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ABSTRACT 

Urban transportation is increasingly studied due to its com-

plexity and economic importance. It is also a major compo-

nent of urban energy use and pollution. The importance of 

this topic will only increase as urbanization continues 

around the world. A less researched aspect of transportation 

is the refueling behavior of drivers. In this paper, we pro-

pose a step toward real-time sensing of refueling behavior 

and citywide petrol consumption. We use reported trajecto-

ries from a fleet of GPS-equipped taxicabs to detect gas 

station visits, measure the time spent, and estimate overall 

demand. For times and stations with sparse data, we use 

collaborative filtering to estimate conditions. Our system 

provides real-time estimates of gas stations’ waiting times, 

from which recommendations could be made, an indicator 

of overall gas usage, from which macro-scale economic 

decisions could be made, and a geographic view of the 

efficiency of gas station placement.  

Author Keywords 

Refueling Event, Knowledge Cell, Expected Duration, 

Arrival Rate 

ACM Classification Keywords 

H.2.8 [Database Management]: data mining, spatial data-

bases and GIS.  

INTRODUCTION 

Urban transportation is the backbone of city life, but trans-

portation authorities rarely have a real-time view of traffic 

statuses or patterns. Additionally, due to the heavy and 

growing reliance on petroleum and the environmental im-

pacts of emissions from fossil fuel consumption, energy 

consumption for urban transportation represents a pressing 

challenge. An integral and under-researched component of 

the transportation system is the refueling behavior of indi-

vidual cars, which we propose to monitor in real-time using 

ubiquitous sensing data. We propose a step toward real-

time sensing of refueling behavior, overall petrol consump-

tion, and a framework for analyzing gas station efficiency. 

In this paper, we propose a system that uses city-wide sens-

ing by human actors to capture both the individual refueling 

experiences (e.g. time spent at a gas station) and the macro-

scopic system dynamics (e.g. city-wide petrol consumption, 

efficiency of gas stations, etc.). We use human-generated 

trajectory data to identify refueling events, estimate the 

time spent, and infer other local and global properties. 

Energy use in vehicle transportation is difficult to ascertain. 

This is especially true for real-time estimates. Gas stations 

are typically owned by an assortment of different, compet-

ing organizations which do not want to make data available 

to competitors. There is also a cost associated with monitor-

ing and publicizing data, from which station owners would 

derive no benefit. Estimating energy use is also a difficult 

problem, as it is a function of a car’s acceleration, which is 

highly variable and difficult to estimate.  

  (a) User recommendation                        (b) Petrol consumption 

Figure 1. Application scenarios of refueling activity under-

standing 

 
          (a)Lack of demand                              (b) Demand surplus 

Figure 2. A local view of gas stations 

We propose a complete data-driven framework to under-

stand urban refueling activity. We focus on estimating the 

time spent and the arrival rate of each knowledge cell (a 

spatial-temporal unit detailed latter). These two indicators 

can be applied in the following scenarios: 

 User Refueling Recommendation: Figure 1(a) shows 

several gas stations’ time spent at a point in time. The 

redder the color, the more time spent. Assuming a 

driver is in the position denoted by the arrow, even if 

station C is the closest, other stations might be rec-
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ommended due to their shorter waiting times, i.e., sta-

tion E is a satisfactory choice.   

 Gas Station Planning: Figure 2 shows a local view of 

several gas stations. The size of the stations indicates 

the drivers’ average arrival rate. The larger the size, 

the more drivers have visited that station. We see a 

large amount of vehicles have refueled in the area 

shown in Figure 2(a), thus these stations have long 

waiting times (colored red). It might be worthwhile to 

consider building a new gas station nearby to relieve 

the issue of insufficient supply. On the contrary, Fig-

ure 2(b) indicates that the gas stations are very dense 

in this area even though very few drivers have visited 

there (colored green). Therefore, the government 

could consider closing some of them to reduce waste. 

 Energy Consumption Analysis: In Figure 1(b), the 

curve gives a direct view of this city’s time-varying 

petrol consumption, based on the drivers’ arrival rate 

during each period. This can be used by station opera-

tors to formulate better commercial strategies. 

Our approach is a ‘human as a sensor’ approach that draws 

inferences from GPS-trajectories passively collected by 

taxicabs. At first, we take a novel approach to detect refuel-

ing events, which are visits by taxis to gas stations. The 

detection includes the time spent waiting at the gas station, 

and the time spent refueling the vehicle. For knowledge 

cells which cover enough detected refueling events, the 

time spent in each of these cells is estimated directly. For 

those with few or even without refueling events, we use a 

context aware collaborative filtering approach to solve the 

data sparsity problem. Finally, we treat each gas station as a 

queue system and the time spent in the station is used to 

calculate drivers’ arrival rate, which is the number of cus-

tomers during this period and can indicate the petrol con-

sumption. Therefore, the output is a global estimate of time 

spent and fuel use at each gas station in each time period. 

Our evaluation consists of multiple parts. First, we conduct 

several experiments on the refueling event detection algo-

rithm. We analyze the performance on a manually-labelled 

GPS data set as well as a data set generated by the authors. 

Next, we show the performance of the time spent estimation 

and the effectiveness of collaborative filtering. Finally, we 

evaluate the effectiveness of the arrival rate estimation by 

comparing the number of customers deduced with the re-

sults collected in a case study. 

