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Abstract—As a critical task of the urban traffic services, fine-grained urban flow inference (FUFI) benefits in many fields including

intelligent transportation management, urban planning, public safety. FUFI is a technique that focuses on inferring fine-grained urban

flows depending solely on observed coarse-grained data. However, existing methods always require massive learnable parameters and

the complex network structures. To reduce these defects, we formulate a contrastive self-supervision method to predict fine-grained

urban flows taking into account all correlated spatial and temporal contrastive patterns. Through several well-designed self-supervised

tasks, uncomplicated networks have a strong ability to capture high-level representations from flow data. Then, a fine-tuning network

combining with three pre-training encoder networks is proposed. We conduct experiments to evaluate our model and compare with

other state-of-the-art methods by using two real-world datasets. All the empirical results not only show the superiority of our model

against other comparative models, but also demonstrate its effectiveness in the resource-limited environment.

Index Terms—Contrastive self-supervision, fine-grained urban flow inference, spatio-temporal data

Ç

1 INTRODUCTION

WITH the developing trend of urbanization, intelligent
transportation system has become one of the crucial

components in the realm of smart cities [1], [2]. A critical
requirement from urban planners and administrators is to
monitor fine-grained urban flows, along with warnings in
case of traffic congestion, public risk, etc [2], [3], [4], [5]. For
example, streamed people caused a chaotic crowd stampede
at the Falls Festival in Shanghai, leaved up to 36 people died
and 80 people injured in a catastrophic stampede [6]. Urban
Managers can locate high-risk regions and prevent people
from such real tragedies by utilizing emergencymechanisms
based on the fine-grained crowd warning and prediction
model. Furthermore, with the telecommunication construc-
tion from 4 G to 5 G, the distance between base stations grad-
ually decreases [7]. Fine-grained inference tasks, such as

fine-grained urban flow prediction can provide a more accu-
rate guidance to set 5 G base stations from the human mobil-
ity aspect.

However, forecasting fine-granularity urban flows sig-
nify that large numbers of monitoring equipment (e.g.,
mobile devices, surveillance cameras and piezoelectric sen-
sors) have to be developed over the city [8], [9], [10]. Despite
thousands of sensing devices bring convenience to the pub-
lic, they consume huge amounts of power resources. For
example, authorities get costly in operating ubiquitous
monitoring equipment in terms of the procurement, man-
power and maintenance fees, which increases the financial
pressure of the government [11], [12].

To address such problems, fine-grained urban flow infer-
ence (FUFI) is proposed recently, which focuses on estimat-
ing fine-grained flows depending solely on observed
coarse-grained data [3], [4], [5]. Fig. 1 gives an example of
this process. Fig. 1a and 1b illustrate the same city area but
with two different division scales, the left sub-figure is the
coarse-granularity map (32 � 32) and the right one repre-
sents the fine-granularity map (64 � 64). The goal of FUFI is
to make an accurate prediction for the fine-grained flow
map from the coarse flow data. Intuitively, FUFI is also rec-
ognized as a variant of image super-resolution but has its
unique structural constraint, i.e., the sum of the flow volumes
in fine-grained regions strictly equals that of the corre-
sponding super-region.

Despite achievements in FUFI problem [3], [4], [5], most
of them require a complex neural network architecture, a
huge number of parameters, and a long-term training
period. To present, contrastive self-supervision is an effec-
tive method to handle such issues, which has been well-per-
formed in the field of computer vision [13], [14], [15], [16]
and natural language process [17], [18]. These models have
shown a strong representation learning ability in a large
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amount of unlabeled data or fewer labeled data. To the best
our knowledge, existing contrastive self-supervised learn-
ing strategies cannot be utilized in the FUFI problem
directly. In reality, this work faces several specific chal-
lenges when we formulate the problem:

� Spatial Contrastive Self-Supervision. Essentially, the flows
of a region are mainly affected by the surrounding regions.
However, two regions can have similar flows when they fall
into the same functional area (e.g., business center, residen-
tial area, and tourist area) [19], [20]. As shown in Fig. 1a,
even there is a long distance between regions A and B,
they have a similar flow property. Previous FUFI studies
focus mainly on neighboring correlations, while ignoring
semantic similarities. Moreover, existing contrastive self-
supervision usually uses the entire flow maps to set a
comparison pair, but neglects the comparisons at the
regional level. Therefore, how to devise an effective spa-
tial contrastive learning method is a principal challenge
that needs to be resolved.

� Temporal Contrastive Self-Supervision. Existing FUFI
methods aim to predict one fine-grained flow map from a
snapshot of the coarse-grained flow map at the current
moment. This one-to-one approach does not make effective
use of temporal information from the self-supervision per-
spective. The prediction of fine-grained urban flow is not only
inferred from the current timestamp but also affected by pre-
vious conditions. Besides, the overall traffic flow changes in
an area have strong periodic characteristics, which indicates
that both sequential neighborhoods and semantic similarity
points contribute to the flow inference. Failure to use of this
informationwill lead to a poor performance.

� External Factors. External factors also play a crucial role
in FUFI [4], [5]. For example, during peak hours of commut-
ing traffic, the traffic flow of arterial roads is greater than
other time periods. When severe weather occurs, people
tend to be indoors rather than outdoors. Various external
factors have different effects on the real-world fine-grained
flow inference.

To address all challenges well, we propose a spatio-tempo-
ral contrastive self-supervision method for the FUFI, named
as UrbanSTC. UrbanSTC contains three self-supervised pre-
text tasks: regional contrast, spatial super-resolution inference
and temporal contrast. Regional contrast focuses on exploring
similarities among regional-level flows based on the intrinsic
spatial characteristics. Spatial super-resolution inference is an
inference network that learns the spatial and upscaling pat-
terns in the super-resolution process. Given the triplet sets of
flow maps, the temporal contrast task bridges the distances

between all positive pairs, while requires all negative pairs far
away from each other. Finally, a fine-tuning network combin-
ing with three pre-training encoder networks is devised to
make the fine-grained flow prediction. Differing from
UrbanFM [3] and FODE [4], the proposedUrbanSTC achieves
a significant performance improvement with a light architec-
ture. Themain contributions and innovations of this paper are
summarized as follows:

� We propose a general framework of spatio-temporal
contrastive self-supervision for the FUFI problem. We
design two pretext tasks from the spatial aspect, i.e., the
regional contrast and the spatial super-resolution inference.
These two pretext tasks can identify the spatial underlying
relationships among regions in terms of the surrounding
property and semantic similarity.

� Two kinds of temporal contrast sampling methods,
hard sampling and weight sampling, are proposed in this
paper. The former method selects the most confident exam-
ples as the positive and negative pairs, and the latter lever-
ages an adaptive weight strategy to rebuild positive and
negative pairs of the anchor example.

� We incorporate external factors in the fine-tuning
UrbanSTC network. Experimental results prove that the
external influences benefit the final results because they
have drawn useful information from events and weather
conditions.

� We perform a collection of experiments on two types of
dense and sparse real-world datasets to prove the effective-
ness of our method compared with other state-of-the-art
models. All evaluation results show that the proposed
method UrbanSTC yields the best performance. Specifically,
when the training data reduces, our model shows an out-
performed prediction performance, which demonstrates
that UrbanSTC has its own advantages in the absence of
training data resources.

The rest of this paper is organized as follows: Section 2
includes a literature review. Section 3 formally defines our
problem. The proposed method is shown in Section 4. All
experimental results are shown in Section 5. Finally, conclu-
sions are drawn in Section 6.

2 RELATED WORK

In this section, we first review the current studies on the
fine-grained urban flow inference (FUFI) and self-super-
vised learning methods. Since the FUFI problem [3] can be
treated as a variant of single image super-resolution (SISR),
we then introduce the SISR problem and reveal the differ-
ence between them.

