther
than its previous one. The destination-closer princi-
ples states that each landmark should be closer than
its previous landmark to the destination. As shown
in Fig. 7, r2 violates the Principle II. Principle I and
principle II mean that each step ahead should have
contribution to this trip. The next-nearest principle (al-
so termed as “non-turn-back” principle) states that the
next landmark li+1 should be the nearest landmark
of li among all the landmarks after li. Otherwise, we
can go directly from li to its next nearest landmark to
avoid the “U-turn” (refer to r4 in 7 as an example).
Based on the non-roundabout principles, we define
the roundabout rough route as follows:

Definition 4.2 (Roundabout Rough Route): A rough
route Rrough is called a roundabout rough route if it
violates any of the three non-roundabout principles.

Definition 4.3 (Smoothing Problem): Given a round-
about rough route Rrough, we aim to extract a non-
roundabout rough route with the minimum loss of
information (which could be obtained from the origi-
nal landmarks).
We first pick up the longest landmark subsequence
based on Rrough that satisfies Principle I and II
(termed as global smoothing), then rebuild a rough
route according to Principle III (termed as local smooth-
ing).

Global Smoothing. Suppose Rrough : qs → l1 →
l2 → l3 → . . . → ln−1 → ln → qd is a round-
about rough route. The problem of finding a longest
landmark sequence obeying Principle I, is equivalent
to finding a longest increasing subsequence from the
sequence (dist(l1, qs),dist(l2, qs), . . . ,dist(ln, qs)).The
longest increasing subsequence problem can be solved
in time O(n log n) using the algorithm proposed in [9].
The solution for Principle II is similar.

Local Smoothing. This step aims to find the longest
subsequence from the resulting sequence of the global
smoothing so as to satisfy the next-nearest principle.
It’s clear that the brute-force algorithm which checks
all the subsequences (whether satisfy Principle III)
takes exponential time. We propose an polynomial
time algorithm as shown in Algorithm 1. Table 1
illustrate a running example when i = 5 (see line 1
of Algorithm 1). SL(i), i = 1, 2, . . . , 4 are the sorted
lists which store the current longest subsequences
beginning with lj → ljk , k = 1, 2, . . . , i ordered by
dist(lj , ljk) ascending, e.g, SL(1)={l1 → l3 → · · · , l1 →
l2 → · · · , l1 → l4 → · · · , . . .} where dist(l1, l3) <
dist(l1, l2) < dist(l1, l4) For each i, j goes from
i− 1 down to 1 , we update the SL(j), e.g., as shown
in Table 1(b), when j = 2, we find p = 1 since
dist(l2, l3) < dist(l2, l5) < dist(l2, l4). Then we insert
l2 → l5 after the first sequence SL(2)(1) = l2 → l3 → l4.
At line 9 of the algorithm, we lookup the sequence
l3 → l4 → l5 from SL(3) but fail to find it, which
means this sequence violates Principle I. Hence, we
needn’t add l5 to the end of SL(2)(1). When j = 1,
we get p = 2 and for w = 1, 2, we succeed to find
l3 → l5 in SL(3) and l2 → l5 in SL(2), so we add l5
to both of l1 → l3 and l1 → l2 in SL(1). At the end
of Algorithm 1 (line 11), we find the longest sequence
among all the SL lists as the result. It’s clear that this
algorithm takes O(n3) time (without considering the
HASH cost for searching a sequence in SL at line 9).
In practise, since the number of landmarks in a rough
route is small (usually n=10–20 for a 15km trip), the
whole smoothing processing is quite efficient.

4.2 Refined Routing

Suppose after the smoothing, we get a rough route
Rrough : qs → l′1 → l′2 → l′3 → . . . → l′n−1 → l′n → qd.
This stage finds in the real road network a detailed
fastest route that sequentially passes the landmarks
of a rough route by dynamic programming. Assume
r1, r2, . . . , rn are the corresponding road segments
(Definition 3.1) of l′1, l

′
2, . . . , l

′
n, i.e., ri = l′i. Recall

Definition 2.1, each ri has its start point ri.s and
end point ri.e. Let fs(i) and fe(i) be the earliest
leaving times (after traversing ri) at nodes ri.s and
ri.e respectively. Let T (a, b, c) be the travel time of the
fastest route from road node a to b without crossing
node c. Let tse(i) = ri.length/ri.speed, i.e., the time

8

Algorithm 1: LocalSmoothing
Input: a sequence L = l1 → l2 → l3 → . . . → ln−1 → ln,

dist(li,lj), i, j = 1, 2, . . . , n
Output: a subsequence (of L)

L′ = l′1 → l′2 → l′3 → . . . → l′m−1 → l′m that satisfies:
∀i = 1, 2, . . .m − 1, dist(li, li+1) = minj>i{dist(li, lj)}

1 for i ← 2 to n do
2 for j ← i − 1 downto 1 do
3 if SL(j) == ∅ then
4 Insert the sequence lj → li to SL(j)

