
Efficient and Effective Express via Contextual Cooperative
Reinforcement Learning

Yexin Li 1, Yu Zheng 2, Qiang Yang 1
1 Hong Kong University of Science and Technology, Hong Kong

2 JD Intelligent Cities Business Unit, Beijing, China
yliby@connect.ust.hk, msyuzheng@outlook.com, qyang@cse.ust.hk

ABSTRACT
Express systems are widely deployed in many major cities.
Couriers in an express system load parcels at transit station and
deliver them to customers. Meanwhile, they also try to serve the
pick-up requests which come stochastically in real time during
the delivery process. Having brought much convenience and
promoted the development of e-commerce, express systems face
challenges on courier management to complete the massive
number of tasks per day. Considering this problem, we propose a
reinforcement learning based framework to learn a courier
management policy. Firstly, we divide the city into independent
regions, in each of which a constant number of couriers deliver
parcels and serve requests cooperatively. Secondly, we propose a
soft-label clustering algorithm named Balanced Delivery-Service
Burden (BDSB) to dispatch parcels to couriers in each region.
BDSB guarantees that each courier has almost even delivery and
expected request-service burden when departing from transit
station, giving a reasonable initialization for online management
later. As pick-up requests come in real time, a Contextual
Cooperative Reinforcement Learning (CCRL) model is proposed
to guide where should each courier deliver and serve in each
short period. Being formulated in a multi-agent way, CCRL
focuses on the cooperation among couriers while also considering
the system context. Experiments on real-world data from Beijing
are conducted to confirm the outperformance of our model.

CCS CONCEPTS
• Information systems → Spatio-temporal systems

KEYWORDS
Express system, Constrained Clustering, Reinforcement Learning

ACM Reference format :
Yexin Li, Yu Zheng, Qiang Yang. 2019. Efficient and Effective Express via
Contextual Cooperative Reinforcement Learning. In The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD '19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08…$15.00
https://doi.org/10.1145/3292500.3330968

(KDD ’19), August 4-8, 2019, Anchorage, AK, USA, 10 pages. DOI:
https://doi.org/10.1145/3292500.3330968

1. INTRODUCTION

Express systems are widely deployed in many major cities,
providing much convenience and promoting the development of
e-commerce. Fig. 1 A) shows how couriers in an express system
work. A courier 𝑐𝑤 loads some parcels at the transit station 𝑠𝑣
and then delivers them, e.g. 𝑑1 and 𝑑2, to their destinations one
by one via a small delivery van. Meanwhile, there may come
some pick-up requests from end users during the delivery
process, e.g. 𝑟1 , each of which is associated with a service
location; 𝑐𝑤 also tries to go to these places to serve them when
delivering. Specially, a pick-up request should be served in a
short waiting time, e.g. one hour, while the duration for a parcel
to be delivered to its customer can be longer, e.g. several hours or
even one day, as it already spent days before the parcel arrived at
its transit station. Couriers are required to depart from and return
to transit station by specific time [4], to fit the schedule of trucks
which send and pick packages to or from stations regularly. We
name this specific time interval as an episode.

Fig. 1. An express system

Currently, operators try to complete the massive number of
tasks by hiring more couriers. However, according to historical
data, 70 percent of them complete no more than 20 tasks per day,
leading to low revenue and labor waste. Besides, immoderate
recruitment cannot solve the efficiency issue in system operation
fundamentally. In this paper, we try to address this problem from
another perspective, i.e. given a portion of the currently hired
couriers, we intelligently manage them to work effectively and
cooperatively, thus to complete most tasks in each episode.

Courier management in each episode includes two steps, i.e.
how to dispatch parcels to each courier at transit station; how to
determine where each courier should deliver and serve in each
short period. Fig. 1 B) gives an example, where the city is
partitioned into uniform grids. At the beginning of each period 𝑡,
each courier 𝑐𝑤 determines which surrounding grid to go or just

d1

d2

r1

sv

cw

A) B)

mailto:yliby@connect.ust.hk
mailto:msyuzheng@outlook.com
mailto:Permissions@acm.org
https://doi.org/10.1145/3292500.3330968
https://doi.org/10.1145/3292500.3330968

stay at the current one; afterwards, 𝑐𝑤 delivers parcels and serves
requests only in the selected grid during 𝑡 until the next period
𝑡 + 1, when all couriers choose their next grids again. As we can
see, there are nine actions to select from for each courier at each
period, i.e. {1, 2, … , 8} for the eight surrounding grids and 0 for the
current one. By these two steps, we want to maximize the total
number of completed tasks in the episode. Challenges of this
problem can be summarized into three-fold as follows.

Fig. 2. Parcel allocation at transit station

Urban express systems are large and dynamic. According
to historical express data in Beijing, there are tens of thousands of
parcels to be delivered every day, so are the pick-up requests. To
complete these tasks, hundreds or even thousands of couriers are
needed. How to manage this large number of couriers to work
cooperatively is important but nontrivial. Besides, pick-up
requests come stochastically in real time during the delivery
process, making the systems very dynamic.

Fig. 3. Online delivery-service process

Being impacted by multiple factors, parcel allocation to
couriers at transit station is nontrivial. Firstly, expected pick-
up requests that may come later in the episode should be
considered as they impact the work burden of each courier. Fig. 2
gives an example; A) shows the hot grids of requests, where a
grid with a number means how many requests are expected to be
located there in the future; B) shows the parcel allocation to
courier 𝑐1 where a grid with a number means how many parcels
𝑐1 has to deliver there. As we can see, 𝑐1 gets 11 parcels; as her
delivery grids are very possible to have about 10 requests later,
her delivery-service burden is 11 + 10 = 21. Secondly, it is better
that all couriers have similar work burdens when departing from
transit station, thus to ensure almost even revenues, reduce labor
waste and avoid overwork. Fig. 2 C) shows the parcel allocation
to 𝑐2, whose delivery-service burden is 22 parcels without any
expected request in her delivery grids, thus is almost the same
with that of 𝑐1. Lastly, we want the parcels allocated to each
courier have destinations in neighboring grids, e.g. the parcel
allocation to 𝑐2 is not good as 𝑐2 cannot arrive at grid 𝑔1 from any
of her other delivery grids without visiting a third one, where she
has no parcel to deliver nor expected request to serve.

