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ABSTRACT  
Express systems are widely deployed in many major cities. 
Couriers in an express system load parcels at transit station and 
deliver them to customers. Meanwhile, they also try to serve the 
pick-up requests which come stochastically in real time during 
the delivery process. Having brought much convenience and 
promoted the development of e-commerce, express systems face 
challenges on courier management to complete the massive 
number of tasks per day. Considering this problem, we propose a 
reinforcement learning based framework to learn a courier 
management policy. Firstly, we divide the city into independent 
regions, in each of which a constant number of couriers deliver 
parcels and serve requests cooperatively. Secondly, we propose a 
soft-label clustering algorithm named Balanced Delivery-Service 
Burden (BDSB) to dispatch parcels to couriers in each region. 
BDSB guarantees that each courier has almost even delivery and 
expected request-service burden when departing from transit 
station, giving a reasonable initialization for online management 
later. As pick-up requests come in real time, a Contextual 
Cooperative Reinforcement Learning (CCRL) model is proposed 
to guide where should each courier deliver and serve in each 
short period. Being formulated in a multi-agent way, CCRL 
focuses on the cooperation among couriers while also considering 
the system context. Experiments on real-world data from Beijing 
are conducted to confirm the outperformance of our model. 
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1. INTRODUCTION 

Express systems are widely deployed in many major cities, 
providing much convenience and promoting the development of 
e-commerce. Fig. 1 A) shows how couriers in an express system 
work. A courier 𝑐𝑤 loads some parcels at the transit station 𝑠𝑣 
and then delivers them, e.g. 𝑑1 and 𝑑2, to their destinations one 
by one via a small delivery van. Meanwhile, there may come 
some pick-up requests from end users during the delivery 
process, e.g. 𝑟1 , each of which is associated with a service 
location; 𝑐𝑤 also tries to go to these places to serve them when 
delivering. Specially, a pick-up request should be served in a 
short waiting time, e.g. one hour, while the duration for a parcel 
to be delivered to its customer can be longer, e.g. several hours or 
even one day, as it already spent days before the parcel arrived at 
its transit station. Couriers are required to depart from and return 
to transit station by specific time [4], to fit the schedule of trucks 
which send and pick packages to or from stations regularly. We 
name this specific time interval as an episode. 

 

Fig. 1. An express system 

Currently, operators try to complete the massive number of 
tasks by hiring more couriers. However, according to historical 
data, 70 percent of them complete no more than 20 tasks per day, 
leading to low revenue and labor waste. Besides, immoderate 
recruitment cannot solve the efficiency issue in system operation 
fundamentally. In this paper, we try to address this problem from 
another perspective, i.e. given a portion of the currently hired 
couriers, we intelligently manage them to work effectively and 
cooperatively, thus to complete most tasks in each episode. 

Courier management in each episode includes two steps, i.e. 
how to dispatch parcels to each courier at transit station; how to 
determine where each courier should deliver and serve in each 
short period. Fig. 1 B) gives an example, where the city is 
partitioned into uniform grids. At the beginning of each period 𝑡, 
each courier 𝑐𝑤 determines which surrounding grid to go or just 
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stay at the current one; afterwards, 𝑐𝑤 delivers parcels and serves 
requests only in the selected grid during 𝑡 until the next period 
𝑡 + 1, when all couriers choose their next grids again. As we can 
see, there are nine actions to select from for each courier at each 
period, i.e. {1, 2, … , 8} for the eight surrounding grids and 0 for the 
current one. By these two steps, we want to maximize the total 
number of completed tasks in the episode. Challenges of this 
problem can be summarized into three-fold as follows. 

 

Fig. 2. Parcel allocation at transit station 

Urban express systems are large and dynamic. According 
to historical express data in Beijing, there are tens of thousands of 
parcels to be delivered every day, so are the pick-up requests. To 
complete these tasks, hundreds or even thousands of couriers are 
needed. How to manage this large number of couriers to work 
cooperatively is important but nontrivial. Besides, pick-up 
requests come stochastically in real time during the delivery 
process, making the systems very dynamic. 