Our work presents a step towards real-time, persistent mon-

itoring of urban transportation energy use and refueling 

behavior by passive human sensing. Our main contributions 

include the following: 

 We propose a method for the discovery of refueling 

events from GPS trajectories  

 We present a context aware collaborative filtering 

method to estimate the time spent at gas stations when 

data is sparse. 

 We develop an approach that uses queue systems to 

calculate the overall arrival rate at gas stations from 

the inferred time spent during a period.   

We evaluate our system using large-scale and real-world 

datasets, which consists of a trajectory dataset, POI dataset, 

and road network dataset. 

PRELIMINARY 

In this section, we will clarify some terms used in this paper 

and briefly describe our major datasets. 

 
Figure 3. Knowledge cube and knowledge cell 

Trajectory: A trajectory is a sequence of GPS points that is 

composed of a latitude, a longitude and a timestamp. 

Point of Interest (POI): A POI refers to a specific point 

location that someone may find useful or interesting. It is 

described by a latitude, a longitude, and a category (such as 

restaurant, gas station, etc.). 

Refueling Event (RE): A refueling event describes the phe-

nomenon a vehicle refueling at a gas station. It is composed 

of the arrival time, departure time and the selected gas sta-

tion. A refueling event’s duration represents the time spent 

there, which is the difference between the arrival time and 

departure time.  

Knowledge Cell and Knowledge Cube: A knowledge cell is 

a spatial temporal division for refueling events. A 

knowledge cell      corresponds to a gas station    with the 

timestamp of hour    and the timestamp of day   , as 

shown in Figure 3. Each RE falls under one certain cell (its 

selected gas station is mapped to   , its arrival time is 

mapped to    and   ), and therefore all cells combine to 

form a knowledge cube. A knowledge cell is the finest 

granularity we use for urban refueling behavior analysis. A 

cell has two indicators with which we are concerned: ex-

pected duration and arrival rate. The expected duration 

refers to how much time, on average, is spent by the vehi-

cles refueling in this cell. The arrival rate indicates how 

many drivers have visited this cell.  

Our system is built on three kinds of data sources. The 

trajectory dataset was generated by over 30,000 taxis in 

Beijing during a period of nearly two months, from which 

taxi drivers’ refueling events can be detected. The POI 

dataset contains hundreds of thousands of POIs in this city, 

where gas stations are one category of particular interest. 

The road network dataset covers about 150,000 road seg-

ments in the urban area, where each segment is described as 

a sequence of geospatial points as well as some other attrib-

utes (such as road level, the number of lanes, etc.). 
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SYSTEM OVERVIEW 

Our system provides insight into the refueling behavior in 

the city. This behavior is captured by estimating each 

knowledge cell’s expected duration and arrival rate. As a 

preliminary step, we first identify the refueling events in the 

trajectory data. Then, for knowledge cells with a sufficient 

number of refueling events, we model the expected duration 

as the average of the values of the contained REs. For 

knowledge cells that have few or even no REs, we propose 

a context aware collaborative filtering model to predict the 

expected durations from similar knowledge cells.  With the 

expected durations estimated, we model each knowledge 

cell as a queue system in order to calculate the cell’s arrival 

rate. Finally, with each cell’s expected duration and arrival 

rate estimated, we can perform spatial and temporal anal-

yses on a city scale. There are four main components in our 

system as shown in Figure 4. 

 
Figure 4. System overview 

Refueling Event Detection. In this component, a large num-

ber of candidates are extracted from raw trajectories, and 

then a filtering algorithm is applied to obtain the final re-

sults. 

Expected Duration Learning. For a cell containing suffi-

cient detected REs, its expected duration is represented with 

the detected REs’ average durations. Then, for cells with 

insufficient REs present, we train a collaborative filtering 

method to predict their expected durations. We also consid-

er the stations’ contextual features that would have an in-

fluence on drivers’ refueling behavior and incorporate these 

features into our model. 

Arrival Rate Calculation. We model each gas station as a 

queue system and make a statistical inference of its arrival 

rate depending on a cell’s time spent. 

Urban Refueling Analysis. Based on the detected REs and 

each cell’s two indicators, we analyze taxi drivers’ refuel-

ing activity as well as the entire city’s refueling behavior. 

REFUELING EVENT DETECTION 

By mapping the geospatial movement of cars to the posi-

tions of gas stations, it seems that refueling events can be 

easily discovered. However, this direct approach has diffi-

culties due to the noise of the GPS readings and it cannot 

support perfect matching. The GPS devices generally have 

an error of 10 meters and the position of a gas station is 

merely depicted as a single point (which is actually an area 

with hundreds of square meters), these two factors lead the 

direct approach to mistake drivers’ other behavior for refu-

eling events while pass up real refueling behavior. This 

section details the process of detecting refueling events 

from the taxis’ raw trajectories under uncertainty. We first 

extract the refueling candidates and then use a supervised 

method to filter the errant candidates. 

 
Figure 5. Candidate extraction 

  

Candidate Extraction 

We extract refueling event candidates by considering mo-

bility and geographic constraints. 