Online delivery-service process is too complicated to
optimize for a long time. After loading parcels and departing
from transit station, each courier chooses where to go and work
at the beginning of each period. As shown in Fig. 3 A), each
action of a courier has long-term influence, e.g. if courier 𝑐2 goes
to 𝑔4 instead of 𝑔3, she can complete the same number of tasks in
the current period, i.e. 1 service instead of 1 delivery; however, in
the next period, she cannot arrive at 𝑔2 for the two tasks;
therefore, we want to optimize a sequence of actions thus to
maximize the total number of completed tasks in a long time.
Even for a single courier, optimization cannot handle the large
solution space, i.e. 9𝑇 where 𝑇 is the number of periods in the
episode. Besides, there are random factors in system operation,
e.g. stochastically coming requests and noise, which compromise
the accuracy of optimization model. Cooperation among couriers
should also be considered, e.g. 𝑐1 and 𝑐2 cannot both go to grid 𝑔4
for the 1 request. Furthermore, context of the system is another
important constraint, e.g. 𝑐1 is not suggested to go to 𝑔1 if she
does not have any parcel to deliver there nor 𝑔1 is not expected to
have any pick-up request later.

Our contributions in this paper are four-fold as follows.
 By Connected Component Detection, we partition the entire

city into independent regions and respectively focus on each
of them, to reduce problem complexity.

 A soft-label clustering algorithm named Balanced Delivery-
Service Burden (BDSB) is proposed to allocate parcels to each
courier at transit station.

 A Contextual Cooperative Reinforcement Learning (CCRL)
model is proposed to guide where should each courier go at
the beginning of each period. Being formulated in a multi-
agent way, CCRL tries to guarantee the cooperation among
couriers. Besides, system context is considered by pruning.

 Experiments on real-world data from Beijing are conducted to
confirm the outperformance of our model.

2. OVERVIEW

Some notations and terminologies used in our paper are
defined in this section; then we overview the framework.

Tab. 1. Notations

𝑠𝑤

A transit station in the system

𝑔𝑤 A grid in the city

𝑐𝑤 A courier in the system

𝑑𝑤 / 𝑟𝑤 A delivery or request task

𝑐𝑟𝑤 Coverage of transit station 𝑠𝑤

𝐿𝑤𝑡 Grid where courier 𝑐𝑤 is in period 𝑡

2.1 Preliminary

Partition the city into uniform grids to obtain an 𝐼 × 𝐽 grid
map as Fig. 3 B). Each grid is hundreds of meters wide and long,
thus not large for a delivery van.

Def. 1. Delivery task. A delivery task is a three-entry tuple
𝑑𝑤 = (𝑑𝑤 . 𝑠, 𝑑𝑤 . 𝑔, 𝑑𝑤 . 𝜏) describing that a parcel arrived at
transit station 𝑑𝑤 . 𝑠 was delivered to grid 𝑑𝑤 . 𝑔 at time 𝑑𝑤 . 𝜏.

4

6

2

5

1 3

7

4

5

2

4

A) Request B) c1 C) c2g1

g2 g3

g4c1

c2

g1

A) B)

Def. 2. Service task. A service task is a two-entry tuple 𝑟𝑤 =

(𝑟𝑤. 𝑔, 𝑟𝑤. 𝜏) meaning that a pick-up request was generated at
timestamp 𝑟𝑤. 𝜏 with a service location in grid 𝑟𝑤. 𝑔; the waiting
time of each request cannot be longer than a threshold 𝜗.

Def. 3. Coverage. Coverage area of a transit station 𝑠𝑤 is
made up by grids to which the parcels arrived at 𝑠𝑤 are delivered.
It is denoted as 𝑐𝑟𝑤 and can be obtained by Eq. 1.

𝑐𝑟𝑤 = {𝑑𝑘 . 𝑔|𝑑𝑘 . 𝑠 = 𝑠𝑤, 𝑘 = 1, 2, … } (1)

Coverage frequency of 𝑠𝑤 is a vector 𝑐𝑓𝑤 ∈ 𝑅𝐼×𝐽, where 𝐼 × 𝐽 is
the number of grids in the city; each entry of 𝑐𝑓𝑤 is determined
by Eq. 2 and 3, i.e. how many parcels arrived at 𝑠𝑤 were delivered
to each grid. By normalizing 𝑐𝑓𝑤 , we obtain the coverage
distribution of station 𝑠𝑤 and denote it as 𝑐𝑑𝑤 ∈ 𝑅𝐼×𝐽.

(𝑐𝑓𝑤)𝑣 = |𝐹𝑤𝑣|, 𝑣 = 1, 2, … , 𝐼 × 𝐽 (2)

𝐹𝑤𝑣 = {𝑑𝑘|𝑑𝑘 . 𝑠 = 𝑠𝑤, 𝑑𝑘 . 𝑔 = 𝑔𝑣 , 𝑘 = 1, 2, … } (3)

Problem Statement. Given historical delivery and service
tasks per day, we try to learn an efficient courier management
policy. It has the following two properties; firstly, instead of
largely depending on hiring more couriers, it only adopts a
portion of the currently hired ones; secondly, it maximizes the
total number of completed tasks in each episode. Our policy has
two steps, i.e. allocate parcels to each courier at transit station;
guide where should each courier deliver and serve in each period.
In our work, an episode is a specific time interval in the day, e.g.
8:00am – 1:00pm, 2:00pm – 7:00pm, or even the whole day; each
period is set as 20 minutes.

2.2 Model Framework

Our model includes three components, i.e. city division into
independent regions, parcel allocation and online courier
management inner each of them.

City division based on connected component detection.
Considering the large number of parcels and requests per day, as
well as the hundreds or even thousands of couriers in a system,
we firstly divide the city into independent regions, i.e. partition
transit stations into groups 𝐺1, 𝐺2, …, 𝐺𝑀 such that their coverage
areas do not overlap; here the coverage area of a group of stations
𝐺𝑤 is as Eq. 4. Consequently, the city is divided into 𝑀
independent regions 𝐶1, 𝐶2, …, 𝐶𝑀 each of which has their own
set of transit stations and couriers. Afterwards, we respectively
focus on each of them without considering the others outside.

𝐶𝑤 = ⋃ 𝑐𝑟𝑘𝑠𝑘∈𝐺𝑤
 (4)

BDSB for parcel allocation at transit station. Before
delivering parcels, couriers should firstly load them at transit
station. In each specific region, BDSB determines which parcels
are dispatched as a batch to a courier. In this step, multiple
factors are considered, i.e. parcel locations, expected requests in
the future, delivery-service burden, and the number of couriers in
the region. As a soft-label clustering algorithm, BDSB gives labels
to each grid, then parcels are dispatched based on labels of the
grids where they locate, i.e. those located in grids of the same
cluster are dispatched together to one courier; parcels in grids
with soft labels are dispatched proportionally.