 

Fig. 3. Online delivery-service process 

Being impacted by multiple factors, parcel allocation to 
couriers at transit station is nontrivial. Firstly, expected pick-
up requests that may come later in the episode should be 
considered as they impact the work burden of each courier. Fig. 2 
gives an example; A) shows the hot grids of requests, where a 
grid with a number means how many requests are expected to be 
located there in the future; B) shows the parcel allocation to 
courier 𝑐1 where a grid with a number means how many parcels 
𝑐1 has to deliver there. As we can see, 𝑐1 gets 11 parcels; as her 
delivery grids are very possible to have about 10 requests later, 
her delivery-service burden is 11 + 10 = 21. Secondly, it is better 
that all couriers have similar work burdens when departing from 
transit station, thus to ensure almost even revenues, reduce labor 
waste and avoid overwork. Fig. 2 C) shows the parcel allocation 
to 𝑐2, whose delivery-service burden is 22 parcels without any 
expected request in her delivery grids, thus is almost the same 
with that of 𝑐1. Lastly, we want the parcels allocated to each 
courier have destinations in neighboring grids, e.g. the parcel 
allocation to 𝑐2 is not good as 𝑐2 cannot arrive at grid 𝑔1 from any 
of her other delivery grids without visiting a third one, where she 
has no parcel to deliver nor expected request to serve. 

Online delivery-service process is too complicated to 
optimize for a long time. After loading parcels and departing 
from transit station, each courier chooses where to go and work 
at the beginning of each period. As shown in Fig. 3 A), each 
action of a courier has long-term influence, e.g. if courier 𝑐2 goes 
to 𝑔4 instead of 𝑔3, she can complete the same number of tasks in 
the current period, i.e. 1 service instead of 1 delivery; however, in 
the next period, she cannot arrive at 𝑔2  for the two tasks; 
therefore, we want to optimize a sequence of actions thus to 
maximize the total number of completed tasks in a long time. 
Even for a single courier, optimization cannot handle the large 
solution space, i.e. 9𝑇 where 𝑇 is the number of periods in the 
episode. Besides, there are random factors in system operation, 
e.g. stochastically coming requests and noise, which compromise 
the accuracy of optimization model. Cooperation among couriers 
should also be considered, e.g. 𝑐1 and 𝑐2 cannot both go to grid 𝑔4 
for the 1 request. Furthermore, context of the system is another 
important constraint, e.g. 𝑐1 is not suggested to go to 𝑔1 if she 
does not have any parcel to deliver there nor 𝑔1 is not expected to 
have any pick-up request later. 

Our contributions in this paper are four-fold as follows. 
 By Connected Component Detection, we partition the entire 

city into independent regions and respectively focus on each 
of them, to reduce problem complexity. 

 A soft-label clustering algorithm named Balanced Delivery-
Service Burden (BDSB) is proposed to allocate parcels to each 
courier at transit station. 

 A Contextual Cooperative Reinforcement Learning (CCRL) 
model is proposed to guide where should each courier go at 
the beginning of each period. Being formulated in a multi-
agent way, CCRL tries to guarantee the cooperation among 
couriers. Besides, system context is considered by pruning. 

 Experiments on real-world data from Beijing are conducted to 
confirm the outperformance of our model. 

2. OVERVIEW 

Some notations and terminologies used in our paper are 
defined in this section; then we overview the framework. 

Tab. 1. Notations 

𝑠𝑤 

 

A transit station in the system 

𝑔𝑤 A grid in the city 

𝑐𝑤 A courier in the system 

𝑑𝑤 / 𝑟𝑤 A delivery or request task 

𝑐𝑟𝑤 Coverage of transit station 𝑠𝑤 

𝐿𝑤𝑡 Grid where courier 𝑐𝑤 is in period 𝑡 

2.1 Preliminary 

Partition the city into uniform grids to obtain an 𝐼 × 𝐽 grid 
map as Fig. 3 B). Each grid is hundreds of meters wide and long, 
thus not large for a delivery van. 