5 else
6 Binary search in SL(j) for the largest integer p such

that dist(lj ,ljp)≤dist(lj ,li), if no such value exists,
p := 0;
/* where lj → ljp → · · · is the p-th

sequence in SL(j) */
7 Insert lj → li after the p-th sequence of SL(j);

/* if p == 0, insert lj → li as the first
element of SL(j) */

8 for w ← 1 to p do

9 if SL(j)(w)
l� lj

r⊕ li ∈ SL(jw) then
/* SL(j)(w) == lj → ljw → · · · is the

w-th sequence of SL(j)

SL(j)(w)
l� lj

r⊕ li represents that
the SL(j)(w) removes the first
landmark lj from the
beginning(left) and adds li to
the end(right), i.e.,

SL(j)(w)
l� lj

r⊕ li == ljw → · · · → li
*/

10 SL(j)(w) := SL(j)(w)
r⊕ li;

/* add li after the sequence
SL(j)(w), i.e.,
SL(j)(w) := lj → ljw → · · · → li */

11 return The longest sequence L′ in {SL(i)|i = 1, 2, . . . , n}

(estimated based on speed constraint) for traveling
from ri.s to ri.e, and

tes(i) =

{
tse(i) if ri is bidirectional

∞ if ri is one-way.

Using these notations, we have the initial states fs(1)
and fe(1) as follows:

fs(1) = T (qs, r1.e, r1.s) + tes(1)

fe(1) = T (qs, r1.s, r1.e) + tse(1)
(8)

As shown in Fig. 6 (B), let T i
se = T (ri.s, ri+1.e, ri+1.s)

denote the time of the fastest route (using speed
constraint in real road network) which starts from
point ri.s and ends at point ri+1.e without crossing
ri+1.s in road network Gr. Then T i

ee, T i
ss, T i

es can be
similarly defined. Now we have the state transition
equations:

fs(i+ 1) = min{fs(i) + T i
se, fe(i) + T i

ee}+ tes(i+ 1)

fe(i+ 1) = min{fs(i) + T i
ss, fe(i) + T i

es}+ tse(i+ 1)
(9)

After fs(n) and fe(n) are computed, the total travel
time for the optimal route in the real road network is:

min{fs(n) + T (rn.s, qd, rn.e), fe(n) + T (rn.e, qd, rn.s)}
In practise, we can compute T i

se, T i
ee, T i

ss, T i
es and

corresponding routes in parallel (for 1 ≤ i ≤ n − 1)
by utilizing the Dijkstra or A*-like Algorithms with
a simple modification (by ignoring node c). Then the

1. Send a query
Q=(qs, qd, t, α)

Weekend

Severe weather

Weekday

3. Route downloading

4. Logging the
real travel with

a GPS trace

5. Learning
new α

2. Route
computing

Normal weather

Fig. 8. Framework of self-adapted routing service

final route is a by-product of the dynamic program-
ming since we only need to determine the direction
for each landmark road segment.

4.3 Learning Custom Factor
This section describes the process for learning the us-
er’s custom factor and providing self-adapted fastest
route, which contains 5 steps:
1) Query Sending. First, the user send her query tuple
(qs, qd, td, α) to the cloud, where qs and qd are start
point and destination and td is the departure time.
The parameter α, is the custom factor (Definition 4.1).
2) Route Computing. According to the departure
time, start and destination point, the cloud chooses
a proper landmark graph considering the weather
information and whether it’s a holiday or a workday.
Based on the landmark graph, a two-stage routing
algorithm is performed to obtain a time-dependent
fastest route based on Section 4.
3) Route Downloading and 4) Path Logging. The
cloud sends the computed driving routes along with
the travel time distributions of the landmark edges
contained in the driving route to the phone. Later, the
mobile phone logs the user’s driving path with a GPS
trajectory, which will be used for recalculate the user’s
custom factor . The more a driver uses this system,
the deeper this system understands the driver; hence,
a better driving direction services can be provided.
5) Adapting the Custom Factor. The custom factor
of a given user can be learned in an self-adaptive
way. Initially, we assign the user a default value, e.g.,
1.0. Let α(M) be the custom factor the client sent to
the cloud for the M -th query. Let CDF

(M)
i (α) be the

cumulative distribution function (refer to Fig. 5(b)) for
the i-th landmark edge . After the travel, we calculate

the real travel time of this landmark edge T
(M)
i by the

recorded GPS logs. Then the mobile client compute
the new custom factor by:

α̃(M) = argmin
α

(
1

p

p∑
i=1

|α− CDFi(T
(M)
i)|2) (10)

where p is the number of landmark edges. This single-
valued minimization problem can be solved using

9

the optimization approaches or just using the simple
enumeration method (uniformly trying the α from 0
to 1). To obtain a stable value for α, we need to study
the most recent n driving routes of a user instead of a
single trip. Meanwhile, near past driving paths should
be more valuable in caculating α than those distant
past. Therefore, we compute the new personalized α
by a weighted moving average [10]

α(M+1) =

∑n
i=1 iα̃

(M−n+i)∑n
i=1 i

=
2

n(n+ 1)

n∑
i=1

iα̃(M−n+i)

(11)
where n is the window length of the moving average.
In the next query, the updated α(M+1) will be sent to
the cloud.