CCRL to manage couriers in real time. Online courier
management is to guide where should each courier go and work
in each period. Considering the random factors in practical
process, i.e. stochastically coming requests and noise, generating
a sequence of actions in advance for couriers to conduct one by
one is not reasonable. Motivated by reinforcement learning
theory, we propose a model to give actions to each courier in real
time based on their real-time observations. To reduce the action
space, we formulate our model in a multi-agent way, i.e. at each
period, each courier gets their action one by one, considering
those actions that some of their colleagues before them already
got. Furthermore, we consider system context by action pruning,
making our model more reasonable and efficient.

3. METHODOLOGY

Methodologies of each component are elaborated in this
section. Real-world data from Beijing are adopted for examples.

3.1 Connected Component based City Division

City division is necessary to reduce the problem complexity.
Besides, there is no need to consider the entire city at the same
time, as couriers in two areas far away are impossible to interact.

Def. 4. Independence. Stations 𝑠𝑤 and 𝑠𝑣 are independent if
the distance of their coverage distributions is large, i.e.
|𝑐𝑑𝑤 − 𝑐𝑑𝑣| > 2 − 𝜏, where 𝜏 ∈ (0, 2] is a parameter.

Station independence means that two stations rarely have
overlap between their coverage areas, thus there is no interaction
among their couriers. According to historical data, majority of the
transit stations are not independent from each other, which is
caused by the location of warehouses in the system and very hard
to change. Ignoring the overlap and respectively focusing on each
station is not efficient as couriers can cooperate when they work
in overlapped areas. Motivated by this observation, we partition
transit stations in the city into groups whose coverage areas
rarely overlap; then a constant number of couriers can work
cooperatively for each of them without considering the others.
Station partition is very intuitive that based on Connected
Component Detection [18] as follows.
 For each station 𝑠𝑤, we estimate its coverage distribution 𝑐𝑑𝑤.
 If two stations 𝑠𝑤 and 𝑠𝑣 are not independent, we connect

them by an edge. Consequently, a graph as Fig. 5 A) is
obtained, where each node means a transit station.

 Detect the connected components [18] in the graph. Stations
in the same component are partitioned into one group.

Obtaining station groups 𝐺1, 𝐺2, …, 𝐺𝑀, we can divide the city
into independent regions 𝐶1, 𝐶2, …, 𝐶𝑀 by Eq. 4. Some regions in
Beijing are shown in Fig. 4 A), where each color denotes a region
and the blank grids mean that they do not belong to these regions,
i.e. they are in other regions, or there is no task in them because
of some geographical reasons, e.g. it is a lake there. Afterwards,
we can focus on each region respectively. If a single region is too
small, we can combine multiple ones to obtain a hyper region and
require couriers in them to cooperate, thus further improve the
efficiency. Combining regions is reasonable according to Lemma

1, which is intuitive. In the following work, we focus on the
hyper region made up by the six independent ones in Fig. 4 A).

Fig. 4. Regions and task stability

Lemma 1. If 𝐶1 ⊥ 𝐶2 ⊥ ⋯ ⊥ 𝐶𝑀 , then ⋃ 𝐶𝑘𝑘∈𝑀1
⊥ ⋃ 𝐶𝑘𝑘∈𝑀2

when 𝑀1 , 𝑀2 ⊂ {1, 2, … , 𝑀} and 𝑀1⋂ 𝑀2 = ∅ ; here ⊥ means
being independent with each other.

Each region has a set of stations. However, we consider their
parcels together when allocating them to couriers. We can do this
because each region is not too large, thus couriers can load
parcels assigned to them from several stations in it quickly before
departing to deliver. Compared with the length of an episode, e.g.
half day or even one day, this time is very trivial.

3.2 BDSB for Parcel Allocation

In each region, how to dispatch parcels to couriers depends on
multiple factors. Firstly, we need to consider the expected
requests that may come later. Request expectation can be easily
learned from historical data. As we observe that the number of
requests is comparatively smooth in the day without any sudden
peak nor collapse, we assume an equal request expectation in
each period of the episode for simplicity. Secondly, it is better
that the parcels dispatched to one courier locate in neighboring
grids which is defined as Def. 5; this is to ensure efficiency in
online management later. Lastly, we try to ensure that all couriers
have almost even delivery-service burdens, thus to guarantee fair
revenues, reduce labor waste and avoid overwork.

Def. 5. Neighboring grids. Given a set of grids 𝐴, if from any
grid 𝑔𝑤 ∈ 𝐴, a courier can go to another one 𝑔𝑣 ∈ 𝐴, without
visiting a third grid 𝑔𝑘 that 𝑔𝑘 ∉ 𝐴 and it is not expected to have
any request later, we define this set of grids as neighboring ones.

BDSB is proposed for parcel allocation. Main idea of BDSB is
to softly cluster grids in the region into groups, then parcels in
the grids of a same cluster are dispatched as a batch to one
courier. Although BDSB can be conducted each time parcel
allocation is required to obtain a specific result for the current
episode, we adopt historical averages over episode to run it once,
thus obtain a common clustering result shared by days for
simplicity. We can do this for the following reasons. Firstly,
according to historical data, the number and distribution of
parcels and requests are stable from day to day. Fig. 4 B) shows
the total number of parcels per day in the hyper region in Fig. 4
A), confirming our claim. Therefore, historical averages are
representative enough. Besides, this step only aims to give a good
initialization for the next step instead of a final optimal strategy,
thus some turbulence beyond the averages can be ignored. BDSB

has two iterative components, i.e. Primary Neighbor Clustering
and Balance Improvement Clustering. Assuming there are 𝑛
couriers in the region, i.e. the grids in it need to be clustered into
𝑛 groups, we elaborate the two components of BDSB one by one.

Primary Neighbor Clustering (PNC). PNC simultaneously
considers the neighboring property and delivery-service burden,
giving a primary clustering result. It has the following six steps.
 Denoting the average number of parcels and requests at each

grid 𝑔𝑖 in the episode as 𝑝𝑖 and 𝑞𝑖 respectively, then we can
estimate the work burden of each grid as 𝑏𝑖 = 𝑝𝑖 + 𝑞𝑖 .

 Randomly select 𝑛 grids in the region, each of which is
considered as an initial cluster.

 Select the cluster 𝐴𝑘 whose total work burden is minimum
and the cluster 𝐴𝑣 whose total burden is maximum.