For the mobility constraint, we ensure a refueling event 

candidate corresponds to a period of slow movement. As 

shown in Figure 5(A), given a trajectory         
  , we first check the distance between each point until the 

distance is larger than a threshold     . As shown in Figure 

5(B), since                 , we move next and take    

as “pivot point”. We find that                 and 

                 while                 , as shown in 

Figure 5(C). If the interval between      and      is smaller 

Raw Trajectories

Candidate 

Extraction

Filtering

Refueling 

Events

Map Match

Road Networks

Trajectories DB

POIs

Extract Traffic 

Feature

Extract POI 

Feature

Collaborative 

Filtering

Area 

Feature

Context 

Features

Construct 

Arrival Flow

Model Queue 

System

Calculation

Expected 

Duration

Data 

Analytics

Arrival Rate

Knowledge 

Cube

Geo-

Searching

Authority

Visualization

End Users

Expected Duration 

Learning
Datasets

Refueling Event 

Detection

Arrival Rate 

Calculation

Urban Refueling 

Analysis

P1

P3

P4

P5

P2
P7

P6

P1

P3

P4

P5

P2
P7

P6

(C) (D)

P1

P3

P4

P5

P2
P7

P6

(A)

P1

P3

P4

P5

P2
P7

P6

(E)

   

C1 

C2 g

(F)

P1 P3

P4

P5

P2
P7

P6

  𝑟 𝑎  (B)

C



 

than  ,          forms a cluster. Then, as shown in Figure 

5(D), we fix    as a “pivot point” to check on the later 

points. Finally, we take                as a “stay point”, 

which is shown in Figure 5(E). 

For the geographic constraint, we check the distance be-

tween a stay point’s center point and the nearest gas station. 

Then we take those stay points satisfying              

as refueling event candidates. As shown in Figure 5(F),    

is reserved while    is discarded directly. 

We manually labelled 200 real refueling events by plotting 

the raw trajectories in digital maps and used this dataset to 

learn the parameters (          ). The parameters were 

determined by traversing combinations of values, as shown 

in Algorithm 1. The temporal distance (Procedure 1) signi-

fies how accurate a candidate can represent a real refueling 

event’s arrival time and departure time. We ensure that each 

real refueling event corresponds to a candidate (they should 

have temporal overlap, if not, the distance is infinite) while 

still guaranteeing the temporal distances gathered from all 

real refueling events are minimized. 

Filtering 

The candidates extraction process finds clusters of points in 

close proximity to gas stations. However, a candidate could 

be generated by some other behavior. For example, for gas 

stations that are close to roads or intersections, the candi-

date might indicate a traffic jam or a car wait for signals at 

a traffic light. Some other POIs such as repair shops, car 

washes, or even parking lots, might be located close to gas 

stations and create false candidates. Figure 6 show a real 

refueling event compared with pseudo candidates. To filter 

these non-refueling events out of the candidate pool, we 

apply a supervised model, using the following features: 

 
(a) Real RE (b) Traffic jam or    

waiting for signal 

(c) Parking place 

Figure 6. Real RE w.r.t pseudo candidates 

Spatial-Temporal features including: 1) Encompassment. A 

binary value indicating whether the gas station is contained 

in the candidate’s minimum bounding box. 2) Gas Station 

Distance. The average distance between the candidate’s 

points and the gas station. 3) Distance To Road. The aver-

age distance between the candidate’s points and a matched 

road segment. 4) Minimum Bounding Box Ratio. The ratio 

between the minimum bounding box’s width and height 

represented as    (
     

      
 
      

     
). 5) Duration. The tem-

poral duration of a candidate. 

POI features including: 1) Neighbor Count. The number of 

POIs in the gas station’s neighborhood. 2) Distance To POI. 

The minimum average distance between a candidate’s 

points and nearby POIs. 

We use a manually labelled dataset to train a gradient tree 

boosting classifier[1], and then use the trained model to 

distinguish real refueling events from other behavior. 

 
Figure 7. Detected REs’ heatmap in two gas stations 

EXPECTED DURATION LEARNING 

A knowledge cell’s expected duration is an indicator that 

shows the average time spent at a gas station during a cer-

tain period. Currently, we have discovered taxis’ refueling 

events from the trajectory dataset. If there are enough REs 

incorporated, we can use their average durations to estimate 

this indicator. However, only a portion of the knowledge 

cells are filled with enough detected REs. Figure 7 shows 

two slices from the knowledge cube along the gas station 

dimension, and each small colored grid corresponds to a 

knowledge cell, where the color signifies the number of 

detected REs. Even though the left gas station is popular for 

taxis, during some periods it was still rare for taxis to arrive. 

The situation is even worse for the station on the right. To 

predict the remaining cells’ expected duration, we apply a 

context aware collaborative filtering model to solve the data 

sparsity problem and then detail how to extract the gas 

station’s contextual features to improve the performance. 

Context-Aware Collaborative Filtering 

Currently, for cells with enough detected REs, their ex-

pected durations are obtained and treated as observable data. 

Our concern is then to find the remaining cells’ expected 

durations. The problem actually concerns collaborative 

filtering, where the timestamp of the hour is treated as the 

user, the gas station is treated as the item and the timestamp 

of the day can be treated as the temporal factor[2]. The 

scene in our system could be imagined that there are 24 

users (each user relates to an hour), they give variant rates 

to different items (each item relates to a gas station) at dif-

ferent times (each time snapshot relates to a day). Naturally, 

the expected duration of a knowledge cell could be inter-

preted as a user rate on an item at a certain time snapshot. 