Def. 1. Delivery task. A delivery task is a three-entry tuple 
𝑑𝑤 = (𝑑𝑤 . 𝑠, 𝑑𝑤 . 𝑔, 𝑑𝑤 . 𝜏)  describing that a parcel arrived at 
transit station 𝑑𝑤 . 𝑠 was delivered to grid 𝑑𝑤 . 𝑔 at time 𝑑𝑤 . 𝜏. 
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Def. 2. Service task. A service task is a two-entry tuple 𝑟𝑤 =

(𝑟𝑤. 𝑔, 𝑟𝑤. 𝜏) meaning that a pick-up request was generated at 
timestamp 𝑟𝑤. 𝜏 with a service location in grid 𝑟𝑤. 𝑔; the waiting 
time of each request cannot be longer than a threshold 𝜗. 

Def. 3. Coverage. Coverage area of a transit station 𝑠𝑤 is 
made up by grids to which the parcels arrived at 𝑠𝑤 are delivered. 
It is denoted as 𝑐𝑟𝑤 and can be obtained by Eq. 1. 

𝑐𝑟𝑤 = {𝑑𝑘 . 𝑔|𝑑𝑘 . 𝑠 = 𝑠𝑤, 𝑘 = 1, 2, … }                      (1) 

Coverage frequency of 𝑠𝑤 is a vector 𝑐𝑓𝑤 ∈ 𝑅𝐼×𝐽, where 𝐼 × 𝐽 is 
the number of grids in the city; each entry of 𝑐𝑓𝑤 is determined 
by Eq. 2 and 3, i.e. how many parcels arrived at 𝑠𝑤 were delivered 
to each grid. By normalizing 𝑐𝑓𝑤 , we obtain the coverage 
distribution of station 𝑠𝑤 and denote it as 𝑐𝑑𝑤 ∈ 𝑅𝐼×𝐽. 

(𝑐𝑓𝑤)𝑣 = |𝐹𝑤𝑣|, 𝑣 = 1, 2, … , 𝐼 × 𝐽                           (2) 

𝐹𝑤𝑣 = {𝑑𝑘|𝑑𝑘 . 𝑠 = 𝑠𝑤, 𝑑𝑘 . 𝑔 = 𝑔𝑣 , 𝑘 = 1, 2, … }             (3) 

Problem Statement. Given historical delivery and service 
tasks per day, we try to learn an efficient courier management 
policy. It has the following two properties; firstly, instead of 
largely depending on hiring more couriers, it only adopts a 
portion of the currently hired ones; secondly, it maximizes the 
total number of completed tasks in each episode. Our policy has 
two steps, i.e. allocate parcels to each courier at transit station; 
guide where should each courier deliver and serve in each period. 
In our work, an episode is a specific time interval in the day, e.g. 
8:00am – 1:00pm, 2:00pm – 7:00pm, or even the whole day; each 
period is set as 20 minutes. 

2.2 Model Framework 

Our model includes three components, i.e. city division into 
independent regions, parcel allocation and online courier 
management inner each of them. 

City division based on connected component detection. 
Considering the large number of parcels and requests per day, as 
well as the hundreds or even thousands of couriers in a system, 
we firstly divide the city into independent regions, i.e. partition 
transit stations into groups 𝐺1, 𝐺2, …, 𝐺𝑀 such that their coverage 
areas do not overlap; here the coverage area of a group of stations 
𝐺𝑤  is as Eq. 4. Consequently, the city is divided into 𝑀 
independent regions 𝐶1, 𝐶2, …, 𝐶𝑀 each of which has their own 
set of transit stations and couriers. Afterwards, we respectively 
focus on each of them without considering the others outside. 

𝐶𝑤 = ⋃ 𝑐𝑟𝑘𝑠𝑘∈𝐺𝑤
                                       (4) 

BDSB for parcel allocation at transit station. Before 
delivering parcels, couriers should firstly load them at transit 
station. In each specific region, BDSB determines which parcels 
are dispatched as a batch to a courier. In this step, multiple 
factors are considered, i.e. parcel locations, expected requests in 
the future, delivery-service burden, and the number of couriers in 
the region. As a soft-label clustering algorithm, BDSB gives labels 
to each grid, then parcels are dispatched based on labels of the 
grids where they locate, i.e. those located in grids of the same 
cluster are dispatched together to one courier; parcels in grids 
with soft labels are dispatched proportionally. 