 For 𝐴𝑘, denoting the grids surrounding it and not in any
cluster yet as Λ𝑘 , then select a grid 𝑔𝑤 ∈ Λ𝑘 by Eq. 5.

arg𝑔𝑤∈Λ𝑘
min |𝑏𝑤 + ∑ 𝑏𝑗𝑔𝑗∈𝐴𝑘

− ∑ 𝑏𝑗𝑔𝑗∈𝐴𝑣
| (5)

 If 𝑔𝑤 exists, update 𝐴𝑘 to 𝐴𝑘 = 𝐴𝑘⋃𝑔𝑤; otherwise, replace 𝐴𝑘
by the cluster with less minimum burden and go to step 4.

 Iterate step 3-5 until that there is no grid not in any cluster.

Fig. 5. Connected components and PNC algorithm

A running example is given in Fig. 5 to illustrate the above
algorithm. Fig. 5 B) shows the work burden of each gird, where
the ones without a number mean that they are not in this region.
Assume that there are three couriers, thus the grids are to be
clustered into three groups. Randomly select three grids to be the
initial clusters as shown in Fig. 5 B), where each color means a
cluster, i.e. 𝐴1 − yellow, 𝐴2 − blue, 𝐴3 − green. Select the cluster
with minimum and maximum total burden, i.e. 𝐴1 and 𝐴3. For 𝐴1,
its surrounding grid in the region which does not belong to any
cluster yet and satisfies Eq. 5 is that with a burden of 12,
therefore, we update 𝐴1 to the one shown in Fig. 5 C). Repeat this
step until Fig. 5 D); currently, the clusters with minimum and
maximum burden are 𝐴1 and 𝐴3, however, as we can see, 𝐴1 has
no more surrounding grid in the region that is not in any cluster,
thus we consider cluster 𝐴2 which has a less minimum burden
than 𝐴1; the grid with a burden of 7 satisfies the constraints in
step 4, therefore, we update 𝐴2 to the one shown in Fig. 5 E).
Now, as neither 𝐴1 nor 𝐴2 has any surrounding grid that is not in
any cluster, they cannot be updated. Consequently, the grid with
a burden of 4 is clustered to 𝐴3 as in Fig. 5 F).

12 10

21

7 80 4

12 10

21

7 80 4

12 10

21

7 80 4

12 10

21

7 80 4

B) C)

D) E)

12 10

21

7 80 4

F)

A) Graph

8 8

8 8 8

PNC gives a hard label to each grid, i.e. each grid belongs to
only one cluster. However, as there are grids whose burdens are
extremely large, hard labels cannot guarantee that all clusters
have almost even work burdens, e.g. the burden of each cluster in
Fig. 5 F) is 22, 36 and 84; therefore BIC is proposed to improve
the hard-label clustering result to a soft-label one.

Balance Improvement Clustering (BIC). BIC keeps
reallocating a portion of work burden from the cluster whose
burden is too large to the one whose burden is small; to each grid,
based on the percent its work burden is shared by each cluster,
we generate soft labels for it. BIC has three steps.
 Select the cluster with maximum work burden and denote it as

𝐴𝑣; then select cluster 𝐴𝑘 whose work burden is minimum
among the surrounding clusters of 𝐴𝑣.

 Allocate a portion of work burden 𝑎𝑣𝑘 from cluster 𝐴𝑣 to 𝐴𝑘
while not violating their neighboring property; here 𝑎𝑣𝑘 is
determined by Eq. 6.

𝑎𝑣𝑘 ≤
1

2
× | ∑ 𝑏𝑗𝑔𝑗∈𝐴𝑣

− ∑ 𝑏𝑗𝑔𝑗∈𝐴𝑘
| (6)

 Iterate step 1 − 2 for a given number of times. Generate soft
labels for each grid by normalizing its burden in each cluster.

A running example is given in Fig. 6 to elaborate BIC. After
obtaining Fig. 5 F), we select the cluster whose burden is
maximum, i.e. 𝐴3 with a burden of 84, and its surrounding cluster
whose burden is the minimum, i.e. 𝐴2 with a burden of 36.

According to Eq. 6, we allocate a burden of
1

2
× (84 − 36) = 24

from 𝐴3 to 𝐴2 as shown in Fig. 6 A). In the second iteration, we
select 𝐴2 as the cluster with maximum burden and 𝐴1 from its
surrounding ones whose burden is minimum; by Eq. 6, a burden
of 19 is allocated from 𝐴2 to 𝐴1 as shown in Fig. 6 B). Assume
that only two iterations are required, we generate labels for each
grid as Fig. C). BDSB ensures a good result according to Lemma 2.

Fig. 6. BIC algorithm

Lemma 2. After enough iterations, BDSB can guarantee that
all clusters have equal delivery-service burdens.

When allocating parcels, those located in grids of the same
cluster are dispatched together to one courier; parcels in grids
with soft labels are dispatched proportionally. Remind that even-
burden is only a constraint when dispatching parcels, but not
required any more in the following step; there are two reasons
for this setting. Firstly, our main target is to complete more tasks.
Secondly, we constrain the working area of each courier to their
corresponding clusters, thus the unbalance will not be very
severe, i.e. we can still ensure almost fair revenues, reduce labor
waste and avoid overwork.

3.3 CCRL for Online Courier Management

After loading parcels at transit station, couriers choose where
to go and work in each period. Considering the random factors in

practical operation, and the target to maximize the total number
of completed tasks in a long time, we propose a reinforcement
learning based model to guide them in real time.

3.3.1 Multi-Agent Reinforcement Learning

A RL model has six components, i.e. (𝕊, 𝐴, 𝑇𝑅, 𝑅, 𝜋, 𝛾), where
𝕊 is the state set; 𝐴 means the action space; 𝑇𝑅 describes the
transition probability that an agent took action 𝑎𝑡 under state 𝑆𝑡
will transit to the next one 𝑆𝑡+1, i.e. 𝕊 × 𝐴 × 𝕊 → 𝑇𝑅; 𝑅 stands
for the immediate reward received after taking an action under a
state and transiting to the next one, i.e. 𝕊 × 𝐴 × 𝕊 → 𝑅; 𝜋 is a
policy 𝕊 × 𝐴 → 𝜋, which describes the probability to take an
action under a state; 𝛾 is a discount parameter. At each period 𝑡,
an agent under state 𝑆𝑡 takes an action 𝑎𝑡 according to policy 𝜋,
then transits to the next state 𝑆𝑡+1 , receiving an immediate
reward 𝑟𝑡. Each action has a long-term return as Eq. 7 where 𝑇 is
the last period in the episode.