In our system, the user ratings are analogous to the ex-

pected duration of the knowledge cells. Matrix factorization 

is the state-of-the-art model used for collaborative filtering 

when dealing with user-item rating prediction. Tensor fac-

torization is therefore applied to the high dimensional pre-

diction problem[3]. We first discuss how to apply tensor 

factorization to predict knowledge cell’s expected duration. 
Formally, we denote the knowledge cube’s expected dura-

tion as a sparse three-dimensional tensor, denoted by 

        , where   is the number of hours in a day,   the 

number of gas stations, and   the number of days. Whenev-

er a knowledge cell      covers more than 2 detected REs, 

we regard      as being observed and use the REs’ (who fall 

in this cell) average duration to denote.  

  ,
τ

  ,τ

Hour

Day



 

We apply High Order Singular Value Decomposition 

(HOSVD)[4] to factorize the three-dimensional tensor into 

three matrices        ,       ,         and one 

central tensor            . The three matrices are com-

pact representations of the three attributes in subspaces, 

where          are dimensionality parameters to balance 

capability and generalization. The reconstructed value for 

cell      in the traditional tensor factorization[3] is given as 

                                                                 (1) 

We denote the tensor matrix multiplication as   , where 

the subscript denotes the direction, ie.        is 

     ∑         
 
   . The entries of the     row of matrix 

  is represented as    . 

Additionally, the single tensor factorization does not take 

full advantage of our data, since it only tries to find out the 

three attributes’ latent connections in subspaces through 

what we have already observed, it does not consider other 

factors would also influence the observations. Another 

important signal, gas stations’ contextual features, have not 

been considered. Actually, economists have found exoge-

nous and endogenous factors (i.e. location, nearby traffic 

flow, its size, etc.) have a great effect on gas stations’ com-

petitive condition[5]. Thus these factors could influence the 

time spent in gas stations (if a gas station is popular and 

always busy, it will typically have a longer waiting time). 

An  item’s contextual features are often modeled in collabo-

rative filtering to help reduce uncertainty issues[2]. Assume 

there are            features, where feature    has categor-

ical values         to refer to contextual conditions. By 

integrating the tensor factorization with the context fea-

tures[6], the reconstructed value for cell      is redefined as 

                                     ∑     
 
           (2) 

where     
 is the parameter modeling how contextual fea-

ture    with condition would have an affect on the recon-

structed value. This introduced contextual parameters guar-

antee the fact that stations with similar contextual features 

tend to have similar time spent (the part ∑     
 
    tends to 

be similar between similar stations). 

In order to generate expected duration predictions, the 

model parameters should be learned using the observable 

data. We define the learning procedure as an optimization 

problem: 

                                                            (3) 

where        is the loss function given as 

                     
 

|| ||
 

∑      (         )
 

                 (4) 

where   {   }      is a binary tensor with nonzero en-

tries      whenever      is observed. Equation (4) indicates 

we consider the reconstructed accuracy for observed cells. 

             is the regularization term to prevent over-

fitting, which is given as 
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      (5) 

Equation (3) guarantees our model could reconstruct the 

observations as accurately as possible and meanwhile main-

taining the capability of generalization. We use stochastic 

gradient descent[7] to solve this optimization problem. 

Contextual Features Extraction 

We consider three types of contextual features for gas sta-

tions, POIs, traffic flow and the size of the gas station.  

POI feature     We determine the POI feature according to 

a gas station’s nearby POIs. For each category   of the 

POIs, to discover its correlation to the gas station, we use 

the metrics defined by Jensen et al. in [8], which is given as 

                                
                 

  
                              (6) 

where        𝑎          refers to the frequency of co-

location for category   with the gas station, while    indi-

cates the individual frequency. The top 5 discovered POIs 

are {Service Zone At Motorway, Toll station, Factory, 

Vehicle Maintenance and Vehicle Service}. Aggregating 

nearby POIs, the POI feature of a gas station is given as  

                                     ∑                                   (7) 

where         indicates the frequency of the category   

standing by station   . 

Traffic feature      The traffic feature of a gas station de-

pends on its nearby traffic flow and competitive conditions.  

By aggregating all the trajectory data for each road, we can 

estimate this road’s traffic flow. We determine how a road’s 

traffic flow influences nearby gas stations based on the 

Huff Probability Model[9], which is given as 

                            𝑟          

 

    (    )

∑
 

    (    )
  

                  (8) 

Finally, the traffic feature of a gas station is given as 

                                    ∑    𝑟                            (9) 

Area feature   : The area feature of a gas station reflects 

its passenger capability and therefore it influences the time 

spent of this station. We manually labelled the gas stations’ 

areas in satellite maps. 

Ultimately, because context aware collaborative filtering 

needs categorical variables, we divided each feature into 

five categories separately and used them as the gas stations’ 

contextual features (the three features correspond to 

         separately). 

ARRIVAL RATE CALCULATION 

A knowledge cell’s expected duration indicates the time 

spent there. We also want to know how many vehicles have 

visited the cell, from which we can estimate the energy 

consumption. However, our dataset only covers about 

30,000 taxicabs, which is only a small portion of the total 

number of vehicles in this city. To solve the sparsity prob-

lem inside a gas station, we estimate the total arrival rate by 

modeling each gas station as a queue system.  