2.1 Fine-Grained Urban Flow Inference

FUFI aims at inferring fine-grained crowed flows in a city
based on the coarse-grained observations, which is a variant
of SISR in the traffic prediction field [21], [22]. Liang et al. [3]
first propose a neural network named UrbanFM to address
the FUFI problem,whichmainly leverages the SRResNet [23]
under the structural constraint. UrbanFM devises anM2-Nor-
malization layer, which outputs a distributions across every
patch of M-by-M subregions of an associated superregion.
Shen et al. design a weather-affected FUFI Predictor
(WFRFP) model based on the super-resolution scheme [24].

Fig. 1. Traffic flow of two different granularities in Beijing, where each
grid denotes a region. Fine-grained urban flow inference aims to infer
from (a) Coarse-grained crowd flows to (b) Fine-grained crowd flows.

QU ETAL.: FORECASTING FINE-GRAINED URBAN FLOWS VIA SPATIO-TEMPORALCONTRASTIVE SELF-SUPERVISION 8009



WFRFP explores the relationship between the weather con-
ditions and flow distributions, and reduces the scope of the
predicting area based on the corresponding coarse-grained
flowmap. However, the proposed architecture heavily relies
on empirically stacking deep neural networks. To solve this
problem, Chen et al. introduces the deep neural network
model from the perspective of the combination of differential
equations and neural networks [25]. They regard the training
and prediction of neural networks as the ordinary differen-
tial equation problems. Since the neural ordinary differential
equations (NODE) is proposed, Zhou et al. find that NODE
can be used as a core module to solve the FUFI problem,
which proposes a more general neural ODE architecture
called FODE [4]. FODE can address the numerical instability
problem of the previous method without causing additional
memory costs. The key idea of FODE is to incorporate an
affine coupling layer in each ODE block to avoid the inaccu-
rate gradient issue. The difference between FODE and
UrbanFM is that FODE utilizes ODE block instead of the
ResNet block. Despite the success of the above models, exist-
ing techniques rely onmassive parameters and complex neu-
ral network architectures.

2.2 Self-Supervised Learning

Self-supervised learning has gained popularity because it
can avoid the cost of annotating large-scale datasets. It
mainly uses auxiliary tasks (pretext) to mine some specific
supervised information from the large-scale unsupervised
data, and trains the network through this constructed
supervised information, in order to learn valuable represen-
tations for downstream tasks. According to the manifesta-
tion of self-supervision tasks, self-supervision is divided
into the following three types: Context-based, Temporal-
based and Contrastive-based approaches.

Early Context-based self-supervised technique focuses
on common rules to generate labels, such as Jigsaw puz-
zle [13], Image restoration [14], Color transformation [15]
and Image rotations [16]. The above mentioned methods are
applied in the field of computer vision. Besides, in the field
of natural language processing, Word2vec [17] is a popular
model to use sequence of sentences to construct auxiliary
tasks for predicting words. Large-scale pre-training model
Bert [18] uses MASK word method to construct auxiliary
task. They have achieved remarkable results in many fields.
Most of the methods introduced above are based on the
samples’ meta information but with specific constraints
between samples. One of the Temporal-based methods uses
the concept of similar features in the video frame [26], [27].
The assumption is that the features of adjacent frames in the
video are similar, while the video frames are far apart that
are dissimilar. Self-supervised constraints are performed by
constructing such similar (positive) and dissimilar (nega-
tive) samples. Another temporal-based method constructs
positive and negative example features by tracking different
frames of an object [28]. Recently, Contrastive-based has
become a dominant component in self-supervised learning,
which builds representations by encoding dissimilar or sim-
ilar properties [29], [30].

While self-upervised learning shines in the field of com-
puter vision, natural language processing, video processing,

etc, there is limited study focusing on the urban flow fore-
casting, especially in the FUFI problem. We will explore a
spatio-temporal contrastive self-supervision method to pre-
dict fine-grained urban flows.

2.3 Image Super-Resolution

Single image super-resolution (SISR) refers to the reconstruc-
tion of a high-resolution image with only one low-resolution
observation image, combining with some prior knowledge
of the target image. It is one of the basic issues related to the
image processing, and has a wide range of practical needs
and application scenarios, e.g., applied in the digital imaging
technology [31], video coding communication technol-
ogy [32] and fine-grained crowdsourcing [33]. To date, there
are three mainstream algorithms of SISR: interpolation-
based, reconstruction-based and learning-based methods. In
the interpolation-basedmethod, early techniques focused on
bicubic interpolation [34] and Lanczos resampling [35],
which is fast but not accurate. Reconstruction-based SR
methods [36], [37], [38] adopt sophisticated prior knowledge
to solve Single image super-resolution with flexible and
sharp details. However, as the scale factor increases, the per-
formance of many reconstruction-based methods declines
rapidly and usually time-consuming. Learning-based SISR
methods utilize machine learning algorithms to analyze sta-
tistical relationships between the low-resolution (LR) and its
corresponding high-resolution (HR) counterpart from a
large quantity training dataset. Change et al. [39] proposed
the neighbor embedding method that used the similar local
geometry between LR and HR to restore HR image blocks.
Meanwhile, many researchers focus on combining the
advantages of reconstruction-based with learning-based
methods [40], [41], [42].

With the rapid development of deep learning in recent
years, many studies have achieved great success since they
do not require many human-engineered features. An end-to-
end mapping method represented as CNNs between the LR
and HR images is first proposed by Dong et al. [43]. Inspired
by the superior performance of CNN, various models for
CNN began to be applied for SR. Among them, Shi et al. [32]
proposed an efficient sub-pixel convolutional layer to
recover HR images with little additional computational cost
compared with the deconvolutional layer. Due to the great
progress of VGG-net in image classification [44], a deep
CNN was applied for SISR in [45]. However, the deep net-
work is prone to model degradation in the training phase.
Kim et al. [45] proposed a residual structure that makes the
training of deeper convolutional neural networks possible,
which has greatly promoted the development of SISR.

However, there is a great disparity between the FUFI and
image super-resolution task, i.e., the unique structural con-
straint in FUFI. structural constraint requires mining changes
within the data from a coarse-grained view, while single
image super-resolution on natural images is more inclined
to recover the lost high-frequency information.

3 PROBLEM STATEMENT

Before clarifying our method, we first introduce some basic
notations and then formulate the problem of FUFI. The
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main sysmbols used in this paper are summarized in
Table 1.

Definition 1 (Grid Flow Maps). Given a timestamp t,
assume that X 2 RI�J

þ is an urban flow map partitioned evenly
into a I � J grid map at t, where a grid denotes a region as
shown in Fig. 1. Each entry xi;j 2 Rþ denotes the volume of
the observed flow.

Definition 2 (Superregion & Subregion). Figs. 1a and 1b
illustrate the same city area but with two different division
scales, the left sub-figure is the coarse-grained flows map (32 �
32) and the right one represents the fine-grained flows map (64
� 64). M denotes the scaling factor controlling the resolution
changes between the coarse- and fine-grained maps. Fig. 1 rep-
resents an example when M = 2. We use supperregion and
subregions to define the larger grid and its constituent smaller
regions respectively [3], [5].

Definition 3 (Structural Constraint). The sum of the flow
volumes in fine-grained subregions xf

i0;j0 strictly equals that of
the corresponding superregion xc

i;j

xc
i;j ¼

X
i0;j0

xf
i0;j0 s:t: i ¼

j i0

M

k
; j ¼

j j0

M

k
; (1)

where i ¼ 1; 2; . . . ; I and j ¼ 1; 2; . . . ; J .

Fine-Grained Urban Flow Inference. Given a coarse-grained
map Xc 2 RI�J

þ and the upscaling factorM 2 Zþ, the goal of
this paper is to infer the fine-grained flow map Xf 2
RMI�MJ

þ under the structural constraint.

4 THE PROPOSED METHOD

Fig. 2 illustrates the flowchart of UrbanSTC. Our model is
pre-trained by spatial self-supervision and temporal self-
supervision, and then the pre-trained encoders are copied
to the final network for fine-tuning. We propose three kinds
of pretext strategies separately for the spatial and temporal
self-supervision methods.