𝑈𝑡 = 𝑟𝑡 + 𝛾 × 𝑟𝑡+1 + 𝛾2 × 𝑟𝑡+2 + ⋯ + 𝛾𝑇−𝑡𝑟𝑇 (7)

Eq. 8 defines the optimal long-term value function, which
describes the maximum expected long-term return of each action
𝑎𝑡 under each state 𝑆𝑡, by following any policy after 𝑡. After
obtaining this function, the corresponding optimal policy of the
RL can be easily inferred by Eq. 9, i.e. always take the action with
maximum optimal long-term value under the current state.

𝑄(𝑆𝑡, 𝑎𝑡) = max𝜋 𝐸𝜋[𝑈𝑡|𝑆𝑡, 𝑎𝑡, 𝜋] (8)

𝑎𝑡
∗ = arg𝑎 max 𝑄(𝑆𝑡, 𝑎) (9)

Bellman equation as Eq. 10 is usually adopted to estimate the
optimal long-term value function via an iterative approach.

𝑄(𝑆𝑡, 𝑎𝑡) = 𝐸𝑆𝑡+1
[𝑟𝑡 + 𝛾 × max𝑎 𝑄(𝑆𝑡+1, 𝑎)|𝑆𝑡 , 𝑎𝑡] (10)

As there are multiple couriers working in each region
simultaneously, our model CCRL based on RL theory is
formulated in a multi-agent way, i.e. couriers in the same region
share a common model; therefore, at each period, these couriers
get their actions one by one with a common policy based on their
own specific states. Multi-agent setting can largely reduce the
action space, i.e. from 9𝑛 to 9, where 𝑛 is the number of couriers
in the region. However, while achieving high efficiency, how to
make these agents interact cooperatively is a nontrivial challenge.
Our model deals with the cooperation issue among couriers by
designing the state in a novel way. Besides, region context is
considered by pruning rules, further improving model efficiency.

3.3.2 Contextual Cooperative Reinforcement Learning

At each period 𝑡, we generate actions for couriers in the same
region sequentially, i.e. instead of respectively focusing on each
of them and generating an action without considering the others,
we firstly consider 𝑐1 and generate an action for her; based on
this assigned action to 𝑐1, we generate an action for 𝑐2; then there
comes the action for 𝑐3 which is dependent on those of 𝑐1 and 𝑐2;
repeat these steps until all the 𝑛 couriers in this region have
obtained their actions in 𝑡 ; then they conduct their actions
simultaneously and transit to their next states in period 𝑡 + 1.
Generating actions in a sequence instead of a parallel way aims at

12 10

21

7 4

A)

56

24

12 10

7 4

B)

56

24

19

2

1 1

1 1

C)

0.7

0.3

0.9

0.1

8 8 1

better guaranteeing the cooperation among couriers. How to
design each component in CCRL is as follows.

Agent. Couriers in one region are homogeneous agents; they
choose where to go and work in each period by a common policy.

Action. An action 𝑎𝑡 ∈ 𝑅9 describes which grid the courier
chooses to go at the beginning of period 𝑡.

Fig 7. State designation in CCRL

State. At each period 𝑡, a courier 𝑐𝑤 has a state consisting of
two components as 𝑆𝑤𝑡 = (𝑆𝑤𝑡

1 , 𝑆𝑤𝑡
2), where 𝑆𝑤𝑡

1 means the global
state while 𝑆𝑤𝑡

2 denotes the local one. Global state 𝑆𝑤𝑡
1 =

(Υ𝑤𝑡, 𝑊𝑤𝑡) describes the already came but unserved requests by
Υ𝑤𝑡 and where the other couriers are by 𝑊𝑤𝑡 . For simplicity, we
represent Υ𝑤𝑡 and 𝑊𝑤𝑡 by matrix corresponding to the grid map
of the region, e.g. Fig. 4 A), where each entry corresponding to a
grid in the region means how many unserved requests or couriers
are there; to entries corresponding to grids not in this region, we
set them as zero. Another benefit of matrix representation here is
to make Convolutional Neural Network applicable later if
necessary. Local state 𝑆𝑤𝑡

2 = (𝐷𝑤𝑡, 𝐿𝑤𝑡 , 𝑡) describes the remaining
parcels of the specific courier by 𝐷𝑤𝑡, her current location by 𝐿𝑤𝑡 ,
and the current time by 𝑡; 𝐷𝑤𝑡 is represented by a matrix which is
similar with Υ𝑤𝑡 and 𝑊𝑤𝑡 while 𝐿𝑤𝑡 and 𝑡 are all represented by a
one-hot vector. It is intuitive that local state 𝑆𝑤𝑡

2 varies over 𝑐𝑤 in
the same period 𝑡. Besides, as actions are generated in a sequence
way and each courier is impacted by the already determined
actions of other couriers before them, global state 𝑆𝑤𝑡

1 varies over
𝑐𝑤 in the same period as well.

Fig. 7 gives an example to elaborate how to design the state of
each courier in period 𝑡. Assuming there are three couriers whose
remaining parcels are respectively shown in Fig. 7 A), B) and C);
each shaded grid means the current location of the corresponding
courier, e.g. 𝑐1 is in grid 𝑔3 now. Fig. 7 D) describes the currently
unserved requests. For 𝑐1, the unserved request matrix in Fig. 7 D)
and the distribution of the other two couriers 𝑐2 and 𝑐3 in Fig. 7 F),
i.e. one in 𝑔9 while the other one in 𝑔11, make up her global state;
the remaining parcel matrix of 𝑐1 in Fig. 7 A), her current location
𝑔3, and the current time 𝑡, make up her local state. Based on this

state, an action is assigned to 𝑐1; we assume the assigned action is
go to the left grid, i.e. 𝑔2 as shown in Fig. 7 E). After 𝑐1 got her
action, we consider 𝑐2 . Firstly, we approximate how many
requests are expected to be served by 𝑐1 inner 𝑔2 in 𝑡 after she
conducts the assigned action; assume this approximation as 𝛿1 =
3 in our example. Update the unserved request matrix in Fig. 7 D)
by reducing 𝛿1 from the entry corresponding to 𝑔2; we obtain the
unserved request matrix for 𝑐2 as in Fig. 7 G). Generate the
distribution of other couriers for 𝑐2 as Fig. 7 H); where the
location of 𝑐1 is updated to 𝑔2 considering her action.
Consequently, Fig. 7 G) and Fig. 7 H) make up the global state of
𝑐2 while her local state is made up by her remaining parcel matrix
in Fig. 7 B), her current location 𝑔9, and the time 𝑡. Repeat these
steps until all couriers are considered.

Immediate reward. After taking an action at the current
state and transiting to the next one, a courier obtains a reward 𝑟𝑡,
which means the total number of tasks she completed in period 𝑡.