5 EVALUATION

5.1 Settings
5.1.1 Data
Road Network: We perform the evaluation based on
the road network of Beijing, which consists of 106,579
road nodes and 141,380 road segments.
Taxi Trajectories: We build our system based on a
real trajectory dataset generated by over 33,000 taxis
over a period of 3 months. The total distance of the
data set is more than 400 million kilometers and
the total number of GPS points reaches 790 million.
The average sampling interval of the data set is 3.1
minutes per point and the average distance between
two consecutive points is about 600 meters. After the
preprocessing, we obtain a trajectory archive contain-
ing 4.96 million trajectories.
Real-User Trajectories: We use the driving history (rang-
ing from 2 month to 1 year) of 30 real drivers recorded
by GPS loggers to evaluate travel time estimation.
This data is a part of the released GeoLife dataset [11],
and the average sampling interval is about 10s. That
is, we can easily determine the exact road segments a
driver traversed and corresponding travel times.

5.1.2 Framework
We first validate the capability of our time-dependent
landmark graphs in accurately estimating the travel
time of a route using user-generated GPS logs. Then,
we conduct experiments comparing the routes sug-
gested by different methods using synthetic queries
and investigate the effectiveness of the proposed s-
moothing algorithms. Here, we map a route to a
landmark graph and use the travel time estimated
by the landmark graph as a ground truth. Finally,
rigorous in-the-filed user studies are performed to
further explore the performance of our system.

5.2 Evaluation on Travel Time Estimation
5.2.1 Evaluating Landmark Graphs
We build a set of landmark graphs with different
values of k ranging from 500 to 13000. The threshold δ

is set to 10, i.e., at least ten times per day traversed by
taxis (in total over 900 times in a period of 3 months)
and tmax is set to 30 minutes.

Fig. 9 visualizes two landmark graphs when k =
500 and k = 4000. The red points represent landmarks
and blue lines denote landmark edges. Generally, the
graph (k = 4000) well covers Beijing city, and its
distribution follows our commonsense knowledge.

(a) k=500 (b) k=4000

Fig. 9. Visualized landmark graphs

5.2.2 Learning End Users’ Driving Behaviors

We use real users’ driving trajectories logged by GPS
(released in GeoLife dataset[11]) to learn their custom
factors using the method proposed in Section 4.3. we
measure the accuracy of the travel time estimation
using the mean absolute percentage error (MAPE),
defined as Equation 12.

MAPE =
1

N

∑
i

|t(Ri)− t̂(Ri)|
t(Ri)

(12)

where t(Ri) is the real travel time of route Ri (ob-
tained from the GPS logs) and t̂(Ri) is the estimated
travel time; N is the total number of routes evaluated.
Here, we utilize our landmark graph to estimate the
travel time of a route by mapping the users’ trajecto-
ries to the landmark graph (detailed in [1]).

Fig. 10(a) illustrates the self-tuning process using
2 users’ driving routes recorded in GPS trajectories.
Here, their custom factors gradually stabilize after the
mobile client processed 10 times of the same route for
them, as shown in Fig. 16 a). Meanwhile, the error of
travel time, measured by MAPE, shows a downward
trend with the increasing number of routes processed
until reaching 10. Clearly, the two users have different
custom factors tuned in different ways. As shown in
Fig. 10(b), the error measured by MAPE is less than
1.5% for both of the users when α becomes stable,
which also validates that the landmark graph can well
model the dynamic traffic flow and estimate the travel
time for a particular user.

5.2.3 Differentiating Taxi Drivers’ Experiences

We evaluate the impact of differentiating the taxi
drivers’ experience (see Section 3.2.2) by investigating
the aggregated MAPE of travel time estimation, using

10

0 2 4 6 8 10 12 14 16 18
0.45

0.5

0.55

0.6

0.65

0.7

number of traverses

α

User1
User2

(a) α learning

0 2 4 6 8 10 12 14 16 18
1

1.2

1.4

1.6

1.8

number of traverses
M

A
P

E
(×

 1
0−2

)

User1
User2

(b) MAPE

Fig. 10. Custom factor learning

the 30 users’ GPS trajectories. We study the perfor-
mance changing over the average number of taxis per
km2 for the following methods: 1) baseline method
which does not consider the difference of taxi drivers’
experiences; 2) the method differentiating the taxi
drivers’ knowledge and 3) the method combing the
weather information (using corresponding landmark
graph for normal/severe weather) and the difference
of taxi drivers’ experiences.