 

 

                   (a) Optimal                                          (b) Suboptimal 

Figure 8. Optimal w.r.t. Suboptimal inside a gas station 

Queue System 

A gas station diagram is shown in Figure 8(a). There are 

several queues and each queue could simultaneously serve 

several vehicles. To reduce the complexity of the system, 

we make some simplifications. First, we ignore transfers 

from one queue to another queue and assume each vehicle 

is fixed to a certain queue. This assumption guarantees each 

queue can be treated as an independent queue system. 

Moreover, we make the assumption that drivers will always 

choose the shortest queue to join. In Figure 8(b),    is 

much longer than    and we believe these drivers would 

not prefer to this suboptimal option, and such a case would 

not happen typically in reality. Therefore, this assumption 

ensures each queue will share the same waiting time on the 

whole.  

Assume there are   queues in the gas station. We know a 

knowledge cell corresponds to a gas station during a certain 

period. In this cell, the vehicles’ arrival flow for each queue 

   is described as a homogeneous Poisson process        , 

which indicates the number of vehicles in the period       
is a Poisson distribution with parameter     [10]. The unit 

of   is hours, the same as the period of the cell. Thus,    is 

the number of vehicles that had joined this queue in this cell, 

and the overall arrival rate of this cell is given as    

∑   
 
   . 

Calculation 

In the queue system, given customers’ arrival stochastic 

process and servers’ service time distribution, the equilibri-

um indicators such as waiting time, system time, etc., can 

be obtained[10]. We assume all refueling equipment is 

undifferentiated and its service time satisfies exponential 

distribution       . For the  th queue   , we assume it has 

   servers, so that this queue can be treated as a        

system. Its average arrival rate is    and its average service 

time is 
 

 
. The equilibrium indicators can be computed as 

follows[10]: 
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     (10)  

   is the equilibrium system time (including both the wait-

ing time and service time), which means at the equilibrium 

state, when a vehicle joins this queue, the length of time the 

vehicle is expected to stay. Since we believe drivers are 

rational, each queue’s equilibrium system time is the same 

and we use each cell’s predicted expected duration to repre-

sent   . We see that    only depends on   ,   and   . Giv-

en      and   , we solve the equation to get parameter   , 

where the equation can be solved by a numerical algorithm, 

such as the Newton Raphson method. Finally, this cell’s 

arrival rate   is gathered by each queue’s corresponding   . 

 
Figure 9. Layout of gas stations 

Parameters Determination 

We assume the shortest duration of all detected REs corre-

sponds to service time (there are some cases taxis can refuel 

directly). We select the top 1000 shortest durations and use 

their average value to estimate 
 

 
. We then need to deter-

mine   (number of queues) and    (number of servers in a 

queue) at each gas station, which is dependent on the gas 

station’s area, the arrangement of pumps and how many 

nozzles, as shown in Figure 9. A pump has several nozzles 

and nozzle plays the role of server. As mentioned before, 

we measure the stations’ lengths in satellite maps. We also 

go through the street view maps to observe the number of 

lanes   , the number of nozzles along a queue    
. We see 

a pump can serve both sides simultaneously and therefore   

is equal to     . It is a little tricky to determine   . The 

figure shows gas station    has 6 nozzles along a queue, 

however due to the length limitation, it can only serves 4 

vehicles simultaneously. The situation is contrary for   . 

Thus we set            
 
                     

                   
). In reality, 

the length of a normal automobile is about 4.5 meters, 

therefore we set it at 5 meters in view of the gap between 

vehicles. 

EXPERIMENT 

In this section, we first describe the datasets and then eval-

uate the performance of refueling event detection, the ex-

pected duration learning and the arrival rate calculation. 

Data Description 

Road Network We evaluated our methods using the road 

network of Beijing, which contains 106,579 road nodes and 

141,380 road segments. 

Taxi Trajectories The dataset covers the GPS trajectories 

from 2012, which were collected by about 30,000 taxicabs 

located in Beijing during the period of Oct and Nov. The 

details are presented in Table 1. 

POIs There are a total of 369,668 POIs with 602 kinds of 

categories. 1221 gas stations are located in this city, of 

which 689 gas stations are located in the areas covered by 

our road network while the others are not. In our system, 

we only concentrate on the former. 

Human-Labelled Dataset We employ four human labelled 

datasets for training and evaluation as follows:  

1) HLD-1 We manually labelled 250 refueling events by 

plotting the taxis’ raw trajectories on digital maps. 200 of 
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them were used to learn the parameters in candidate extrac-

tion and the remaining were used to validate the perfor-

mance. 

2) HLD-2 We manually labelled 2,000 candidates 

(True\False) by plotting the extracted candidates on digital 

maps.  

3) HLD-3 This dataset covers 33 trajectories collected by 

two authors, and each trajectory contains a recorded refuel-

ing event (arrival time, departure time, selected gas station), 

which is used to evaluate the performance of refueling 

events detection. 

4) HLD-4 To evaluate whether the expected duration learn-

ing component and the arrival rate calculation component 

work well in reality, we chose two gas stations on which to 

perform a field study. We recorded the vehicles’ arrival and 

departure times (there were many vehicles and we could not 

record all their information, so we just selectively recorded 

some cases) and also how many vehicles had refueled there 

in that period. This field study lasted from Oct.17 to Nov.15 

in 2012, ranging from 5:00pm to 6:00pm each time. Totally, 

14 days of records were collected (each station had 7 days’ 

worth of records).  