After formally formulating CCRL, we design a Deep Neural
Network to estimate its optimal long-term value function by Eq.
10. As discussed in section 3.2, the working area of each courier
has been constrained to their corresponding clusters obtained
from BDSB; which implicitly considers the geographical context
of the region. Consequently, when some couriers are in some
grids, they can only choose actions from a portion of all the nine
possible ones. Instead of requiring the optimal long-term values
corresponding to some state-action pairs to be zero, we prune the
actions that will lead couriers to go out of their clusters directly.
Pruning rules can largely improve the model training efficiency,
which will be discussed in experiments. System simulator for
model training and evaluation is elaborated in Appendix.

4. EVALUATION

Experiments on road network data and historical express data
from Beijing are conducted to confirm the outperformance of our
model. Express data are provided by one of the largest e-
commerce platforms in China. Tab. 2 gives the data statistics.

Tab. 2. Real-world data

Time Duration 1, Aug. – 15, Aug. 2018
range ≈ 15 × 15 km2
grids 30 × 30

transit stations 106
couriers 1, 786
parcels 531, 920

4.1 Metric and Baselines

Metric. Percent of Completed Tasks (PCT) in an episode.
Baselines. Eleven baselines are adopted; the first two are

clustering algorithms to confirm the outperformance of BDSB
while the remaining ones are for online management. Baselines
3−6 are heuristic algorithms considering the context of the region
and 7−11 are based on reinforcement learning theory.
PNC. Component 1 in BDSB algorithm.

3 2

1 7

5 19 2

2 5

1

4 7 11

5

2

D)

A) c1 B) c2 C) c3

24

1 1

2 5

1

1

1

2

1 7

5 19 2

E) c1 F)

G) H)

g2

g3

g2

g9 g11

PC. Do not consider the neighboring property in PNC.
Random. Select a random action for each courier at each time.
Value Greedy (VG). Conduct random policy for many times and
calculate the value of each grid in each period by the averages of
their immediate rewards. In each period 𝑡, a courier chooses the
action whose value is the largest in 𝑡.
Value Softmax (VS). Similar with VG; but in each period each
courier chooses the action based on the Softmax probability
estimated from the average values instead of a greedy way.
Top−𝒌. For each courier, estimate how many remaining tasks
each grid has, and randomly choose one from the top−𝑘 ones.
Q-Learning. Standard Q-Learning [5][17] where a value table is
learned for online guidance; the state reduces to (𝐿𝑤𝑡, 𝑡).
Only parcel (OP). Only consider the remaining parcels of each
courier; the state of each courier at period 𝑡 is (𝑊𝑤𝑡 , 𝐷𝑤𝑡, 𝐿𝑤𝑡 , 𝑡).
Only request (OR). Only consider the currently unserved
requests; the state of each courier at period 𝑡 is (Υ𝑤𝑡 , 𝑊𝑤𝑡 , 𝐿𝑤𝑡 , 𝑡).
Independent DQN (IDQN). Do not consider the cooperation
among couriers; therefore, the state of each courier at period 𝑡 is
(Υ𝑡, 𝐷𝑤𝑡, 𝐿𝑤𝑡 , 𝑡); here Υ𝑡 is shared by all couriers in 𝑡.
No Context (NC). Do not consider the context of the region;
therefore, no pruning rule are adopted when generating actions.

4.2 Evaluation Results

Experiment results for the hyper region in Fig. 4 A) are
detailly analyzed in this section. We respectively set the number
of couriers in it as 𝑛 = 40, 60, 80, which correspond to no more
than 35, 50, 65 percent of the currently hired ones in it. We
consider the morning in the day as an episode, i.e. 8:00am–
1:00pm. Experiments in other regions and episodes are also
conducted; as the results are similar, we do not discuss them here.

An Operation Trick. In each episode, we allocate little more
parcels to couriers than those should be delivered, e.g. 8:00am–
1:00pm corresponds to 0.4 day time, but we allocate 50 instead of
40 percent of all the parcels in the day to couriers for this episode.
Because couriers may not complete all the loaded parcels in each
episode, this setting avoids parcel accumulation, e.g. 50 percent of
the parcels are dispatched, of which 80 percent are completed in
the episode, thus 50 × 80% = 40 percent of all the parcels in the
day are delivered to their customers in 0.4 day. Based on this
setting, we guarantee that our model can averagely complete all
the delivery tasks per day. Otherwise, more and more parcels will
accumulate at the transit station, which is not reasonable as
parcels arrived at transit station must be delivered.

4.2.1 BDSB Clustering Results

Fig. 8 shows the clustering results of BDSB or PNC or PC. Fig.
8 A) − C) show the delivery-service burden of each cluster
obtained by BDSB, respectively under each given number of
couriers, i.e. 𝑛 = 40, 60, 80. As we can see, almost even work
burdens among clusters can be guaranteed. Relative standard
deviations of the burden under these three conditions are
respectively 0.029 , 0.041 , 0.046 , which are very small.
According to Lemma 2, all the clusters can have an equal
delivery-service burden after enough iterations, however, after a
given number of iterations, we pause the algorithm and return

the result. We do this for two reasons; firstly, this step only aims
to give a good initialization, thus it is not necessary to ensure an
exact balance; besides, we pause earlier thus the coverage area of
each cluster is not large, which is preferred in practical operation.

Fig. 8 D) shows the delivery-service burden of each cluster
obtained by PNC when 𝑛 = 40. As we can see, PNC cannot
ensure the work burden balance property satisfactorily, thus the
second component BIC in BDSB is necessary. Fig. 8 E) – F) show
the burden of each cluster obtained by PC when 𝑛 = 40 and 60
respectively; their unbalance issue is less severe than those of
PNC, which is intuitive because PNC also tries to ensure the
neighboring property. However, PC still cannot perform well
enough, especially when 𝑛 is large, i.e. 𝑛 = 60 in Fig. 8 F), leading
to unfair revenues, labor waste and overwork.

Fig. 8 G), H) and L) show some clusters obtained by BDSB
when 𝑛 = 40 , confirming that BDSB can guarantee the
neighboring property.

4.2.2 CCRL Online Management Results

Obtaining clusters by BDSB / PNC / PC, we conduct online
courier management by nine baselines and our model;
experiment results are summarized in Tab. 3, where the PCT of
delivery, request and ALL tasks are summarized.