As shown in Fig. 11, for both weekdays and week-
ends, the landmark graph considering the difference
of taxi drivers’ experiences outperforms the baseline;
meanwhile, if the weather information is used, the
performance is even higher. With respect to the scale
of taxis used for building the landmark graph, the
error decreases with the increasing of the scale grad-
ually. Overall, we can get an acceptable performance
(MAPE< 10%) as long as there are over 8 taxis in a
region of 1km2.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

number of taxis/km2

M
A

P
E

experience+weather
experience
baseline

(a) weekday

0 5 10 15 20
0

0.1

0.2

0.3

0.4

number of taxis/km2

M
A

P
E

experience+weather
experience
baseline

(b) weekend

Fig. 11. Evaluation on differentiating taxi drivers’ expe-
riences

5.3 Evaluation on Routing

For evaluating the effectiveness of the routes suggest-
ed by different methods (say method A and method
B), we use the following two criteria: Fast Rate 1 (FR1)
and Fast Rate 2 (FR2) where method B is used as a
baseline.{

FR1 = Number(A’s travel time<B’s travel time)
Number(queries)

FR2 = B’s travel time−A’s travel time
B’s travel time .

(13)

FR1 represents how many routes suggested by
method A are faster than that of baseline method B,
and FR2 reflects to what extent the routes suggested
by A are faster than the baseline’s. Meanwhile, we use

A

B

(a) local

A

B

(b) global

A

B

(c)
local+global

Fig. 12. Visualization of smoothing results

SR to represent the ratio of method A’s routes being
equivalent to the baseline’s.

5.3.1 Synthetic Origin-Destination Pairs

We generate 1200 queries with different geo-distances
of origin-destination pairs and departure times. The
geo-distances range from 3 to 23km and follow a
uniform distribution. The departure times range from
6am to 10pm and are generated randomly in different
time slots.

We first examine whether the proposed smoothing
approaches (independently or simultaneously used)
can effectively remove the roundabout part of a route
and thus reduce the travel time. Fig. 12 visualizes
the results for a query (from A to B) at 9am with
a default custom factor (0.5), where the dashed blue
line is the baseline route computed by our method
without any smoothing. Fig. 12(a) and Fig. 12(b)
present the routes generated by independently ap-
plying the local smoothing and global smoothing
respectively. Fig. 12(c) plots the result combining local
and global smoothing. It’s clear that the proposed
smoothing approach removes the roundabout part
of the original route. Furthermore, performing the
combined smoothing approach is more effective than
using global or local smoothing alone.

Fig. 13 studies the overall FR1 of the routes induced
by different smoothing strategies. Here, we use the
two-stage routing approach without the smoothing
process as method A in Eq. 13 , compared with
local smoothing, global smoothing as well as the
combination of local+global smoothing. We investi-
gate the performance of FR1 with respect to both
the number of landmarks (Fig. 13(a)) and time of
day (Fig 13(b)). As shown in Fig. 13, more than 60%
routes suggested by the combined method are better
than the baseline (the other 40% are the same with
the baseline’s routes), which significantly outperforms
the single local smoothing (FR1=50%) and the single
global smoothing (FR1=40%).

We further compare our approach (combined with
the smoothing process) with the speed-constraint-
based (denoted as SC) method and a real-time-traffic-
analysis-based (termed RT) method in the aspects of
efficiency and effectiveness. The SC method (offered

11

6000 7000 8000 9000 10000
0.1

0.2

0.3

0.4

0.5

0.6

k

FR
1

local
global
local+global

(a) FR1 w.r.t. # of lanmdarks

8 11 14 17 20
0.1

0.2

0.3

0.4

0.5

0.6

time of day (hour)
FR

1

local
global
local+global

(b) FR1 w.r.t. time of day

Fig. 13. Overall FR1 of different smoothing approach-
es, with default α = 0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

α

FR
1

k=3000
k=6000
k=9000

(a) FR1 w.r.t. α

1 3 5 7 9 11 13
0

0.5

1

 k (× 103)

ra
tio FR1

SR
FR1+SR

(b) FR1/SR w.r.t. k

Fig. 14. Overall performance of T-Drive compared with
SC, measured by FR1 and SR

by Google1 and Bing Maps) is based on the shortest
path algorithm like A* using the speed constraint of
each road segment. The RT method first estimates the
speed of each segment at a given time according to
the GPS readings of the taxis traversing on the road
segment or the road sensor readings [12], and then
calculates the fastest route according to the estimated
speeds. Note that the “RT” here is not the actually real
time traffic condition, but the estimated speed based
on the samples in a near past time interval, e.g., 5
minutes.

Fig. 14 and 15 and Table 2 show the overall per-
formance (FR1, FR2 and SR) of our method. When
calculating the FR1, FR2, and SR, both our method
and the RT approach use the SC method as a baseline.