4.1 Spatial Self-Supervision

Urban flow data has typical spatial characteristics. Inspired
by self-supervised learning, we provide two types of self-
supervision tasks on the spatial perspective: regional con-
trast and spatial super-resolution inference network.

4.1.1 Regional-Level Contrast Pre-Training

Regional contrast self-supervision is dedicated to mining
flow relationships at the regional level. At any timestamp t,
there are many regions having similar or dissimilar flow
conditions in the coarse-grained flow map Xc. In Fig. 2, the
light blue block (Reg) depicts an example for the regional-
level contrastive learning. Assume the black rectangle is an
anchor region xq. The regions with red and blue rectangles
can be treated as positive and negative samples respectively
via a semantic distance with xq, as expressed in Equations (2)
and 3

distsðxq; xi;jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxq � xi;jÞ2

q
; (2)

where xi;j is a candidate area in the flow map.

xi;j 2
positive, distsðxq; xi;jÞ � �

negative, distsðxq; xi;jÞ > �

�
(3)

in which � is a threshold for distinguishing between posi-
tive and negative samples. Because of the different semantic
distances among regions, we hope to remain such proper-
ties in their high-level representations, i.e, the representa-
tion distances between xq and positive regional samples
fxþk1g

K1
k1¼1 are closer enough, while all negative representa-

tions fx�k2g
K2
k2¼1 are moving away from xq, where K1 and K2

are the numbers of selected positive and negative regional

samples.
For a coarse-grained flowmap Xc, we first project it into a

low-level hidden feature map Hreg 2 RH�W�C by utilizing a
non-linear encoder. This component of our network is
named regional level encoder Encregð�Þwhich will be used in
the fine-tuning process. Thereafter, Hreg is normalized by a
batch normalization method [46] and reshaped to Sreg 2
RHW�C . At last, a fully connected layer with C hidden units
produces high-level semantic features Zreg 2 RHW�C for the
coarse-grained flow map Xc. Unlike some previous contras-
tive loss functions, such as InfoNCE contrastive loss, only
select one example as the positive example strictly [30], [47],
our method considers a set of regions from Zreg as positive
samples, and put all the rest as negative samples, which is
similar as the strategy in [48]. Given a coarse-grained flow
map Xc, we can obtain its dense representation Zreg. For each
Xc, we will randomly select the regional anchor point, and

TABLE 1
Symbol Description

Symbols Descriptions

X ¼ ½Xc
1;X

c
2; . . . ;X

c
T � The flow map contains T moments

I; J The granularity of division of latitude and longitude
M The upscaling factor
xi;j The small region in flow
H;W The length and width of feature maps inHreg andHtcs

C The channel number of convolution kernel
Xmc; Xc; Xf The down-scaling coarse-grained flows map; The coarse-grained flows map; The fine-grained flows map;
Hreg;Hinf ;Htcs The low-level hidden feature maps for regional contrast, inference net, and temporal contrast
Zreg;Dtcs The high-level semantic features in regional contrast and temporal contrast
Uf The flow inference high-level semantic representation
Uf

o The flow inference distribution map of the hidden state
Wf The weight matrix of flow inference
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distinguish positive and negative regional samples by calcu-
lating the euclidean distances based on a pre-defined thresh-
old �. Then our contrastive loss function is expressed as

Lreg ¼ �log

PK1
k1¼1 exp simðzq; zþk1ÞPK1

k1¼1 exp simðzq; zþk1Þ þ
PK2

k2¼1 exp simðzq; z�k2Þ
; (4)

where zq; zþk1 ; z
�
k2

2 Zreg and simðu; vÞ is similarity function
between two representations (e.g., inner product).

Through this method, positive regional samples should
make similar representations close to each other rather than
negative types of samples.

4.1.2 Spatial Super-Resolution Inference Network

Pre-Training

Given a coarse-grained map Xc 2 RI�J
þ and upscaling factor

M 2 Zþ, FUFI aims to learn a super-resolutionmodel to infer
the fine-grained flow map Xf 2 RMI�MJ

þ under the structural

constraint. Themost important learningmechanism is how to
split a coarse region xc

ij to its M2 fine-grained cells, which

can be represented as I 2 R1�1
þ ! M 2 RM�M

þ . To simulate
this process, we design a spatial super-resolution inference
network in our pre-training.

Our intention is to use a coarser granularity map to infer
the pattern I ! M with a pretext-task. In detail, we first get

a down-scaling coarser granularity map Xmc 2 R
b I
Mc�b JMc
þ

based on the coarse-grained map Xc and M, where each
entry of Xmc equals to the sum of corresponding M2 flow
volumes in Xc. Then we can construct a spatial super-resolu-
tion network inferring Xc from Xmc. This pre-text task is able
to capture the I ! M pattern in advance, and could be bene-
fit for improving the inference capability of surrounding
flows.

For a Xmc, we first encode it by two convolutional layers
with C channels and 3� 3 kernel size, each layer followed
by Relu nonlinearity as shown in Fig. 3. The two convolu-
tional layers are taken as a feature learning network to map

Fig. 2. The framework of UrbanSTC. There are there major parts: spatial self-supervision, temporal self-supervision and fine-tuning stage. Reg (light
blue block) represents the Regional-level contrast; Inf (Light pink block) represents the spatial super-resolution inference; TCS (Light yellow block)
represents the temporal contrast. Dec indicates a decoder that can convert the embedding vectors generated by the spatio-temporal self-supervision
into the output fine-grained maps. Urban STC includes pre-training and fine-tuning stages. Among, Reg and Inf belong to the spatial self-supervision
pre-training. TCS belongs to the temporal self-supervision pre-training. We first learn encoders through a spatio-temporal pre-training, and finally
complete the network in the fine-tuning stage.
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Xmc to the low-level hidden feature maps Hinf 2 R
H
M�W

M�C .
This component of our network is named spatial super-res-
olution encoder Encinfð�Þ which is used later in the fine-tun-
ing process. Then we can leverage the prior FUFI methods
distributional upsampling at the end of their networks [3],
[4], [5]. We also adopt M2-Normalization1 to impose the
structural constraint on the network. The final loss is com-
puted by the pixel-wise Mean Square Error (MSE)

Linf ¼ 1

T

XT
t¼1

Xc
t � F inf Xmc

t ; u
� ��� ��2; (5)

where u represents all learnable parameters in the inference
network.

This inference structure and function F inf are similar to
our final fine-tuning UrbanSTC, please refer to Section 4.4
for details.

4.2 Temporal Self-Supervision

Existing FUFI studies focus on inferring the fine-grained
flow map based solely on its coarse-grained one, ignoring
that similar flow conditions at different moments will also
contribute to the inference. Here we devise a temporal-con-
trastive self-supervision network (TCS) to extract the simi-
larity information in the temporal dimension. For any
timestamp t, we can get an anchor point Xc

t , and then collect
its positive (fXþ

t;k3
gK3
k3¼1) and negative samples (fX�

t;k4
gK4
k4¼1)

by identifying the similarities among samples, where K3

and K4 are the numbers of selected positive and negative
temporal samples.

TCS constructs a self-supervised auxiliary task that nar-
rows encoder features between the anchor example and
positive samples, and keeps the negative samples far away.
The TCS encoder Enctcsð�Þ has a similar structure to the spa-
tial super-resolution inference network. It projects coarse-
grained map Xc

t to the low-level hidden feature map Htcs
t 2

RH�W�C . Then we adopt a batch normalization layers and
the global average pooling layer. Finally, Multilayer Percep-
tron (MLP) with Relu activation function is used to make
nonlinearity, converting the encoder feature map Htcs

t to the
high-level semantic features Dtcs

t 2 RC . As shown in Fig. 2
the light yellow block (TCS), there are three kinds of sam-
ples: anchor point, positive and negative samples. Next, we
will introduce how to select them.