As we can see, more delivery tasks can be completed than the
request ones when 𝑛 is small while more requests can be served
when 𝑛 becomes large; this is reasonable as we always ask
couriers to deliver parcels first in each period; when the number
of couriers increases, more labor can be devoted to serve the pick-
up requests. Because delivery tasks in one grid can only be
conducted by the couriers who have loaded its parcels while the
request tasks can be served by any one working inner it, it is
reasonable that more requests can be completed when 𝑛 is large.

According to Tab. 3, the first four heuristic algorithms cannot
work satisfactorily; this is intuitive as they consider neither
cooperation among couriers nor the long-term optimization
target. VG can rarely improve Random or even performs worse
when 𝑛 = 60 and 80 while VS has obvious improvement; this is
because the system is very dynamic, thus historical values cannot
be totally trusted. However, they can be partially referred to,
therefore, VS which combines historical values with random
policy performs the best among these three algorithms. Top−𝑘
performs the best among all heuristic algorithms, as it has a
myopic optimization target, besides, it depends on real-time
observations, which is more suitable to a dynamic system.

Baselines 5 − 9 confirm the necessity of each component in
CCRL model. As a traditional RL method, Q-learning cannot
address the large space issue, thus can only consider limited
information of the environment, leading to a poor performance.
OR does not consider parcel information, thus can complete a
little bit more service tasks; this is possible as the model may
make couriers sacrifice some delivery tasks to complete more
service ones. However, as our target is to complete more total
tasks, OR is not good enough, neither is OP which does not
consider the pick-up requests. IDQN focuses on each courier in a
parallel way and does not consider the cooperation among them;
therefore, its performance is worse than our model. NC also

performs poorly as it does not incorporate prior knowledge in model training, leading to slow convergence, or even bad results.

Tab. 3. PCT of each model with a given number of couriers

Couriers 40 60 80
Parcel Request All task Parcel Request All task Parcel Request All task

Random 0.619 0.482 0.552 0.717 0.694 0.705 0.752 0.829 0.790
Value Greedy 0.553 0.653 0.602 0.555 0.692 0.622 0.567 0.820 0.691
Value Softmax 0.687 0.657 0.672 0.712 0.791 0.751 0.726 0.886 0.804

Top−𝑘 0.766 0.596 0.684 0.808 0.757 0.783 0.802 0.880 0.840
Q-Learning 0.719 0.700 0.710 0.731 0.822 0.775 0.785 0.916 0.849
Only Parcel 0.802 0.695 0.750 0.831 0.836 0.833 0.811 0.919 0.864

Only Request 0.776 0.740 0.758 0.760 0.859 0.809 0.768 0.935 0.850
Independent DQN 0.794 0.666 0.731 0.801 0.821 0.811 0.814 0.903 0.857

No Context 0.733 0.634 0.684 0.758 0.747 0.752 0.723 0.790 0.756
BDSB + CCRL 0.812 0.715 0.765 0.835 0.846 0.841 0.825 0.925 0.874

Fig. 8. Clustering results with BDSB / PNC / PC algorithm

4.2.3 Case Study

Fig. 9. Sequence of actions of a courier

Fig. 9 shows a sequence of actions of a specific courier, where
an arrow with a number means the action order, red grids show
the locations of her remaining parcels while the green ones
describe hot request grids around her; the darker the color is, the

more tasks there are. As we can see, when choosing the next
action, there is no priority between delivery and service, i.e. the
courier does not try to complete any of them firstly but conduct
them alternatively; this is reasonable as our target is to complete
more tasks instead of any one of them. Besides, we can see that
the courier does not work greedily, i.e. always chooses the grid
with the most tasks; we think she works in this way to achieve a
long-term instead of myopic good result.

Cooperation among couriers are also analyzed, i.e. will
couriers go to the same grid and compete for tasks. According to
experiments, we observe that couriers often go to the same grid
under three scenarios; the first one is as Fig. 10 where 𝑐1 and 𝑐2
both go to 𝑔1 in the same period; Fig. 10 A) and B) respectively
show the remaining parcels of them; Fig. 10 C) show the unserved
requests around them. Although both 𝑐1 and 𝑐2 go the 𝑔1, there is
no competition between them, because 𝑐1 goes to 𝑔1 for requests

1

2

3

4

5 6

7

parcel

request

while 𝑐2 goes there to deliver as she has remining parcels in 𝑔1.
Another scenario is that multiple couriers go to a same grid but
neither of them has remaining parcels there. In this condition,
there are often many requests in that grid waiting for service,
thus these couriers work together there instead of competing.
Last scenario is that several couriers have their own parcels in a
same grid, thus they work separately there without competing.

Fig. 10. Cooperation among couriers

5. RELATED WORK

Express System and Operation. Express systems are widely
deployed in many major cities and generating massive express
data. Zhang et al. [4] systematically studied the large-scale
dynamic city express problem and proposed some heuristic
algorithms. However, no real-world express data are analyzed
nor used in their work. Besides, they gave not only each request,
but also each parcel a deadline, which is not often the case in
practical operation; random noise was not considered neither.
Some studies tried to adopt crowdsourcing to deliver parcels to
customers, e.g. Sadilek et al. [3] asked a group of twitter users to
deliver parcels; Mclnerney et al. [2] employed mobile users for
delivery; Chen et al. [1] exploited existing taxi service to deliver
packages to their destinations. As our problem is to effectively
manage the hired couriers for delivery and pick-up service, these
previous works cannot be adopted to our problem directly.
Besides works on express system, many studies of operation on
spatio-temporal systems are conducted as well. Lin et al. [5] gave
a solution to the large-scale fleet management problem for ride-
sharing platforms. Wei et al. [8] focused on how to intelligently
control the traffic light such that the average waiting time of each
vehicle is minimum. For a bike-sharing system, there are multiple
studies [7][9][12][14] about how to reposition bikes among
stations in a city to reduce the customer loss. As a specific
operation problem with specific formulation, we cannot adopt
these previous models in our work directly.

Deep Reinforcement Learning. Because of the large state
and action spaces in many practical problems, DRL is proposed to
utilize deep neural networks for function approximation in the
traditional RL model, which significantly improve the
performance of many challenging applications [10][11][13].
Currently, some studies [5][7][8] try to adopt DRL to solve
practical problems on spatio-transit data. Besides, models
applying DRL to recommendation is proposed as well; e.g. Chen
et al. [15] proposed a robust DQN method to gain better
recommendation performance in a dynamic e-commerce platform;
Hu et al. [16] adopted DRL to learn an optimal ranking policy for
each search, etc. However, these models cannot be directly
adopted to our problem neither.