Fig. 14 studies the overall FR1 of our method chang-
ing over k and α. When k = 9000, the lowest FR1 is
still over 60%, i.e., 60% of the routes suggested by our
method are faster than that of the SC approach. Fig.
14(b) further details the FR1 and SR of our method
when α = 0.7 (due to the page limitation, we only
present the results of a few α in the later evaluations).
Here, FR1 is being enhanced with the increase of k
when k < 9000, and becomes stable when k > 9000.
That is, it is not necessary to keep on expanding
the scale of a landmark graph to achieve a better
performance. Also, as shown in Table 2, our method
outperforms the RT approach in terms of FR1, and
most routes (67%) suggested by the RT approach are
the same as that of the SC method. Fig. 15 plots the
FR2 of ours and RT. For example, when k = 9000,

1. http://goo.gl/QEvqW, http://goo.gl/7nHi4

>0 >0.1 >0.2 >0.3 >0.4 >0.5
0

0.2

0.4

0.6

0.8

pr
op

or
tio

n
of

 ro
ut

es

FR2

k=5000
k=7000
k=9000
RT

Fig. 15. FR2 over k

TABLE 2
FR1, SR of TDrive and RT

α k FR1 SR

0.4 6,000 0.509 0.281

0.4 9,000 0.647 0.222

0.6 6,000 0.511 0.272

0.6 9,000 0.653 0.216

0.7 6,000 0.544 0.227

TDrive

0.7 9,000 0.672 0.214

RT approach 0.206 0.671

6 9 12 15 18 21

0.2

0.4

0.6

time of day (hour)

FR
1

k=5000
k=7000

k=9000
RT

(a) Weekdays

6 9 12 15 18 21

0.2

0.4

0.6

time of day (hour)

FR
1

k=5000
k=7000

k=9000
RT

(b) Weekends

Fig. 16. FR1 w.r.t. time of day

over 50% routes suggested by our method are at least
20% faster than the SC approach.

We further study the FR1 of our approach and RT
in different time slots. As shown in Fig. 16, both our
method and the RT approach have a stable perfor-
mance in different time slots on weekdays and week-
ends. Moreover, our method has a 30% (on average)
improvement over the RT approach when k ≥ 5000.

The reason why our method outperforms the RT
approach is: 1) Coverage: Many road segments have
neither embedded road sensors nor taxis traveling
on them at a given time. At this moment, the speed
constraint of a road segment is used to represent the
real time traffic on the road segment. That is also
the reason why the RT approach returns many of the
same routes as the SC method. 2) Spareness: Usually,
we cannot have enough number of the taxis traveling
on a road segment in a near past time interval, e.g.,
past 5 minutes. Thus, the instant travel time (so called
real-time speed) estimated based on these insufficient
samples is not very accurate. 3) Open challenges:
As compared to the history-based method, the RT
approach is more vulnerable to noise, such as traffic
lights, human factors (pedestrians crossing a street),
and taxis looking for parking places and passengers.

5.3.2 In-the-Field Evaluation
We conduct two types of in the field studies: 1) The
same driver traverses the routes suggested by our
method and a baseline at different times. 2) Two
drivers (with similar custom factors learned by our
system) travel different routes (recommended by dif-
ferent methods) simultaneously.

Table 3 show the results of the two types in-the-
field evaluations, where 30 users participated in the
Evaluation 1 which last for 10 days and 2 users

12

6 9 12 15 18 21
0

0.2

0.4

0.6

0.8

1

distance (km)

FR
1

k=5000
k=7000

k=9000
RT

(a)

4000 6000 8000 10000 12000
0

10

20

30

40

k
av

er
ag

e
ac

ce
ss

(×

 1
03)

rough routing
refined routing
our total

SC
RT

(b)

Fig. 17. (a) reveals FR1 of T-Drive and RT method w.r.t.
geo-distance of origin-destination pairs; (b) depicts the
average number of nodes accessed when performing
different routing algorithms in road networks

TABLE 3
Evaluation Results of the In-the-field User Study

Evalution1 Evaluation2

Distance Duration Distance Duration

Our System 15.17km 27.15min 15.29km 24.19min

Google 17.24km 31.28min 15.17km 28.63min

Gaps -2.07km -4.13min 0.12km -4.44min

FR1 51.7% 79.4% 35.9% 72.7%

FR2 12.0% 13.2% -0.791% 15.5%

are invited to conduct the Evaluation 2 for 6 days.
According to the results, 79.4% of the routes provided
by our system are better than the baseline with respect
to the travel time in the Evaluation 1. On average, we
save 15.5% time in the Evaluation 2 (T-test: p <0.004)
for a 25 min trip.

6 DISCUSSION

To enable our driving direction service in a Could
environment, some critical issues like efficiency and
privacy are investigated.

For revealing the efficiency performance of our
method (regardless of the system design), we test
our system on a single server with 2.67GHz CPU
and 16GB RAM (using a single thread without op-
timization) in the Cloud, as shown in Table 4. The
mobile client is running on a Windows smartphone
with 1GHz CPU and GPRS connection. Roughly, we
can answer 1,000 queries per second using 30 (24-
core) servers in a Cloud. In the client-side, we only
include the items (about 0.1% of |α| according to
a study) with significant changes, when sending a
query to the Cloud so as to reduce the transmission
cost. In the on-line phase, the most time-consuming
process on the Cloud-side is the route computing. The
computation cost varies for different road networks in
different cities and the size of the landmark graph will
change accordingly. Fig. 17(b) studies the scalability
(w.r.t. number of landmarks) of our routing process
by using the average number of nodes accessed (when
performing routing algorithms in road networks) per
query. Obviously, our two-stage routing approach is

TABLE 4
Time cost study on operations of our system

Mobile Time Cloud Time
Query sending 144 ms Rough routing 212 ms

Downloading 287 ms Refined routing 114 ms

Learning new α 20 us Building Landmark graph 6 hour

more efficient than the baselines. According to previ-
ous evaluation results (see 14(b)), for a large city like
Beijing, 9000 landmarks are enough for our model.
Even when k reaches to 12000, the access cost of
our approach is still less than half of the competing
methods thanks to the two-stage routing algorithm
and parallel routing approach in the refined routing
process.