CCRL to manage couriers in real time. Online courier 
management is to guide where should each courier go and work 
in each period. Considering the random factors in practical 
process, i.e. stochastically coming requests and noise, generating 
a sequence of actions in advance for couriers to conduct one by 
one is not reasonable. Motivated by reinforcement learning 
theory, we propose a model to give actions to each courier in real 
time based on their real-time observations. To reduce the action 
space, we formulate our model in a multi-agent way, i.e. at each 
period, each courier gets their action one by one, considering 
those actions that some of their colleagues before them already 
got. Furthermore, we consider system context by action pruning, 
making our model more reasonable and efficient. 

3. METHODOLOGY 

Methodologies of each component are elaborated in this 
section. Real-world data from Beijing are adopted for examples. 

3.1 Connected Component based City Division 

City division is necessary to reduce the problem complexity. 
Besides, there is no need to consider the entire city at the same 
time, as couriers in two areas far away are impossible to interact. 

Def. 4. Independence. Stations 𝑠𝑤 and 𝑠𝑣 are independent if 
the distance of their coverage distributions is large, i.e. 
|𝑐𝑑𝑤 − 𝑐𝑑𝑣| > 2 − 𝜏, where 𝜏 ∈ (0, 2] is a parameter. 

Station independence means that two stations rarely have 
overlap between their coverage areas, thus there is no interaction 
among their couriers. According to historical data, majority of the 
transit stations are not independent from each other, which is 
caused by the location of warehouses in the system and very hard 
to change. Ignoring the overlap and respectively focusing on each 
station is not efficient as couriers can cooperate when they work 
in overlapped areas. Motivated by this observation, we partition 
transit stations in the city into groups whose coverage areas 
rarely overlap; then a constant number of couriers can work 
cooperatively for each of them without considering the others. 
Station partition is very intuitive that based on Connected 
Component Detection [18] as follows. 
 For each station 𝑠𝑤, we estimate its coverage distribution 𝑐𝑑𝑤. 
 If two stations 𝑠𝑤 and 𝑠𝑣 are not independent, we connect 

them by an edge. Consequently, a graph as Fig. 5 A) is 
obtained, where each node means a transit station. 

 Detect the connected components [18] in the graph. Stations 
in the same component are partitioned into one group. 

Obtaining station groups 𝐺1, 𝐺2, …, 𝐺𝑀, we can divide the city 
into independent regions 𝐶1, 𝐶2, …, 𝐶𝑀 by Eq. 4. Some regions in 
Beijing are shown in Fig. 4 A), where each color denotes a region 
and the blank grids mean that they do not belong to these regions, 
i.e. they are in other regions, or there is no task in them because 
of some geographical reasons, e.g. it is a lake there. Afterwards, 
we can focus on each region respectively. If a single region is too 
small, we can combine multiple ones to obtain a hyper region and 
require couriers in them to cooperate, thus further improve the 
efficiency. Combining regions is reasonable according to Lemma 



 

 

1, which is intuitive. In the following work, we focus on the 
hyper region made up by the six independent ones in Fig. 4 A). 

 

Fig. 4. Regions and task stability 

Lemma 1. If 𝐶1 ⊥ 𝐶2 ⊥ ⋯ ⊥ 𝐶𝑀 , then ⋃ 𝐶𝑘𝑘∈𝑀1
⊥ ⋃ 𝐶𝑘𝑘∈𝑀2

 

when 𝑀1 , 𝑀2 ⊂ {1, 2, … , 𝑀}  and 𝑀1⋂ 𝑀2 = ∅ ; here ⊥  means 
being independent with each other. 

Each region has a set of stations. However, we consider their 
parcels together when allocating them to couriers. We can do this 
because each region is not too large, thus couriers can load 
parcels assigned to them from several stations in it quickly before 
departing to deliver. Compared with the length of an episode, e.g. 
half day or even one day, this time is very trivial. 