Raw 

Trajectories 

Total Taxi Count 32,476 

Duration 54 day 

Ave Distance By Day 226.76 km 

Ave Sampling Interval 1.02 minute 

Detected 

REs 

Total Count 638,645 

Average Temporal Interval 1.84 day 

Average Distance Interval 378.61 km 

Average Duration 10.53 minute 

Minimal Duration 3.74 minute 

Maximal Duration 42.72 minute 

Table 1. Trajectory dataset w.r.t. detected REs 

Experiments for Refueling Event Detection 

In this subsection, we evaluate the effectiveness of candi-

date extraction and the filtering model separately. 

Temporal Distance (minute) 
HLD-1 HLD-3 

Mean Std. Mean Std. 

|𝑟 𝐴    𝐴 | 1.07 0.41 0.52 0.27 

|𝑟        | 1.25 0.53 0.71 0.22 

|𝑟 𝐴    𝐴 |+|𝑟        | 2.32 0.46 1.23 0.24 

Table 2. Temporal distance between candidate and real RE 

Results of Candidate Extraction 

We used 200 instances in HLD-1 to learn the parameters 

and evaluated the performance both on the remaining 50 

instances in HLD-1 and the authors’ collected dataset HLD-

3. As shown in Table 2, we computed the temporal distance 

( 𝐴  corresponds to arrival time and    corresponds to 

departure time) between the labelled refueling time and the 

nearest candidates discovered. The performance was better 

in HLD-3 because the GPS devices used by the authors 

have a lower sampling interval (the sampling interval is 

about 5 second while the taxis’ GPS sampling interval is 

about 1minute). 

Results of Filtering 

The precision and recall w.r.t. features we used for the 

classifier are presented in Table 3. We applied a 10-fold 

cross validation method on dataset HLD-2. The perfor-

mance on HLD-3 was still better than HLD-2, because there 

was less noise in the candidates. Compared to private car 

owners, taxi drivers visit gas stations’ nearby POIs more 

frequently, such as vehicle repair shops or parking areas, 

which can generate pseudo candidates. What’s more, we 

found that temporal feature plays an important role in both 

datasets. In any case, the precision and recall were both 

higher than 90%, which is accurate enough for the next step. 

After applying the method to all the candidates, the descrip-

tion of detected refueling events is presented in Table 1. 

The average temporal interval shows that a taxi would al-

most drive to refuel about every two days, similar to the 

indication of the average distance interval. The average 

duration shows taxi drivers’ average time spent is 10.53 

minutes. The minimal duration implies a vehicle will take at 

least 3.74 minutes to finish refueling behavior, while the 

maximal duration indicates long waiting time. 

 Features Precision Recall 

HLD-2 

Non-Filtering 0.464 1.0 

Spatial 0.623 0.73 

Spatial+Temporal 0.891 0.862 

Spatial+Temporal+POIs 0.915 0.907 

HLD-3 

Non-Filtering 0.825 1.0 

Spatial 0.875 0.848 

Spatial+Temporal 0.941 0.969 

Spatial+Temporal+POIs 0.941 0.969 

Table 3. Results of filtering 

 D1 D2 D3 D4 D5 D6 D7 

𝒈𝟏 7 6 5 5 6 6 4 

𝒈𝟐 0 1 0 0 0 0 2 

Table 4. Number of detected REs  in each cell 

 
          (a) 𝒈𝟏                                                    (b) 𝒈𝟐 

Figure 10. Records’ duration w.r.t. expected duration 

Experiments for Expected Duration Learning 

There are a total number of 892,944 cells (24 hours   689 

gas stations   54 days) in the knowledge cube, and each 

cell incorporates 0.715 refueling events on average, which 

indicates amount of cells were lack of enough detected REs 

to estimate the expected duration. Table 4 details how many 

detected REs are covered during the period of our case 

study at these two gas stations. As we see,    is more at-

tractive to taxis and these cells incorporate enough detected 

REs, while taxis rarely patronize   . Therefore, for each 

cell in   , its expected duration is represented by the de-

tected REs’ average duration, and the results are shown in 

Figure 10(a) and compared with the results of the recorded 

vehicles’ duration in    in the field study. The standard 
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deviation of records is about 2 minutes, which shows that 

during an hour, the refueling time spent is almost stable. 

The results of Expected Duration Learning 

There are four baselines we used for the comparison: 

Average Filling: 1) AWH (Average within Hour). For a 

knowledge cell without sufficient detected REs, AWH finds 

all the other knowledge cells with the same hour timestamp, 

and uses their average expected durations to estimate this 

cell’s expected duration. 2) AWD (Average within Day).  

Similar to AWH, AWD uses the average value within the 

same day. 3) AWG (Average within Gas Station). Analo-

gous to the previous two methods, AWG uses the average 

value within the same gas station. 

SVM. It uses the contextual features of the gas stations, as 

well as the timestamp of the hour and the timestamp of the 

day as temporal features to train a supervised model using 

SVM regression. 

We selected the cells that incorporate more than 2 detected 

REs, and obtained 312,537 cells as observable data. We 

evaluated our model using 10-fold cross validation to the 

observable data and the results are presented in Table 5, 

where MeanErr signifies the average offset between the 

observable value and the predicted value for all testing data 

in the 10 fold cross validation. The unit of MeanErr is mi-

nute and similar to Std. The table shows that the contextual 

features of the gas stations play an important role in im-

proving the performance. The SVM model performed even 

worse than AWH, perhaps because the data tensor is quite 

sparse and a supervised model is not fit for this situation. 