As for the privacy issue, the feature of learning
the users’ driving behaviors can be switched off by
the users. Besides, when learning the users’ custom
factors (Sec. 4.3), both path recording and α learning
are performed in a user’s mobile phone. The raw
trajectories of the users are not sent to the Cloud,
only significantly changed custom factors on land-
mark edges are sent. Therefore, the user’s privacy is
preserved.

We note for the evaluations based on synthet-
ic queries, though outperforming the baselines, our
method still has less than 12% (see Table 2, α=0.7,
k=9000) of routes falling behind the SC method in
terms of FR1. However, after studying these fall-
behind routes, we find that they are only slightly (on
average, FR2=-3%, i.e., for a 30 minutes trip, less than
1 minute gap) slower than the SC method. Besides, we
use a fixed custom factor in this synthetic-query-based
evaluation. However, our system provide the users
with personalized routes after learning their driving
behaviors. In that situation, the performance of FR1
will be further enhanced. Admittedly, our method
is not perfect, since it only leverages the historical
data and the challenges mentioned in the Introduction
cannot be fully tackled. If real-time sensor data is
available for some road segments, our method can be
combined to provide better routes for end users. This
will be an interesting and challenging work.

7 RELATED WORK

7.1 Driving Direction Services on Web Maps
The shortest or fastest path finding services have
been provided by many web maps and local search
engines, such as Google, Bing and Yahoo maps, for
a long time. Also, most web maps have the function
of posting the real-time traffic information on some
roads. However, due to the coverage constraints and
other open challenges, the real-time traffic condition
provided by existing web maps is just for a user’s
information while has not been integrated into the
driving direction service. In short, the suggest routes
are still static (usually calculated based on the distance
and speed constraint) and do not vary in time of day.

13

Our work differs from the existing routing services
as follows. First, our driving direction service consid-
ers the factor a user, and automatically adapts to the
user’s driving behavior according to his/her driving
paths. Second, we model the historical traffic pattern
using the landmark graph, and integrate this informa-
tion into a time-dependent routing algorithm. Third,
we mine drivers’ intelligence from taxi trajectories.
The intelligence is far beyond the route distance and
traffic flows.

7.2 Time-Dependent Fastest Path
The time-dependent fastest path (TDFP) problem is
first considered in [13]. [14] suggested a straightfor-
ward generalization of the Dijkstra algorithm but the
authors did not notice it does not work for a non-
FIFO network[6]. Under the FIFO assumption, paper
[8] provides a generalization of Dijkstra algorithm that
can solve the problem with the same time complexity
as the static fastest route problem. [15] presents a
good case study comparing existing approaches for
the TDFP problem on real-world networks.

7.3 Traffic-Analysis-Based Approach
There are a few projects [2][16][17] aiming to estimate
real-time traffic flows and forecast future traffic condi-
tions on some road segments in terms of floating car
data [5][18][12], such as GPS trajectories as well as Wi-
Fi signals. However, these methods are road-segment-
level inferences, which predict the traffic conditions
on individual road segments with enough samples. As
a result, these traffic conditions have not been really
applied in the city-wide driving direction services.
Recently, Malviya et al. [26] present a system for
answering a large number of continuous planning
queries in the face of real time traffic delays with
approximation. However, the routes provided to the
users are still based on the shortest path without the
knowledge from the experienced drivers.

Directly using the inferred real-time traffic condi-
tion in a routing algorithm could not find the prac-
tically fastest path effectively due to the following
reasons. 1) The inferred real-time traffic information
could be inaccurate given the insufficient samples
from a short time interval. For example, the inferred
speed of many service roads and streets (without
enough sensors) are not very precise [19]. However,
our method using the traffic patterns learned from
the long-term historic data is more robust to the
sparse data. 2) The essentially needed information for
computing the practically fastest path is the traffic
condition on a road segment at a future time when
the road is actually driven. Using the snapshot of the
traffic conditions (on road segments), which maintain
the same states of the time when a route is computed,
could not be feasible. Instead, our work well model-
s the dynamic city-wide traffic conditions changing
over time of day and finds routes by performing a
time-dependent routing in the landmark graph.

7.4 History-Learning-Based Approach
Papers [20][21][23][24] present some probabilistic
based methods to predict a user’s destination and
route based on historical GPS trajectories. Jeung et
al.[25] propose a maximum likelihood and greedy
algorithm to predict the travel path of an object based
on a mobility model. Paper [29] aims to discover
popular routes between locations given a huge col-
lection of historical trajectories generated by GPS-
enabled devices. Paper [22] computes the fastest route
by taking into account the driving and speed patterns
learned from historical GPS trajectories.