4.2.1 Hard Sampling

We first use a straightforward way to pick the closest and
the farthest samples of anchor point as its positive and nega-
tive pair. The distances between samples are calculated by
the euclidean distance method

disttðXc;XkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

HW

XH
i¼1

XW
j¼1

ðXc
i;j � Xk

i;jÞ2
vuut ; (6)

whereXc is the current coarse-grained flowmap andXk is the
flow map at other times. As shown in Fig. 2, the module of
Temporal self-supervision, there are three types of samples
indicating by green, red and blue points. They represent the

anchor point, positive samples and negative samples respec-
tively.Hard samplingmethod aims to select the closest (posi-
tive) sample with the current anchor, and find the farthest
one as the negative sample. Note that, time-contrastive
approaches are widely used in the video processing, such
as [26], [27], which only picks the positive samples within a
time window, and put all the rest into the negative pool. It is
because the natural analogies between adjacent frames of
video data. However, the previous and next traffic snapshots
are probably not the closest semantic samples of the anchor
point due to the high periodicity in traffic flow prediction
problems [49]. Thus we choose to calculate distances
between the anchor point and all training samples.

4.2.2 Weight Sampling

Considering that the hard sampling cannot fully use the cor-
relations among all temporal samples fXc

tgTt¼1, we further
propose a weight sampling method in this section. In detail,
we select Top-K positive and negative samples with a
weighted combination approach

Xþ
t ¼

XK
k¼1

1=disttkPK
j¼1 1=dist

t
j

Xþ
t;k; (7)

X�
t ¼

XK
k¼1

disttkPK
j¼1 dist

t
j

X�
t;k; (8)

where disttk denotes the euclidean distance between the
anchor point and kth selected sample.

Algorithm 1 shows the detailed procedure of the weight
sampling method. The results affected by these two sam-
pling methods have been presented in Section 5.2.3.

Algorithm 1.Weight Sampling

Input: original coarse data {Xc }.
Output: complete data fXc;Xþ;X�g:

1: for x 2 fXc
1; . . . ;X

c
Tg do

2: Build Max-heap and Min-heap.
3: for y 2 fXc

1; . . . ;X
c
Tg do

4: if x 6¼ y then
5: Calculate the euclidean distance dist between x and y.
6: Adjust Max-head and Min-heap.
7: Select Top-k positive and negative samples respectively.
8: get Xþ

t by Equation (7)
9: get X�

t by Equation (8)

TCS uses a triplet loss [50] to optimize the pre-trained
model. Given a triplet constraint I ¼< Xc;Xþ;X� > . The
triplet loss ensures that a pair of co-occuring Xc

t (anchor) and

Fig. 3. Spatial Super-resolution Inference Network Pre-training. We get a
down-scaling coarser granularity map (more coarse-grained) Xmc based
on the coarse-grained map Xc and upscaling factor M. Spatial super-
resolution inference network simplifies the difficulty of the task and imi-
tates the process of inferring.

1. M2-Normalization is shown in Section 4.4, Equation (15).
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Xþ
t (positive) are closer to each other in the embedding space

while moving away from X�
t (negative). We define the score

of this triplet as

dfðIÞ ¼ fðXc
tÞ � fðXþ

t Þ
�� ��2

2
� fðXc

tÞ � fðX�
t Þ

�� ��2
2
þa; (9)

LTCS ¼ 1

T

XT
t¼1

ðmax dfðIÞ; 0
� �Þ; (10)

where f(.) is a non-linear mapping function that needs to be
learned, and a is a positive margin parameter. Notably, the
triplet constraint is more flexible to adapt to different levels
of intra-class variances [51], [52], which guarantees the dif-
ferences between various timestamps.

4.3 External Factor Fusion

External factors (e.g., temperature, wind speed, weather
and holidays) affect the flow distribution over the subre-
gions. For example, people are more inclined to walk out of
the office area on holidays. And when bad weather comes,
people prefer to stay indoors instead of outdoors. Therefore,
we should take such external factors into consideration.

We initialize the external factors into continuous features
and categorical features. Among them, continuous features
including temperature and wind speed are directly
concatenated to form a vector econ. Categorical features
include timestamps, days, holidays and weather conditions
(e.g., windy, rainy). We use the method in UrbanFM [3] to
initializes external information. The categorical features are
transformed into low-dimensional vectors by feeding into
separate embedding layers, and then use concatenate opera-
tion to construct the categorical vector ecat. Then, we splice
the two vectors econ and ecat to the final external embedding
(e ¼ ½econ; ecat�).

As shown in Fig. 4. we use two layers of multi-layer per-
ception with nonlinear transformation to feed external
embedding e. By using nonlinear transformation, different
external factors are converged into a hidden state Xe 2
RI�J

þ . We regard it as a bias of flow graph. In the previous
sections, we only used coarse-grained views without exter-
nal information for pre-training. Finally, we use the tensor
addition operation Xc þ Xe as the input of the model in the
fine-tuning stage.

4.4 Fine-Tuning UrbanSTC

We derive three encoders when completing the above pre-
training tasks, i.e., regional constrastive encoder Encregð�Þ,
spatial super-resolution inference encoder Encinfð�Þ and
TCS encoder Enctcsð�Þ. As illustrated in Fig. 2, three
encoders are used for fine-tuning the downstream task.
First, we combine three low-level hidden feature maps by

encoders. This step can be described as

Hreg ¼ EncregðXcÞ; (11)

Hinf ¼ EncinfðXcÞ; (12)

Htcs ¼ EnctcsðXcÞ; (13)

Ha ¼ ConcatðHreg;Hinf ;HtcsÞ; (14)

where Concat is the tensor concatenate operation. Then
Decoder has a convolutional layer (3� 3; C) with ReLU non-
linearity, which is used to decode three low-level hidden fea-
tures. Besides, we adopt another convolutional layer
(3� 3; C �M2) and PixelShuffle layers, which rearranges fea-
tures and increases sizes by the upscaling factor M. At the
end of PixelSuffle, we use a ReLU activation function. After
the above operations, a feature Uf 2 RMH�MW�C is obtained
where the first two dimensions have been increasedM times.
Next, we use a 3� 3 convolution with the 1-size channel to
get a fine-grained flow distribution map of the hidden state
Uf

o 2 RMH�MW�1. Due to the structural constraint of FUFI
problem, the MSE loss cannot be used directly. Refer to the
distributional upsampling in UrbanFM [3] and FODE [4],
we choose aM2-Normalization that makes the sum of subre-
gions equal to their corresponding superregion, which is
described as

Wf
ði;jÞ ¼

Uf
oði;jÞP

i02 b i
M

cM;ðb i
M

cþ1ÞMÞð �
j02 b j

M
cM;ðb j

M
cþ1ÞMÞ

� 	 U
f
oði0j0Þ

;
(15)

where Uf
oði;jÞ is the ith row and jth column cell in Uf

o and
Wf

ði;jÞ 2 ½0; 1� represents probability.
M2-Normalization aims to learn the probability mapping

from a coarse-grained view to a fine-grained view. Finally,
we infer the fine-grained crowds map by X̂f ¼ Xc �Wf .
Mean Square Error (MSE) is used as the loss function

L ¼ 1

T

XT
t¼1

Xf
t � F Xc

t ; u
� ���� ���2; (16)

where F represents the UrbanSTC model and u represents
all learnable parameters used in this model.

5 EXPERIMENTS

In this chapter, we have conducted comprehensive experi-
ments to demonstrate the effectiveness of our method. The
source code has been released at https://github.com/
HaoQu59/UrbanSTC.

5.1 Experimental Settings

5.1.1 Datasets

We evaluate the performance of our model as well as base-
lines on two real-world urban flow datasets. The dataset sta-
tistics are shown in Table 2. In the experiments, we partition
the data into non-overlapping training, validation and test
data by a ratio of 2:1:1 respectively.

� TaxiBJ [3], [5] This dataset is collected from Beijing taxi
flows, including four different periods: P1 to P4. The time
interval is 30 minutes.