The results indicate time spent error estimated in a cell 

could be limited within about 2 minutes on average. 

 MeanErr Std 

AAH 3.03 0.97 

AAD 3.74 1.29 

AAG 3.11 1.12 

SVM 3.18 1.26 

TF 

 

2.66 0.83 

TF +  𝑃  2.49 1.02 

TF +  𝑃     2.27 0.86 

TF +  𝑃      𝐴 1.98 0.84 

Table 5. Results of collaborative learning w.r.t. baselines 

Additionally, to evaluate the performance of collaborative 

filtering, we compared the predicted value with gas station 

  ’s records in Figure 10(b). It seems our model prefers to 

give a lower value. 

       
  𝑒          

   3 4 27.2 m 6 4 

   2 4 18.7 m 4 3 

Table 6. Description of two gas stations 

Experiments for Arrival Rate Calculation 

In this subsection, we discuss the experiment with the cal-

culation of the knowledge cells’ arrival rate. 

Table 6 details the records of two gas stations as well as 

their determined queue-model parameters. These two gas 

stations have an identical number of nozzles in each queue, 

denoted as    
. Similarly, each queue’s number of servers 

is denoted as   . 

For the service time parameter  , we selected the top 1000 

shortest durations among all the detected refueling events 

and finally obtained  ̃       minutes.  

We compared the following methods with the ground truth 

(the recorded total vehicles’ visits of two gas stations’ in 

each day):  

BRAD (Based on Recorded Average Duration). This meth-

od uses the selectively recorded vehicles’ average duration 

to estimate equilibrium system time   . 

BED (Based on Expected Duration). This method makes 

use of each cell’s expected duration to estimate    . 

The results are shown in Figure 11. The figure shows 

BRAD approximates to the ground truth, which illustrates 

the effectiveness of our queue system model. In addition, 

the figure indicates BRAD is more accurate than BED, 

because BED is dependent on the results of refueling event 

detection and expected duration learning, the errors accu-

mulated in these two parts exert an influence on arrival 

rate’s results. However, for both gas stations, we found that 

the gap between BED and the ground truth was acceptable. 

 
        (a)                                                       (b)    

Figure 11. Results of arrival rate 

URBAN REFUELING ANALYSIS 

We obtained taxis drivers’ (in our dataset) refueling events 

as well as two indicators for each knowledge cell, expected 

duration and arrival rate. This knowledge reveals taxis 

drivers’ refueling behavior and at the same time presents 

the whole city’s refueling behavior from spatial and tem-

poral prospective.  

Geographic View 

Figure 12(a) pictures how gas stations are scattered in this 

city. The gray lines depict the city’s road network. The 

figure shows that a large portion of stations are located 

between the fourth ring road and the fifth ring road, while 

fewer stations are distributed in the central part of Beijing.  

Figure 12(b) presents the spatial distribution of taxi drivers’ 

time spent while Figure 12(c) shows the distribution of their 

visits. Redder color refers to longer time spent or more 

visits. We see that most of the areas taxi drivers frequently 

visited were also endowed with longer time spent. On the 

other side, taxis drivers rarely patronized stations in area B, 

however long waiting time was still required, which implies 

that there were many other vehicles refueling thereby. Ac-
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cording to our survey, we found area B was near at the 

entrance of a major highway and thus many private vehicles 

refueled there. Taxi drivers frequently refueled on the 

southeast part of the fifth ring road, or several other small-

scale hotspots scattered in the south and north. Actually 

these hot areas are transportation hub and have a dominant 

advantage to attract taxis. For instance, the hot area A is 

near the highway directly to airport, where many taxis trav-

el and they will refuel at nearby gas stations with high 

probability. 

 
Figure 12. Refueling behavior's spatial distribution 

For the entire city’s refueling behavior, we aggregated the 

knowledge cells corresponding to the same gas station to-

gether, then used these cells’ average expected duration to 

denote this station’s time spent and used averaged arrival 

rate to denote this station’s visits. This city’s refueling time 

spent and visits are spatially distributed in Figure 12(d) and 

Figure 12(e). The figures shows that longer time spent tends 

to indicate more visits, however, some exceptions exist 

such as area C. We found there are many small-size stations 

in that area, the fact drivers had to wait longer is mainly due 

to these stations’ limited capacity. Compared with Figure 

12(a), we found that although a large amount of stations 

have been built in area B, the long time spent suggests new 

stations still should be planned nearby. 

 
       (a) Taxis’ time spent                            (b) taxis’ visits 

 
             (c) Urban’s time spent                          (d) Urban’s visits 

Figure 13. Refueling behavior's temporal distribution 

 

Temporal View 

We aggregated cells corresponding to the same timestamp 

of the hour together and denote this city’s time spent and 

visits using the average value. Additionally, weekdays and 

weekends were separated. Figure 13(a) and Figure 13(c) 

separately show how taxi drivers’ and the city’s refueling 

time varied during a day. During the rush hours (7am, 8am, 

6pm, 7pm), many private vehicles came to refuel, and more 

waiting time was needed. On the other side, the figures 

show in weekends, a little less waiting time was needed 

than weekdays at about 7am and 8am, while a little more 

time was needed at about 9am and 10am. This phenomenon 

accords with office workers’ habits, they often choose to 

refuel on the way to work in the morning and they do not 

need to week up early on weekends, and therefore there 

were fewer customers early in the weekends’ morning. 