3.2 BDSB for Parcel Allocation 

In each region, how to dispatch parcels to couriers depends on 
multiple factors. Firstly, we need to consider the expected 
requests that may come later. Request expectation can be easily 
learned from historical data. As we observe that the number of 
requests is comparatively smooth in the day without any sudden 
peak nor collapse, we assume an equal request expectation in 
each period of the episode for simplicity. Secondly, it is better 
that the parcels dispatched to one courier locate in neighboring 
grids which is defined as Def. 5; this is to ensure efficiency in 
online management later. Lastly, we try to ensure that all couriers 
have almost even delivery-service burdens, thus to guarantee fair 
revenues, reduce labor waste and avoid overwork. 

Def. 5. Neighboring grids. Given a set of grids 𝐴, if from any 
grid 𝑔𝑤 ∈ 𝐴, a courier can go to another one 𝑔𝑣 ∈ 𝐴, without 
visiting a third grid 𝑔𝑘 that 𝑔𝑘 ∉ 𝐴 and it is not expected to have 
any request later, we define this set of grids as neighboring ones. 

BDSB is proposed for parcel allocation. Main idea of BDSB is 
to softly cluster grids in the region into groups, then parcels in 
the grids of a same cluster are dispatched as a batch to one 
courier. Although BDSB can be conducted each time parcel 
allocation is required to obtain a specific result for the current 
episode, we adopt historical averages over episode to run it once, 
thus obtain a common clustering result shared by days for 
simplicity. We can do this for the following reasons. Firstly, 
according to historical data, the number and distribution of 
parcels and requests are stable from day to day. Fig. 4 B) shows 
the total number of parcels per day in the hyper region in Fig. 4 
A), confirming our claim. Therefore, historical averages are 
representative enough. Besides, this step only aims to give a good 
initialization for the next step instead of a final optimal strategy, 
thus some turbulence beyond the averages can be ignored. BDSB 

has two iterative components, i.e. Primary Neighbor Clustering 
and Balance Improvement Clustering. Assuming there are 𝑛 
couriers in the region, i.e. the grids in it need to be clustered into 
𝑛 groups, we elaborate the two components of BDSB one by one. 

Primary Neighbor Clustering (PNC). PNC simultaneously 
considers the neighboring property and delivery-service burden, 
giving a primary clustering result. It has the following six steps. 
 Denoting the average number of parcels and requests at each 

grid 𝑔𝑖 in the episode as 𝑝𝑖 and 𝑞𝑖 respectively, then we can 
estimate the work burden of each grid as 𝑏𝑖 = 𝑝𝑖 + 𝑞𝑖 . 

 Randomly select 𝑛  grids in the region, each of which is 
considered as an initial cluster. 

 Select the cluster 𝐴𝑘 whose total work burden is minimum 
and the cluster 𝐴𝑣 whose total burden is maximum. 

 For 𝐴𝑘, denoting the grids surrounding it and not in any 
cluster yet as Λ𝑘 , then select a grid 𝑔𝑤 ∈ Λ𝑘  by Eq. 5. 

arg𝑔𝑤∈Λ𝑘
min |𝑏𝑤 + ∑ 𝑏𝑗𝑔𝑗∈𝐴𝑘

− ∑ 𝑏𝑗𝑔𝑗∈𝐴𝑣
|              (5) 

 If 𝑔𝑤 exists, update 𝐴𝑘 to 𝐴𝑘 = 𝐴𝑘⋃𝑔𝑤; otherwise, replace 𝐴𝑘 
by the cluster with less minimum burden and go to step 4. 

 Iterate step 3-5 until that there is no grid not in any cluster. 