Fig. 4. External Factors Fusion. External Factors are separated into con-
tinuous features (blue block) and categorical features (yellow block).
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� BikeNYC2 This dataset is collected from an open web-
site that contains bike flow data in New York City from Jan
1 to Mar 31, 2019. We partition the city area into 40�20 grids
as the coarse-grained map, and define the fine-granularity
map with 80�40.

5.1.2 Baselines

We compare the proposed method UrbanSTC with the fol-
lowing 13 baselines, including three types of methods, Heu-
ristic, state-of-the-art image super-resolution and FUFI
methods. All parameters of the proposed method and base-
lines adopt M2-Normalization to obey the structural con-
straint of FUFI.

Heuristic Methods.
� Mean Partition (Mean): We evenly distribute coarse-

grained maps into fine-grained maps according to the scal-
ing factor.

� Historical Average (HA): Predict the fine-grained sub-
regions by the historical average of its corresponding super-
region, and distribute flows into sub-regions based onhistorical
split proportions.

Image Super-Resolution Methods.
� SRCNN [43]: It is the first method to introduce convolu-

tional neural networks (CNNs) into image super-resolution
problems. SRCNN first uses bicubic interpolation to enlarge
the low-resolution image to the target size, then fits the non-
linear mapping through a three-layer convolutional net-
work, and finally outputs the high-resolution image result.

� ESPCN [32]: ESPCN proposes a sub-pixel convolution
method to extract features directly from low-resolution
image size, and calculate an efficient method to obtain high-
resolution images.

� VDSR [45]: It is different from the three-stage architec-
ture of SRCNN and ESPCN. VDSR is based on the idea of
residual structure and uses a resolution method of deep
neural networks with a depth of up to 20.

� SRResNet [23]: SRResNet uses perceptual loss and
adversarial loss to improve the realism of the restored

picture. Perceptual loss is the feature extracted by the con-
volutional neural network.

� DeepSD [53]: DeepSD is the state-of-the-art method on
statistical upscaling (i.e., super-resolution) for meteorologi-
cal data. It uses a stacked strategy to use multiple SRCNNs
for intermediate-level downscaling, and performs further
upsampling by simply stacking these SRCNNs.

� LapSRN [54]: LapSRN is divided into two parts: feature
extraction and image reconstruction. It uses low-resolution
images directly as input to the network, and through step-
by-step amplification, while reducing the amount of calcula-
tion, it also effectively improves the accuracy. And between
the levels of each pyramid and within each level, parameter
sharing is carried out through recursive.

� IMDN [55]: IMDN is a lightweight network architecture
which contains distillation and selective fusion parts to
address issues that excessive convolutions will limit the
application of super-resolution technology in low comput-
ing power devices. They first use the distillation module to
extract the hierarchical structure, and then use the contrast-
based channel attention to fuse the features.

� SCN [56]: It is proved that modeling the scale invariance
into the neural network can significantly improve the image
restoration performance. Inspired by the spatial convolution
of shift-invariance, ”scale-wise convolution” is proposed to
convolve acrossmultiple scales for scale invariance.

FUFI Methods.
� UrbanFM [3]: UrbanFM first proposes Fine-grained

urban flow super-resolution. Its difficulty is that the sum of
the flow of multiple fine-grained areas is equal to the flow
of a coarse-grained area and the mutual influence between
adjacent areas. UrbanFM designs stacking ResNet-based
neural networks andM2-Normalization layer to overcome.

� UrbanPy [5]: A progressive method of UrbanFM which
uses a cascading model for forecasting fine-grained urban
flows by decomposing the original tasks into multiple
subtasks.

� FODE [4]: FODE is the state-of-the-art method in fine-
grained Urban Flow Super-Resolution. Inspired by the Neu-
ral Ordinary Differential Equations (NODE) [25]. They pro-
pose FODE block replaces ResNet as the backbone.

TABLE 2
Statistics of Datasets

Dataset TaxiBJ BikeNYC

Time span P1: 7/1/2013-10/31/2013
P2: 2/1/2014-6/30/2014 1/1/2019-
P3: 3/1/2015-6/30/2015 31/3/2019
P4: 11/1/2015-3/31/2016

Time interval 30 minutes 1 hour
Coarse-grained size 32�32 40�20
Fine-grained size 128�128 80�40
Upscaling factor(M) 4 2
Latitude range 39:82	N � 39:99	N 40:65	N � 40:81	N
Longitude range 116:26	E � 116:49	E 73:93	W � 74:01	W

External Factors (meterology,
time and event) in TaxiBJ dataset

Temperature =	C ½�24:6; 41:0� \
Wind speed/mph ½0; 48:6� \
Weather conditions 16 types (e.g., Sunny) \
Holidays 18 \

2. https://www.citibikenyc.com/system-data
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5.1.3 Evaluation Metrics

We evaluate different methods with three widely used met-
rics: Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE) and Mean Absolute Percentage Error (MAPE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Xi � X̂i


 �2

vuut

MAE ¼ 1

N

XN
i¼1

Xi � X̂i

�� ��

MAPE ¼ 1

N

XN
i¼1

Xi � X̂i

Xi

�����
�����

where X̂i is a prediction for fine-grained flow, and Xi is the
ground truth; N is the number of prediction values.

5.1.4 Training Details & Hyperparameters

Our model and baselines are completely implemented by
PyTorch 1.60 with a RTX 2080 GPU. The network is trained
using Adam with the first and second moment estimates
equaling to 0.9 and 0.999, respectively [57]. The initial learning
rate is set to be 1e-3, and is divided by 2 after 50 epochs, which
allows smoother search near the convergence point. Themini-
batch size is 16, and the number of base channels is 128.

5.2 Results on TaxiBJ

We first assess the performances of our model and baselines
on TaxiBJ with a varying ratio of training data. Tables 3, 4,
5, and 6 report the prediction results. Note that, the varian-
ces of the results are almost in the range of 0.000 - 0.002,
thus we omit the variances. We summarize the tables with
several key observations:

(1) UrbanSTC outperforms all competitive methods
across the entire time spans (P1-P4). By comparing to

TABLE 3
The Average RMSE, MAE and MAPE on TaxiBJ Dataset (P1) With Different Proportions of Training Data

Methods P1(20%) P1(40%) P1(60%) P1(80%) P1(100%)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

MEAN 20.918 12.019 4.469 20.918 12.019 4.469 20.918 12.019 4.469 20.918 12.019 4.469 20.918 12.019 4.469
HA 4.794 2.269 0.339 4.802 2.263 0.338 4.793 2.258 0.338 4.785 2.256 0.337 4.772 2.251 0.336
SRCNN 4.737 2.767 0.804 4.498 2.578 0.706 4.506 2.587 0.712 4.290 2.425 0.631 4.275 2.430 0.642
ESPCN 4.552 2.583 0.682 4.493 2.540 0.657 4.264 2.346 0.558 4.216 2.316 0.544 4.208 2.318 0.546
DeepSD 4.532 2.535 0.652 4.346 2.373 0.566 4.883 2.834 0.805 4.287 2.349 0.556 4.128 2.248 0.516
VDSR 4.546 2.556 0.669 4.299 2.354 0.562 4.198 2.279 0.527 4.119 2.229 0.503 4.054 2.186 0.485
SRResNet 4.734 2.800 0.844 4.383 2.520 0.696 4.276 2.437 0.654 4.179 2.366 0.618 4.079 2.291 0.580
LapSRN 4.676 2.738 0.801 4.642 2.715 0.789 4.309 2.432 0.635 4.153 2.305 0.567 4.083 2.255 0.542
IMDN 4.696 2.748 0.794 4.388 2.464 0.635 4.251 2.376 0.601 4.159 2.295 0.554 4.085 2.253 0.538
SCN 4.395 2.491 0.661 4.219 2.351 0.588 4.096 2.250 0.536 4.028 2.203 0.515 3.965 2.162 0.494
UrbanFM 4.560 2.343 0.398 4.321 2.213 0.369 4.195 2.140 0.350 4.108 2.095 0.340 4.042 2.062 0.337
UrbanPy 4.665 2.471 0.547 4.363 2.233 0.415 4.112 2.077 0.349 4.033 2.041 0.343 3.944 1.998 0.333
FODE 4.476 2.304 0.391 4.260 2.170 0.349 4.161 2.116 0.344 4.084 2.078 0.338 4.002 2.044 0.336
UrbanSTC 4.083 2.022 0.302 3.988 1.983 0.302 3.941 1.962 0.301 3.900 1.942 0.298 3.845 1.922 0.298
D +7.10%+12.24%+10.91%+5.48%+8.62%+10.65%+3.78%+5.54%+10.95%+3.18%+4.85%+11.57%+2.51%+3.80%+10.51%

The best results are bold and the second best are underlined.