Our method differs from these methods in the
following aspects. First, our goal is to provide users
with smart driving directions instead of predicting
their path or destinations. Second, We do not explic-
itly detect speed and driving patterns from the taxi
trajectories. Instead, we use the concept of landmarks
to summarize the intelligence of taxi drivers. The
notion of landmarks follows people’s natural thinking
patterns, and can improve efficiency of route finding.
Third, the routing service considers the driving be-
haviors of both an end user (for whom the route is
being computed) and taxi drivers.

7.5 Driving Directions with Driving Behaviors
Papers like [27][28] present a few work aiming to pro-
vide personalized routes according to a user’s driving
preferences in choosing a road, using user-computer
interaction or implicit modeling. The recommended
routes from these works are not optimized by travel
time.

Different from these works, the route we recom-
mend to a driver is the practically fastest one cus-
tomized for a particular driver, considering both time-
dependent traffic conditions of the dynamic road net-
work learned from experienced taxi drivers and the
behavior of the user. Other factors, like day of the
week, and weather conditions, are also considered in
our routing model.

8 CONCLUSION

This paper describes a system to find out the prac-
tically fastest route for a particular user at a given
departure time. Specifically, the system mines the in-
telligence of experienced drivers from a large number
of taxi trajectories and provide the end user with a
smart route, which incorporates the physical feature
of a route, the time-dependent traffic flow as well as
the users’ driving behaviors (of both the fleet drivers
and of the end user for whom the route is being com-
puted). We build a real system with real-world GPS
trajectories generated by over 33,000 taxis in a period
of 3 months, then evaluate the system with extensive
experiments and in-the-field evaluations. The results
show that our method significantly outperforms the
competing methods in the aspects of effectiveness
and efficiency in finding the practically fastest routes.

14

Overall, more than 60% of our routes are faster than
that of the existing on-line map services, and 50% of
these routes are at least 20% faster than the latter. On
average, our method can save about 16% of time for
a trip, i.e., 5 minutes per 30-minutes driving.

REFERENCES
[1] J. Yuan, Y. Zheng, C. Zhang, W. Xie, G. Sun, H. Yan, and X. Xie,

“T-drive: Driving directions based on taxi trajectories,” in Proc.
GIS. ACM, 2010.

[2] T. Hunter, R. Herring, P. Abbeel, and A. Bayen, “Path and
travel time inference from gps probe vehicle data,” in Proc.
NIPS, 2009.

[3] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang,
“Map-matching for low-sampling-rate gps trajectories,” in
Proc. GIS. ACM, 2009.

[4] J. Yuan, Y. Zheng, C. Zhang, and X. Xie, “An interactive-voting
based map matching algorithm,” in Proc. MDM, 2010.

[5] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding fastest
paths on a road network with speed patterns,” in Proc. ICDE,
2006.

[6] A. Orda and R. Rom, “Shortest-path and minimum-delay
algorithms in networks with time-dependent edge-length,”
JACM, vol. 37, no. 3, p. 625, 1990.

[7] N. Leibowitz, B. Baum, G. Enden, and A. Karniel, “The
exponential learning equation as a function of successful
trials results in sigmoid performance,” Journal of Mathematical
Psychology, vol. 54, no. 3, pp. 338–340, 2010.

[8] B. C. Dean, “Continuous-time dynamic shortest path algo-
rithms,” Master’s thesis, MIT, 1999.

[9] C. Schensted, “Longest increasing and decreasing subse-
quences,” Can. J. Math., vol. 13, pp. 179–191, 1961.

[10] W. S. George and G. C. William, Statistical Methods, 8th ed.
Wiley-Blackwell, 1991.

[11] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation
mode from raw gps data for geographic applications on the
web,” in Proc. WWW, 2008.

[12] C. de Fabritiis, R. Ragona, and G. Valenti, “Traffic estimation
and prediction based on real time floating car data,” in Intelli-
gent Transportation Systems, 2008. ITSC 2008. 11th International
IEEE Conference on, oct. 2008, pp. 197 –203.

[13] K. Cooke and E. Halsey, “The shortest route through a network
with time-dependent internodal transit times,” J. Math. Anal.
Appl, vol. 14, no. 492-498, p. 78.

[14] S. Dreyfus, “An appraisal of some shortest-path algorithms,”
Operations Research, vol. 17, no. 3.

[15] U. Demiryurek, F. Banaei-Kashani, and C. Shahabi, “A case
for time-dependent shortest path computation in spatial net-
works,” in Proc. GIS. ACM, 2010.

[16] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden,
H. Balakrishnan, S. Toledo, and J. Eriksson, “Vtrack: accu-
rate, energy-aware road traffic delay estimation using mobile
phones,” in Proc. ENSS. ACM, 2009.

[17] A. Bejan, R. Gibbens, D. Evans, A. Beresford, J. Bacon, and
A. Friday, “Statistical modelling and analysis of sparse bus
probe data in urban areas,” in Proc. ITS, 2010.