 

Fig. 5. Connected components and PNC algorithm 

A running example is given in Fig. 5 to illustrate the above 
algorithm. Fig. 5 B) shows the work burden of each gird, where 
the ones without a number mean that they are not in this region. 
Assume that there are three couriers, thus the grids are to be 
clustered into three groups. Randomly select three grids to be the 
initial clusters as shown in Fig. 5 B), where each color means a 
cluster, i.e. 𝐴1 − yellow, 𝐴2 − blue, 𝐴3 − green. Select the cluster 
with minimum and maximum total burden, i.e. 𝐴1 and 𝐴3. For 𝐴1, 
its surrounding grid in the region which does not belong to any 
cluster yet and satisfies Eq. 5 is that with a burden of 12, 
therefore, we update 𝐴1 to the one shown in Fig. 5 C). Repeat this 
step until Fig. 5 D); currently, the clusters with minimum and 
maximum burden are 𝐴1 and 𝐴3, however, as we can see, 𝐴1 has 
no more surrounding grid in the region that is not in any cluster, 
thus we consider cluster 𝐴2 which has a less minimum burden 
than 𝐴1; the grid with a burden of 7 satisfies the constraints in 
step 4, therefore, we update 𝐴2 to the one shown in Fig. 5 E). 
Now, as neither 𝐴1 nor 𝐴2 has any surrounding grid that is not in 
any cluster, they cannot be updated. Consequently, the grid with 
a burden of 4 is clustered to 𝐴3 as in Fig. 5 F). 
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PNC gives a hard label to each grid, i.e. each grid belongs to 
only one cluster. However, as there are grids whose burdens are 
extremely large, hard labels cannot guarantee that all clusters 
have almost even work burdens, e.g. the burden of each cluster in 
Fig. 5 F) is 22, 36 and 84; therefore BIC is proposed to improve 
the hard-label clustering result to a soft-label one. 

Balance Improvement Clustering (BIC). BIC keeps 
reallocating a portion of work burden from the cluster whose 
burden is too large to the one whose burden is small; to each grid, 
based on the percent its work burden is shared by each cluster, 
we generate soft labels for it. BIC has three steps. 
 Select the cluster with maximum work burden and denote it as 

𝐴𝑣; then select cluster 𝐴𝑘 whose work burden is minimum 
among the surrounding clusters of 𝐴𝑣. 

 Allocate a portion of work burden 𝑎𝑣𝑘 from cluster 𝐴𝑣 to 𝐴𝑘 
while not violating their neighboring property; here 𝑎𝑣𝑘 is 
determined by Eq. 6. 

𝑎𝑣𝑘 ≤
1

2
× | ∑ 𝑏𝑗𝑔𝑗∈𝐴𝑣

− ∑ 𝑏𝑗𝑔𝑗∈𝐴𝑘
|                        (6) 

 Iterate step 1 − 2 for a given number of times. Generate soft 
labels for each grid by normalizing its burden in each cluster. 

A running example is given in Fig. 6 to elaborate BIC. After 
obtaining Fig. 5 F), we select the cluster whose burden is 
maximum, i.e. 𝐴3 with a burden of 84, and its surrounding cluster 
whose burden is the minimum, i.e. 𝐴2 with a burden of 36. 

According to Eq. 6, we allocate a burden of 
1

2
× (84 − 36) = 24 

from 𝐴3 to 𝐴2 as shown in Fig. 6 A). In the second iteration, we 
select 𝐴2 as the cluster with maximum burden and 𝐴1 from its 
surrounding ones whose burden is minimum; by Eq. 6, a burden 
of 19 is allocated from 𝐴2 to 𝐴1 as shown in Fig. 6 B). Assume 
that only two iterations are required, we generate labels for each 
grid as Fig. C). BDSB ensures a good result according to Lemma 2. 

 
Fig. 6. BIC algorithm 

Lemma 2. After enough iterations, BDSB can guarantee that 
all clusters have equal delivery-service burdens. 

When allocating parcels, those located in grids of the same 
cluster are dispatched together to one courier; parcels in grids 
with soft labels are dispatched proportionally. Remind that even-
burden is only a constraint when dispatching parcels, but not 
required any more in the following step; there are two reasons 
for this setting. Firstly, our main target is to complete more tasks. 
Secondly, we constrain the working area of each courier to their 
corresponding clusters, thus the unbalance will not be very 
severe, i.e. we can still ensure almost fair revenues, reduce labor 
waste and avoid overwork. 