6. CONCLUSION

In this paper, we propose a reinforcement learning based
framework to manage the couriers in an express system. We
firstly divide the entire city into independent regions, each of
which has a constant number of couriers. A BDSB clustering
algorithm is then proposed to dispatch parcels to couriers at
transit station in each region. Afterwards, couriers in each region
are guided to deliver and serve by a common policy, which is
learned by CCRL model. We confirm the outperformance of our
model by experiments on real-world data from Beijing.

REFERENCES

[1] C. Chen, D. Zhang, X. Ma, B. Guo, L. Wang, Y. Wang, E. Sha.
CROWDDELIVER: Planning City-Wide Package Delivery Paths
Leveraging the Crowd of Taxi. IEEE Trans. Intelligent Transportation
Systems, 2017.

[2] J. Mclnerney, A. Rogers, N. R. Jennings. Crowdsourcing Physical Package
Delivery Using the Existing Routine Mobility of a Local Population. In
Proc. Orange D4D Challenge, 2014.

[3] A. Sadlilek, J. Krumm, E. Horvitz. Crowdphysics: Planned and
Opportunistic Crowdsourcing for Physical Tasks. In Proc. ICWSM, 2013.

[4] S. Zhang, L. Qin, Y. Zheng, H. Cheng. Effective and Efficient: Large-scale
Dynamic City Express. Transaction on Knowledge and Data Engineering.

[5] K. Lin, R. Zhao, Z. Xu, J. Zhou. Efficient Large-Scale Fleet Management
via Multi-Agent Deep Reinforcement Learning. In Proc. SIGKDD, 2018.

[6] N. Garg, S. Ranu. Rout Recommendations for Idle Taxi Drivers: Find Me
the Shortest Route to a Customer. In Proc. SIGKDD, 2018.

[7] Y. Li, Y. Zheng, Q. Yang. Dynamic Bike Reposition: A Spatio-Transit
Reinforcement Learning Approach. In Proc. SIGKDD, 2018.

[8] H. Wei, G. Zheng, H. Yao, Z. Li. IntelliLight: A Reinforcement Learning
Approach for Intelligent Traffic Light Control. In Proc. SIGKDD, 2018.

[9] P. Hulot, D. Aloise, S. D. Jena. Towards Station-Level Demand Prediction
for Effective Rebalancing in Bike-Sharing Systems. In Proc. SIGKDD,
2018.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, M. Riedmiller. Playing Atari with Deep Reinforcement
Learning. arXiv, 2013.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, D. Hassabis. Human-Level Control through Deep
Reinforcement Learning. Nature, 2015.

[12] J. Liu, L. Sun, W. Chen, H. Xiong. Rebalancing Bike Sharing Systems: A
Multi-source Data Smart Optimization. In Proc. SIGKDD, 2016.

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. v. d. Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S.
Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. Mastering the Game
of Go with Deep Neural Networks and Tree Search. Nature, 2016.

[14] S. Ghosh, M. Trick, P. Varakantham. Robust Reposition to Counter
Unpredictable Demand in Bike Sharing Systems. In Proc. IJCAI, 2016.

[15] S. Chen, Y. Yu, Q. Da, J. Tan, H. Huang, H. Tang. Stabilizing
Reinforcement Learning in Dynamic Environment with Application to
Online Recommendation. In Proc. SIGKDD, 2018.

[16] Y. Hu, Q. Da, A. Zeng, Y. Yu, Y. Xu. Reinforcement Learning to Rank in
E-Commerce Search Engine: Formalization, Analysis, and Application. In
Proc. SIGKDD, 2018.

[17] R. S. Sutton, A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[18] J. Hopcroft, R. Tarjan. Algorithm 447: Efficient Algorithms for Graph
Manipulation. Communication of the ACM, 1973.

g1 g1 g1

A) c1 B) c2 C) request

Appendix - SYSTEM SIMULATOR

In this section, we design a simulator based on road network
data and historical express data, to simulate how the system
operates in each episode. Firstly, we estimate the driving distance
between any two tasks in each grid based on the road network,
e.g. assuming that any two road nodes 𝑒𝑣 and 𝑒𝑘 has a distance
𝜑𝑣𝑘 , we estimate the task distance inner 𝑔𝑤 with a normal
distribution 𝑁𝑤 by fitting all 𝜑𝑣𝑘 where 𝑒𝑣, 𝑒𝑘 ∈ 𝑟𝑛𝑤 and 𝑟𝑛𝑤 is
the road network in 𝑔𝑤. As parcels and requests are robust from
day to day, we then adopt normal distributions learned from
historical data to generate them at each grid.

An episode. Initially, our simulator generates parcels located
in each grid for the entire episode; then BDSB allocates them to
each courier. Afterwards, for each period 𝑡 in this episode, we
firstly update the unserved requests, i.e. those which are not
served in a waiting time 𝜗 are deleted and those that may come in
𝑡 are generated; then our simulator simulates the activities of
each courier in 𝑡 one by one. Each courier works as follows.

 Courier 𝑐𝑤 conducts her action, i.e. goes to 𝐿𝑤𝑡 to work in 𝑡.
 If 𝑐𝑤 has undelivered parcels in 𝐿𝑤𝑡 on her van and there is

remaining time before the next period, generate a distance for
𝑐𝑤 to go and deliver. Duration for this parcel delivery is

estimated by Eq. 11, where 𝑑𝑥~𝑁𝑤𝑡 is the delivery distance;
𝑁𝑤𝑡 is the task distance distribution in grid 𝐿𝑤𝑡 ; 𝑣𝑟 is the
speed of a delivery van; 𝑡𝜀 is a constant time needed by each
task, e.g. the time for checking or form filling, etc.

𝑡𝑥 =
𝑑𝑥

𝑣𝑟
+ 𝑡𝜀 (11)

Check whether the remaining time in 𝑡 is enough for 𝑡𝑥, if yes,
conduct this parcel delivery, update the remaining time in 𝑡 by
reducing 𝑡𝑥 , update the remining parcels of 𝑐𝑤 in 𝐿𝑤𝑡 by
reducing one, and repeat step 2; otherwise, go to step 3.

 If there are unserved requests in 𝐿𝑤𝑡 and there are remaining
time in 𝑡, generate a distance for 𝑐𝑤 to go and serve. Duration
for this service is also estimated by Eq. 11. Check whether the
remaining time is enough for this service, if yes, conduct it,
update the remining time, update the remining unserved
requests in 𝐿𝑤𝑡 by reducing one, and repeat step 3; otherwise,
𝑐𝑤 terminates her work in 𝑡.

Simulating the activities of each courier one by one matches the
action generation process well, forcing each courier to consider
the already determined actions of others enough.