[18] D. Pfoser, S. Brakatsoulas, P. Brosch, M. Umlauft, N. Tryfona,
and G. Tsironis, “Dynamic travel time provision for road
networks,” in Proc. GIS. ACM, 2008.

[19] A. Gühnemann, R. Schäfer, K. Thiessenhusen, and P. Wagner,
“Monitoring traffic and emissions by floating car data,” ITS
Working Papers, 2004.

[20] J. Krumm and E. Horvitz, “Predestination: Inferring destina-
tions from partial trajectories,” LNCS, vol. 4206, pp. 243–260.

[21] B. Ziebart, A. Maas, A. Dey, and J. Bagnell, “Navigate like a
cabbie: Probabilistic reasoning from observed context-aware
behavior,” in Proc. Ubicomp, 2008.

[22] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. Sondag,
“Adaptive fastest path computation on a road network: A
traffic mining approach,” in Proc. VLDB, 2007.

[23] H. A. Karimi and X. Liu, “A predictive location model for
location-based services,” in Proc. ACM GIS, 2003, pp. 126–133.

[24] S.-W. Kim, J.-I. Won, J.-D. Kim, M. Shin, J. Lee, and H. Kim,
“Path prediction of moving objects on road networks through
analyzing past trajectories,” in KES 2007, pp. 379–389.

[25] H. Jeung, M. L. Yiu, X. Zhou, and C. S. Jensen, “Path prediction
and predictive range querying in road network databases,”
The VLDB Journal, vol. 19, pp. 585–602, August 2010.

[26] N. Malviya, S. Madden, and A. Bhattacharya, “A continuous
query system for dynamic route planning,” in Proc. ICDE,
2011, pp. 792 –803.

[27] J. Letchner, J. Krumm, and E. Horvitz, “Trip router with in-
dividualized preferences (trip): Incorporating personalization
into route planning,” in Proc. NCAI, 2006.

[28] B. Liu, “Route finding by using knowledge about the road
network,” IEEE SMC, vol. 27, no. 4, pp. 436–448, 2002.

[29] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes
from trajectories,” in Proc. ICDE, 2011, pp. 900 –911.

Jing Yuan is currently a Ph. D candidate in School of Computer
Science and Technology, University of Science and Technology of
China, under the supervision of Prof. Guoliang Chen, who is an
Academician of Chinese Academy of Science. He received his B.S.
degree in Computational Mathematics from School of the Gifted
Young in 2007. Since Sep. 2009, he has been working in Web Search
and Mining Group of Microsoft Research Asia as a full time research
intern/visiting student, mentored by Dr. Yu Zheng, and Dr. Xing Xie.
His research interests include spatial-temporal data mining, time
series analysis and information retrieval. He has published several
referred papers in top conferences such as ACM SIGKDD, ACM
SIGSPATIAL, Ubicomp, and SSTD. He is a student member of ACM.

Yu Zheng is a researcher from Microsoft Research Asia. He joined
MSRA in July 2006 right after received his Ph.D. degree in commu-
nication & information system from Southwest Jiaotong University
(in China). His research interests include location-based services,
spatio-temporal data mining, ubiquitous computing, and mobile so-
cial applications. Specifically, he loves to explore trajectory data
generated by moving objects for location-based social networks,
transportation, and urban computing. He is an editorial board of 4
international journals, published over 50 referred papers on well-
known conferences and journals, such as SIGMOD, SIGKDD, AAAI,
WWW, Ubicomp, and Artificial Intelligence, and have served over
30 prestigious international conferences as a chair or program
committee member including Ubicomp, IJCAI, WWW, and ACM GIS,
etc. So far, he has received three technical transfer awards and 18
patent awards.

Xing Xie is a lead researcher in the Web Search and Mining Group of
Microsoft Research Asia, and a guest Ph.D. advisor for the University
of Science and Technology of China. He received his B.S. and Ph.D.
degrees in Computer Science from the University of Science and
Technology of China in 1996 and 2001, respectively. He joined Mi-
crosoft Research Asia in July 2001, working on spatial data mining,
location based services, and mobile and pervasive computing. He
has served on the organizing and program committees of many
international conferences such as WWW, UbiComp, GIS, CIKM, and
KDD. He will be the program co-chair of UbiComp 2011. During the
past years, he has published over 90 referred journal and conference
papers. He is also a senior member of both ACM and the IEEE.

Guangzhong Sun received the B.Eng. degree from University of
Science and Technology of China (USTC) in 2000, and the Ph.D.
degree from USTC in 2005. He is currently an Associate Professor
at Department of Computer Science and Technology, USTC. From
Jul. 2006 to Dec. 2007, he worked in Intel China Research Cen-
ter(ICRC) as a visiting scholar. From Oct. 2007 to Aug. 2008, he
worked in Microsoft Research Asia (MSRA) as a member of faculty
development project between MSRA and USTC. His main research
interests include web information retrieval, parallel optimization, and
combinatorial algorithms.