TABLE 4
The Average RMSE, MAE and MAPE on TaxiBJ Dataset (P2) With Different Proportions of Training Data

Methods P2(20%) P2(40%) P2(60%) P2(80%) P2(100%)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

MEAN 26.729 15.350 5.364 26.729 15.350 5.364 26.729 15.350 5.364 26.729 15.350 5.364 26.729 15.350 5.364
HA 6.568 2.889 0.358 5.875 2.679 0.342 5.669 2.620 0.338 5.544 2.587 0.335 5.512 2.576 0.334
SRCNN 5.613 3.201 0.837 4.994 2.855 0.706 5.172 3.036 0.801 4.924 2.839 0.713 4.978 2.896 0.748
ESPCN 5.461 3.062 0.738 5.186 2.987 0.740 4.934 2.779 0.637 4.554 2.473 0.482 5.072 2.957 0.749
DeepSD 5.412 2.991 0.704 5.608 3.290 0.892 4.716 2.585 0.546 5.018 2.816 0.659 4.909 2.738 0.625
VDSR 5.449 3.024 0.727 4.753 2.608 0.561 4.954 2.795 0.660 4.494 2.444 0.492 4.429 2.402 0.475
SRResNet 5.801 3.420 0.992 4.946 2.878 0.749 4.702 2.760 0.653 4.572 2.600 0.614 4.548 2.573 0.605
LapSRN 5.717 3.343 0.931 4.844 2.751 0.664 4.818 2.753 0.673 4.535 2.525 0.554 4.555 2.556 0.569
IMDN 5.790 3.547 1.123 4.927 2.971 0.853 4.710 2.792 0.755 4.573 2.688 0.703 4.476 2.608 0.661
SCN 5.222 2.932 0.721 4.640 2.567 0.579 4.487 2.475 0.528 4.402 2.422 0.505 4.336 2.381 0.490
UrbanFM 5.546 2.855 0.433 4.805 2.469 0.353 4.588 2.365 0.336 4.489 2.309 0.324 4.414 2.272 0.318
UrbanPy 5.528 2.803 0.485 4.728 2.412 0.370 4.464 2.276 0.334 4.446 2.279 0.341 4.315 2.210 0.323
FODE 5.362 2.734 0.395 4.704 2.416 0.337 4.538 2.331 0.323 4.434 2.285 0.325 4.366 2.248 0.317
UrbanSTC 4.975 2.424 0.297 4.454 2.231 0.294 4.347 2.185 0.288 4.274 2.157 0.288 4.225 2.136 0.288
D +4.73%+11.34%+17.04%+4.01%+7.50%+12.76%+2.62%+4.00%+10.84%+2.91%+5.35%+11.11%+2.09%+3.35%+9.15%

The best results are bold and the second best are underlined.
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current state-of-the-art methods, UrbanSTC has improved
2.51%, 3.80% and 10.51% for RMSE, MAE and MAPE on
average on TaxiBJ-P1 with 100.00% training data.

(2) It is apparent that UrbanSTC can achieve the best
results when training data decreases. Taking TaxiBJ-P1
(20% training data) for example, UrbanSTC yields 7.10%,
12.24% and 10.91% relative improvements in terms of
RMSE, MAE and MAPE, respectively.

The above results show that UrbanSTC has its own
advantages in the absence of training data resources. This
is consistent with our motivation that spatio-temporal
contrastive self-supervision can better learn flow feature
representations and improve FUFI performance. Image
super-resolution method SCN [56] performers better than
other baselines with metric RMSE on 20% - 80% TaxiBJ data-
sets, while shows deteriorate scores on MAE and MAPE. It
is mainly because SCN is a state-of-the-art image super-res-
olution method with the root mean square loss function.
However, most image super-resolution methods are not

adapt to the FUFI problem since they do not consider the
structural constraint when designing models. Compared
with UrbanFM, UrbanPy, and FODE, spatio-temporal con-
trastive learning method UrbanSTC can provide the better
latent representations that performs most through all
experiments.

5.2.1 Ablation Analysis

To analyses the contribution of each component of
UrbanSTC, we analyze the ablation study in this section.

We only report the evaluation metrics on TaxiBJ dataset

(average result of P1 to P4) because the experimental results

on BikeNYC can make similar conclusions. All the results

are shown in Table 7. The term “Reg” means the regional-

level contrast pre-training; “Inf” illustrates the spatial

super-resolution inference network; “TCS” indicates the

temporal contrast is used or not.

TABLE 5
The Average RMSE, MAE and MAPE on TaxiBJ Dataset (P3) With Different Proportions of Training Data

Methods P3(20%) P3(40%) P3(60%) P3(80%) P3(100%)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

MEAN 27.442 16.029 5.612 27.442 16.029 5.612 27.442 16.029 5.612 27.442 16.029 5.612 27.442 16.029 5.612
HA 5.833 2.741 0.337 5.746 2.713 0.333 5.731 2.707 0.331 5.692 2.695 0.330 5.675 2.670 0.328
SRCNN 5.581 3.317 0.906 5.150 2.962 0.728 5.082 2.936 0.718 4.923 2.821 0.666 4.891 2.817 0.673
ESPCN 5.273 3.013 0.717 5.043 2.848 0.638 5.091 2.888 0.656 4.796 2.668 0.556 4.853 2.716 0.579
DeepSD 5.257 2.935 0.666 5.048 2.796 0.606 4.960 2.749 0.583 4.878 2.690 0.559 4.720 2.580 0.510
VDSR 5.285 2.982 0.699 4.963 2.748 0.591 4.786 2.626 0.536 4.695 2.568 0.512 4.616 2.522 0.495
SRResNet 5.578 3.352 0.945 5.120 2.998 0.776 4.934 2.857 0.705 4.773 2.734 0.643 4.658 2.648 0.602
LapSRN 5.832 3.535 1.019 5.135 2.970 0.740 5.041 2.920 0.721 4.923 2.828 0.675 4.641 2.589 0.550
IMDN 5.635 3.493 1.077 5.143 3.107 0.876 4.908 2.930 0.788 4.745 2.794 0.715 4.690 2.765 0.704
SCN 5.090 2.899 0.694 4.826 2.702 0.601 4.670 2.593 0.549 4.575 2.531 0.522 4.514 2.494 0.506
UrbanFM 5.299 2.738 0.379 4.951 2.558 0.350 4.761 2.456 0.336 4.656 2.408 0.330 4.578 2.356 0.314
UrbanPy 5.342 2.827 0.529 4.946 2.532 0.382 4.743 2.443 0.362 4.578 2.346 0.332 4.436 2.272 0.318
FODE 5.165 2.686 0.380 4.875 2.521 0.347 4.712 2.434 0.331 4.616 2.387 0.327 4.536 2.345 0.319
UrbanSTC 4.781 2.383 0.287 4.607 2.309 0.292 4.512 2.271 0.288 4.439 2.240 0.288 4.382 2.215 0.285
D +6.07%+11.28%+14.84%+4.54%+8.41%+12.31%+3.38%+6.70%+12.99%+2.97%+4.52%+11.93%+1.22%+2.51%+9.24%

The best results are bold and the second best are underlined.