3.3 CCRL for Online Courier Management 

After loading parcels at transit station, couriers choose where 
to go and work in each period. Considering the random factors in 

practical operation, and the target to maximize the total number 
of completed tasks in a long time, we propose a reinforcement 
learning based model to guide them in real time. 

3.3.1       Multi-Agent Reinforcement Learning 

A RL model has six components, i.e. (𝕊, 𝐴, 𝑇𝑅, 𝑅, 𝜋, 𝛾), where 
𝕊 is the state set; 𝐴 means the action space; 𝑇𝑅 describes the 
transition probability that an agent took action 𝑎𝑡 under state 𝑆𝑡 
will transit to the next one 𝑆𝑡+1, i.e. 𝕊 × 𝐴 × 𝕊 → 𝑇𝑅; 𝑅 stands 
for the immediate reward received after taking an action under a 
state and transiting to the next one, i.e. 𝕊 × 𝐴 × 𝕊 → 𝑅; 𝜋 is a 
policy 𝕊 × 𝐴 → 𝜋, which describes the probability to take an 
action under a state; 𝛾 is a discount parameter. At each period 𝑡, 
an agent under state 𝑆𝑡 takes an action 𝑎𝑡 according to policy 𝜋, 
then transits to the next state 𝑆𝑡+1 , receiving an immediate 
reward 𝑟𝑡. Each action has a long-term return as Eq. 7 where 𝑇 is 
the last period in the episode. 

𝑈𝑡 = 𝑟𝑡 + 𝛾 × 𝑟𝑡+1 + 𝛾2 × 𝑟𝑡+2 + ⋯ + 𝛾𝑇−𝑡𝑟𝑇                   (7) 

Eq. 8 defines the optimal long-term value function, which 
describes the maximum expected long-term return of each action 
𝑎𝑡 under each state 𝑆𝑡, by following any policy after 𝑡. After 
obtaining this function, the corresponding optimal policy of the 
RL can be easily inferred by Eq. 9, i.e. always take the action with 
maximum optimal long-term value under the current state. 

𝑄(𝑆𝑡, 𝑎𝑡) = max𝜋 𝐸𝜋[𝑈𝑡|𝑆𝑡, 𝑎𝑡, 𝜋]                           (8) 

𝑎𝑡
∗ = arg𝑎 max 𝑄(𝑆𝑡, 𝑎)                                 (9) 

Bellman equation as Eq. 10 is usually adopted to estimate the 
optimal long-term value function via an iterative approach. 

𝑄(𝑆𝑡, 𝑎𝑡) = 𝐸𝑆𝑡+1
[𝑟𝑡 + 𝛾 × max𝑎 𝑄(𝑆𝑡+1, 𝑎)|𝑆𝑡 , 𝑎𝑡]        (10) 

As there are multiple couriers working in each region 
simultaneously, our model CCRL based on RL theory is 
formulated in a multi-agent way, i.e. couriers in the same region 
share a common model; therefore, at each period, these couriers 
get their actions one by one with a common policy based on their 
own specific states. Multi-agent setting can largely reduce the 
action space, i.e. from 9𝑛 to 9, where 𝑛 is the number of couriers 
in the region. However, while achieving high efficiency, how to 
make these agents interact cooperatively is a nontrivial challenge. 
Our model deals with the cooperation issue among couriers by 
designing the state in a novel way. Besides, region context is 
considered by pruning rules, further improving model efficiency. 

3.3.2      Contextual Cooperative Reinforcement Learning 

At each period 𝑡, we generate actions for couriers in the same 
region sequentially, i.e. instead of respectively focusing on each 
of them and generating an action without considering the others, 
we firstly consider 𝑐1 and generate an action for her; based on 
this assigned action to 𝑐1, we generate an action for 𝑐2; then there 
comes the action for 𝑐3 which is dependent on those of 𝑐1 and 𝑐2; 
repeat these steps until all the 𝑛 couriers in this region have 
obtained their actions in 𝑡 ; then they conduct their actions 
simultaneously and transit to their next states in period 𝑡 + 1. 
Generating actions in a sequence instead of a parallel way aims at 
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better guaranteeing the cooperation among couriers. How to 
design each component in CCRL is as follows. 