Figure 13(b) shows taxi drivers’ refueling climax was at 

about 10am, which indicates they chose to stagger the busy 

period at about 8:00am. The two peaks in Figure 13(d) 

indicates higher petrol consumption during these periods 

and they also warns people to avoid refueling at that time. 

DISCUSSION 

We discuss the generalization of our methods as well as the 

limitation of the system in this section.  

Our work is currently only dependent on taxis’ trajectories, 

however, other vehicles can be seamlessly incorporated into 

this system. During the refueling detection phase, as shown 

in the experiments, we see that the result for private cars 

even outperform that for taxis, because taxi drivers tend to 

generate more other behavior nearby gas stations. When we 

obtain the two indicators in the cell, we actually only rely 

on the detected REs’ time spent, which is the result of refu-

eling event detection and is independent on whether this 

vehicle is a taxi or not. Our taxi trajectories can be regarded 

as a sampling of the whole trajectories generated by all 

vehicles in this city. 

On the other side, taxi drivers’ might care more about price, 

which will lead them to some special gas stations and ag-

gravate the sparsity issues of other stations in our current 

system, the potential different refueling regularity between 

taxi drivers and normal drivers might degrade the accuracy 

in practice. We also use taxis’ refueling time solely to esti-

mate the parameter of refueling time distribution, which 

might bring some bias (some other vehicles’ refueling time 

will be usually larger than taxis, such as trucks). In addi-

tion, the drivers’ behavior in the gas stations’ queue system 

is ideally assumed and the reality is usually more complex 

than we can capture.  For instance, when the lane in a gas 

station is narrow, a car who has finished refueling might be 

blocked by the car in front, this special case is difficult 

incorporated into our system. The contextual features here 

is also confined and we intend to take more factors into 

consideration in future work, such as price, brand, etc.. 
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RELATED WORK 

Customer Refueling Behavior Analysis  

The refueling issues mainly focus on understanding cus-

tomers’ refueling regularity to help make decision. Kelly et 

al. [11] interviewed 259 drivers in southern California, they 

analyzed these interviewers’ refueling behavior, the results 

were used to help to select appropriate optimal facility 

location models.  Li et al. [12] used a smart phone applica-

tion to build a driving behavior monitoring and analysis 

system especially for hybrid vehicles. Compared with their 

interesting and influential work which primarily aimed at 

individuals, our system steps further on macro-scale analy-

sis through large-scale datasets. 

Gas Station Analysis and Planning 

Gas stations problems mostly focuses on facility location 

problem or economic factors. For instance, Chan et al. [13] 

proposed an econometric model to analyze both the geo-

graphic locations of gasoline retailers in Singapore, as well 

as price competition between these retailers. [5,14] exam-

ined how product design, prices and locational characteris-

tics influenced price competition in retail gasoline markets. 

These works concentrated on analyzing stations’ self-

characteristics, while our work tries to discover stations’ 

petrol consumption through passive human sensing, in a 

more intuitive way to understand stations’ operating status.  

Urban Computing 

With the popularity of diverse sensors, exploring the rule of 

urban is a burgeoning and attractive area in computer sci-

ence. The term “Urban Computing”, has emerged to con-

centrates on the integration of computing, sensing, and 

actuation technologies into everyday urban settings and 

lifestyles. Recent years, amount of interesting work based 

on spatial temporal analysis, have been proposed to explore 

the status of the city[15,16]. Leontiadis et al. [17] per-

formed a case study that evaluated whether a decentralized 

intelligent transportation system can help drivers to mini-

mize trip times. In [18], a strategy is provided to find effi-

cient driving directions based on taxis drivers’ knowledge. 

Yuan et al. [19] presents a recommender system for both 

taxi drivers and passengers based on passengers’ mobility 

patterns and taxis’ drivers’ picking-up/dropping-off behav-

ior. Our work concentrates on catching a glimpse of urban 

transportation’s energy consumption, which is a closely 

concerned topic covered in urban computing area. 

CONCLUSION 

In this paper, we propose a framework for discovering ur-

ban refueling behavior using taxis trajectories, POIs and 

road network. Depending on taxis’ detected refueling be-

havior and the estimated result of gas stations, we analyze 

urban refueling behavior from both the spatial and temporal 

perspectives. The discovered refueling regularity could 

benefit a variety of application. In the mindset of customer, 

the gas stations’ wait time could be used to recommend the 

least time-consumption choice. For governmental depart-

ment, they could rethink whether current layout of stations 

is reasonable, whether some stations are excessively dense 

in an area while other areas might lack of this infrastruc-

ture. In the business perspective, the investors could ana-

lyze drivers’ refueling behavior to help choose location that 

is most promising to attract customers. We evaluate our 

system with large scale dataset, including two-month taxis 

trajectories in 2012, together with POIs and road network in 

Beijing, as well as several human collected datasets.  

We will further study how to give real-time inference of gas 

station status. At the same time, we will collect more gas 

stations’ detail information (such as price, payment type, 

brand) to enhance the performance of collaborative filtering 

and queue system. 
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