TABLE 6
The Average RMSE, MAE and MAPE on TaxiBJ Dataset (P4) With Different Proportions of Training Data

Methods P4(20%) P4(40%) P4(60%) P4(80%) P4(100%)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

MEAN 19.049 11.070 4.192 19.049 11.070 4.192 19.049 11.070 4.192 19.049 11.070 4.192 19.049 11.070 4.192
HA 4.306 2.067 0.319 4.238 2.052 0.319 4.209 2.043 0.319 4.223 2.045 0.320 4.201 2.039 0.320
SRCNN 4.048 2.369 0.668 4.065 2.381 0.660 3.799 2.182 0.569 3.944 2.277 0.613 3.813 2.188 0.571
ESPCN 3.983 2.290 0.600 3.865 2.187 0.542 4.112 2.430 0.684 3.853 2.194 0.552 3.914 2.277 0.607
DeepSD 3.980 2.240 0.562 3.910 2.181 0.527 3.924 2.215 0.552 3.806 2.121 0.511 3.662 2.030 0.472
VDSR 3.952 2.239 0.573 3.741 2.075 0.489 3.655 2.015 0.462 3.644 2.007 0.457 3.555 1.948 0.431
SRResNet 4.118 2.463 0.738 4.053 2.431 0.729 3.761 2.184 0.591 3.710 2.102 0.508 3.630 2.067 0.523
LapSRN 4.467 2.753 0.884 4.150 2.489 0.745 3.705 2.103 0.530 3.673 2.080 0.520 3.679 2.118 0.544
IMDN 4.100 2.530 0.818 3.828 2.301 0.686 3.703 2.203 0.635 3.619 2.119 0.580 3.848 2.340 0.720
SCN 3.798 2.154 0.550 3.660 2.048 0.496 3.573 1.987 0.467 3.524 1.952 0.450 3.486 1.927 0.439
UrbanFM 4.054 2.126 0.373 3.794 1.969 0.330 3.677 1.908 0.323 3.601 1.865 0.315 3.559 1.841 0.305
UrbanPy 3.959 2.088 0.413 3.740 1.936 0.342 3.644 1.889 0.332 3.606 1.868 0.325 3.470 1.801 0.313
FODE 3.912 2.042 0.350 3.725 1.930 0.321 3.627 1.879 0.314 3.565 1.846 0.308 3.529 1.828 0.304
UrbanSTC 3.640 1.837 0.278 3.542 1.796 0.282 3.474 1.769 0.282 3.454 1.759 0.283 3.416 1.742 0.278
D +4.16%+10.04%+12.85%+3.22%+6.94%+11.60%+2.77%+5.85%+10.19%+1.99%+4.71%+8.12%+1.56%+3.28%+8.55%

The best results are bold and the second best are underlined.
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We can clearly see that the combination of any two com-
ponents is better than the single one, which proves the effec-
tiveness of our proposed components. When only
considering one strategy, temporal contrast performs better
than regional-level contrast and the spatial super-resolution
inference network. Spatial contrast contains two compo-
nents, “Reg” and “Inf”. We find that the effect of the spatial
super-resolution network (Inf) is better than the regional-
level contrast (Reg). It is mainly because the kernel of the
Reg encoder is 1� 1, while that of in Inf encoder is 3� 3,
where the larger convolution kernel size helps to capture
more information in the encoder. The results of combination
of “Reg” + “TCS” and “Inf” + “TCS” are slightly worse than
the final model, indicating that such prior knowledge con-
sidered both spatial and temporal information is significant
for the fine-grained urban flow inference.

To better present the ablation results, we draw some
comparable images in Fig. 5. Fig. 5 shows the inference
errors kXf � X̂fk1;1 generated by UrbanSTC and other abla-
tion parts, where a brighter pixel indicates a large error. A
(West TuCheng Road) and B (Sanyuan bridge) are the main
traffic arteries in Beijing. It is apparent that UrbanSTC
achieves better results than other ablation experiments,
which proves that the final structure of the proposed model
can better capture the spatio-temporal characteristics of
flow data.

5.2.2 End-to-End and Two-Stage Comparison

To verify the effectiveness of the two-stage training process
and end-to-end training process, we conduct experiments in
TaxiBJ (average result of P1 to P4) and BikeNYC datasets.
The end-to-end model integrates three proposed modules,
i.e., the coarse-grained flow map is introduced to the spatial
self-supervision, temporal self-supervision and external fac-
tor learning simultaneously, and optimize these three loss
functions integrally. As shown in Table 8, we can clearly find
that the two-stage experimental results are better than the
end-to-end training process. The end-to-end training
method needs to adjust the balance factors between each loss
function, while the two-stage trainingmethod is not required
to adjust the balances among pretexts. The advantage of the
self-supervised learning lies in two-stage training. The pre-
texts help themodel in learning the internal characteristics of
the data in advance, and the fine-tuning stage then learns the
corresponding label information [30], [47], [58], [59].

5.2.3 Temporal Contrastive Sampling Analysis

To evaluate the effect of hard sampling and weight sam-
pling methods, we report the experimental results on
TaxiBJ-P1. The tests drawn in Fig. 6 demonstrate that the
weight sampling is better than the hard sampling when the
proportion of used training data is lower than 60%. This is
because the weight sampling method can comprehensively
use top K related samples, while the hard sampling only
uses the most similar or dissimilar data. With the amount of
training data increases, hard sampling begins to show a bet-
ter performance than weight sampling. When the training
dataset is small, we can hardly to pick up the global most
similar sample, but use top-K similar samples instead.

TABLE 7
Ablation Studies

Regional
contrast

Spatial
super-

resolution

Temporal
contrast

TaxiBJ

RMSE MAE MAPE

✓ 4.118 2.100 0.311
✓ 4.019 2.040 0.297

✓ 4.008 2.027 0.290
✓ ✓ 3.970 2.009 0.289
✓ ✓ 3.983 2.009 0.287

✓ ✓ 3.975 2.008 0.288
✓ ✓ ✓ 3.967 2.004 0.287

We report the strategies used in different models on TaxiBJ dataset’s average
results.

Fig. 5. Visualization of the Ablation Study.

TABLE 8
End-to-End and Two-Stage Comparison

Mehtods TaxiBJ BikeNYC

RMSE MAE MAPE RMSE MAE MAPE

End-to-End 3.980 2.053 0.294 1.120 0.245 0.077
Two-stage 3.958 1.998 0.284 1.093 0.236 0.073
D 0.55% 2.68% 3.40% 2.41% 3.67% 5.19%

Fig. 6. Performance comparison between Hard Sampling and Weight
Sampling on TaxiBJ-P1 dataset.
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Otherwise, if the most similar sample is found with the
training data increasing, the hard sampling method can
achieve the better result. Therefore, a combination of two
methods can be adopted in different training scenarios.

5.2.4 Study on External Factor Fusion

In reality, there are complicated external factors in the FUFI
problem. In order to verify the effectiveness of the external
information in our method, we introduce external factors
and conduct experiments on TaxiBJ datasets with different
time spans (P1-P4). We only compare our method with
available baselines. As test shown in Table 9, we clearly see
that UrbanSTC+E performs better than other models across
all time spans, which reveals that the combination of our
UrbanSTC and external factors can improve the model per-
formance. Note that, even some compared FUFI methods
have the well-designed external information fusion module,
our proposed method UrbanSTC can leverage external
information with a simple network.

5.2.5 Configurations and Parameters Analysis

In this section, we try to explore the learning abilities of our
method in various setting environments. Compared with
different channels (32, 64, 128), we can get the results shown
in Fig. 8. Fig. 8a illustrates that the larger number of chan-
nels, the better performance of UrbanSTC. Besides, Figs. 8b,
8c and 8d show that a larger number of channels can
improve the efficiency of the learning convergence.

We analyze the influence of � in the regional-level con-
trastive learning. Fig. 7a shows the different performances
with a varying setting of �. The regional-level contrast
judges which regions are positive and negative samples
based on the threshold �. The experimental result shows
that the best result is achieved when the threshold is 1e-4 on
the taxi dataset. Fig. 7b represents that � = 5e-5 yields the
best performance.

For the parameter analysis, Fig. 9a represents that
UrbanSTC can get better results than other models with dif-
ferent training data fractions. Fig. 9b indicates the traditional
image super-resolution methods, e.g., IMDN, VDSR and
SRResNet are not suitable for the FUFI problem due to the
inherent difference. Although SRResNet and UrbanFM have
similar structures, the M2-Normalization layer in UrbanFM
contributes to the FUFI problem. UrbanPy uses a cascading
model for forecasting fine-grained urban flows by decom-
posing the original task into multiple subtasks, which leads
to the increase of computing complexity. FODE utilizes ODE
module to replace the ResNet strucure in the UrbanFM.
Because the abovemodules can be viewed as a discretization
of a continuous ODE operator, which greatly improves the
convergence speed and reduces the number of parameters.

TABLE 9
The Average RMSE, MAE and MAPE on TaxiBJ Dataset With External Factors

Methods P1 P2 P3 P4

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

UrbanFM+E 3.970 2.023 0.334 4.355 2.239 0.317 4.530 2.335 0.321 3.528 1.824 0.303
UrbanPy+E 3.909 1.981 0.330 4.353 2.230 0.327 4.466 2.294 0.323 3.498 1.817 0.317
FODE+E 3.915 1.996 0.332 4.348 2.235 0.316 4.505 2.329 0.314 3.505 1.821 0.311
UrbanSTC 3.845 1.922 0.298 4.225 2.136 0.288 4.382 2.215 0.285 3.416 1.742 0.278
UrbanSTC+E 3.841 1.917 0.292 4.209 2.125 0.284 4.376 2.210 0.283 3.404 1.738 0.275

Note that ”+E” represents a model that incorporates external factors. The best results are bold.

Fig. 8. Study on Configurations. The convergence rate loss error of the
self-supervised module under different channel dimensions.

Fig. 7. Effect of �. We explore the influence of � in the spatial contrastive
learning.

Fig. 9. Study on Parameters. Experiments on the P1 dataset with differ-
ent training data fractions and the comparison of parameter cost.
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For our model UrbanSTC, we design several self-supervised
pretext tasks to make encoders rich in spatio-temporal infor-
mation. As shown in Table 10, “Reg“ indicates the regional-
level contrast pre-training; “Inf“ illustrates the spatial super-
resolution inference network; “TCS“ denotes the temporal
contrast. UrbanSTC consists of three self-supervised mod-
ules and a fine-tuning stage. The parameter cost of
UrbanSTC is slightly higher than IMDN because the latter is
a lightweight image super-resolution method designed in
mobile devices. Based on our well-designed self-supervised
tasks, UrbanSTC can capture spatio-temporal knowledge in
advance and perform better than other baselines with a rela-
tively small amount of parameters.

We further conduct a comparison between UrbanSTC
and baselines in terms of the training time and inference
time. We reported the training time of each epoch and the
total training time until model convergence in P1 dataset of
TaxiBJ, which contains 1530 training snapshots and 765 test
snapshots respectively. Even our model contains two stages,
the training time of each epoch is less than all previous FUFI
models (UrbanFM, UrbanPy and FODE) as shown in
Table 10. It is mainly because the structure of proposed
encoders is simple while well-designed that can capture
rich spatio-temporal characteristics in advance. Two image
super-resolution methods, VDSR and IMDN are efficient
in the training process, yet their performances are far
more worse than our method.

As shown in Fig. 10, UrbanSTC can efficiently converge
with a small number of epochs. Even UrbanSTC spent
slightly more total training time than UrbanFM and
VDSR, it is efficient with the best results achieved. In sum-
mary, extensive experiments demonstrate that UrbanSTC
can achieve the best results efficiently by using a small
amount of parameters.

5.3 Results on BikeNYC

Table 11 presents the comparison results on the BikeNYC
dataset. Since we cannot get the external factors of this
dataset, we will do not add such information in the experi-
ments. In this experiment, the baseline DeepSD will be the
same as SRCNN when M is 2� , therefore we remove the
DeepSD.

BikNYCdataset is more sparse than TaxiBJ dataset. None-
theless, UrbanSTC still yields 2.93% and 5.60% improve-
ments on average in terms of RMSE and MAE, respectively.
Note that due to the extremely sparsity of BikeNYC dataset,
the metric MAPE is not available. It is apparent that the
experimental results lead to similar conclusions to the test on
TaxiBJ. The proposed model outperforms other baseline
methods on both sparse and dense datasets, which has a
good robustness.

5.4 Visualization of Fine-Grained Flow Prediction

Fig. 11 gives an intuitive presentation of the fine-grained
urban flow prediction in BikeNYC data. Fig. 11a represents
the coarse-grained crowd flows and 11b is the ground-truth
of the fine-grained flow map from (a), and (c) is our predic-
tion result. This visualization illustrates the effectiveness of
our model.

Fig. 12 shows the inference errors kXf � X̂fk1;1 generated
by UrbanSTC and the other three baselines for a sample at
the 4� task, where a brighter pixel indicates a large error.
Overall, UrbanSTC has obtained more detailed inference
effects and less global error. To better visualize the quality
of inference, we select four busy subregions (A, B, C and D)
where the UrbanSTC performs better than other methods

TABLE 10
Efficiency Evaluated on the P1 Dataset

Method Params Training Time Inference Time Total Time RMSE

VDSR 4.79 M 4.37 s 0.76 s 9.10mins 4.054
SRResNet 5.79 M 11.4 s 1.57 s 33.25mins 4.079
IMDN 2.63 M 4.21 s 0.69 s 13.33mins 4.085
SCN 18.55 M 23.86 s 5.21 s 59.65mins 3.965
UrbanFM 5.94 M 12.28 s 1.80 s 10.23mins 4.042
UrbanPy 11.28 M 27.39 s 11.89 s 79.89mins 3.944
FODE 4.23 M 14.05 s 1.91 s 17.56mins 4.002
Reg 0.03 M 3.89 s - 6.48mins -
Inf 1.41 M 0.80 s - 1.60mins -
TCS 0.16 M 0.99 s - 1.65mins -
Fine-tuning 1.98 M 3.34 s 0.66 s 2.78mins 3.845
UrbanSTC 3.58 M 9.02 s 0.66 s 12.51mins 3.845

The entire model UrbanSTC and its four components have been tested separately.

Fig. 10. Convergence rate of different methods.
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obviously. Area A is the Sanyuan bridge (the main entrance
to downtown); area B is the Beijing zoo (a large number of

tourists); areas C and D cover the Beijing and Beijing west

railway stations. Compared with existing FUFI methods,

we observe that UrbanSTC has made great improvements

in the above areas. Besides, UrbanSTC shows a darker tone

than other methods from the heat map, which corresponds

to the quantitive results from Table 3.

6 CONCLUSION

In this paper, we propose a spatio-temporal contrastive self-
supervision method named UrbanSTC for the fine-grained
urban flow inference problem. Our model can extract rich spa-
tial and temporal characteristics from urban flows. In detail,
we establish self-supervision pretext tasks from two aspects,
that are spatial and temporal correlations. For the spatial corre-
lation, regional contrast and spatial super-resolution inference
network make great contributions to capture similarities
among regional-level flows and upscaling patterns. Moreover,
we devise two sampling strategies based on temporal attrib-
utes. The overall architecture of ourmodel obeys the self-super-
vised trainingmode: pre-training & fine-tuning. Throughwell-
designed self-supervised tasks, uncomplicated networks have
a strong ability to learn high-level representations from urban
flows. We conduct intensive experiments on two real-world
datasets to compare the performances between UrbanSTC and
other state-of-the-art approaches. The results not only show
that our approach outperforms all other methods, but also rep-
resent a high performancewhen the training data decrease.
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