Agent. Couriers in one region are homogeneous agents; they 
choose where to go and work in each period by a common policy. 

Action. An action 𝑎𝑡 ∈ 𝑅9 describes which grid the courier 
chooses to go at the beginning of period 𝑡. 

 

Fig 7. State designation in CCRL 

State. At each period 𝑡, a courier 𝑐𝑤 has a state consisting of 
two components as 𝑆𝑤𝑡 = (𝑆𝑤𝑡

1 , 𝑆𝑤𝑡
2 ), where 𝑆𝑤𝑡

1  means the global 
state while 𝑆𝑤𝑡

2  denotes the local one. Global state 𝑆𝑤𝑡
1 =

(Υ𝑤𝑡, 𝑊𝑤𝑡) describes the already came but unserved requests by 
Υ𝑤𝑡 and where the other couriers are by 𝑊𝑤𝑡 . For simplicity, we 
represent Υ𝑤𝑡 and 𝑊𝑤𝑡 by matrix corresponding to the grid map 
of the region, e.g. Fig. 4 A), where each entry corresponding to a 
grid in the region means how many unserved requests or couriers 
are there; to entries corresponding to grids not in this region, we 
set them as zero. Another benefit of matrix representation here is 
to make Convolutional Neural Network applicable later if 
necessary. Local state 𝑆𝑤𝑡

2 = (𝐷𝑤𝑡, 𝐿𝑤𝑡 , 𝑡) describes the remaining 
parcels of the specific courier by 𝐷𝑤𝑡, her current location by 𝐿𝑤𝑡 , 
and the current time by 𝑡; 𝐷𝑤𝑡 is represented by a matrix which is 
similar with Υ𝑤𝑡 and 𝑊𝑤𝑡 while 𝐿𝑤𝑡 and 𝑡 are all represented by a 
one-hot vector. It is intuitive that local state 𝑆𝑤𝑡

2  varies over 𝑐𝑤 in 
the same period 𝑡. Besides, as actions are generated in a sequence 
way and each courier is impacted by the already determined 
actions of other couriers before them, global state 𝑆𝑤𝑡

1  varies over 
𝑐𝑤 in the same period as well. 

Fig. 7 gives an example to elaborate how to design the state of 
each courier in period 𝑡. Assuming there are three couriers whose 
remaining parcels are respectively shown in Fig. 7 A), B) and C); 
each shaded grid means the current location of the corresponding 
courier, e.g. 𝑐1 is in grid 𝑔3 now. Fig. 7 D) describes the currently 
unserved requests. For 𝑐1, the unserved request matrix in Fig. 7 D) 
and the distribution of the other two couriers 𝑐2 and 𝑐3 in Fig. 7 F), 
i.e. one in 𝑔9 while the other one in 𝑔11, make up her global state; 
the remaining parcel matrix of 𝑐1 in Fig. 7 A), her current location 
𝑔3, and the current time 𝑡, make up her local state. Based on this 

state, an action is assigned to 𝑐1; we assume the assigned action is 
go to the left grid, i.e. 𝑔2 as shown in Fig. 7 E). After 𝑐1 got her 
action, we consider 𝑐2 . Firstly, we approximate how many 
requests are expected to be served by 𝑐1 inner 𝑔2 in 𝑡 after she 
conducts the assigned action; assume this approximation as 𝛿1 =
3 in our example. Update the unserved request matrix in Fig. 7 D) 
by reducing 𝛿1 from the entry corresponding to 𝑔2; we obtain the 
unserved request matrix for 𝑐2 as in Fig. 7 G). Generate the 
distribution of other couriers for 𝑐2  as Fig. 7 H); where the 
location of 𝑐1  is updated to 𝑔2  considering her action. 
Consequently, Fig. 7 G) and Fig. 7 H) make up the global state of 
𝑐2 while her local state is made up by her remaining parcel matrix 
in Fig. 7 B), her current location 𝑔9, and the time 𝑡. Repeat these 
steps until all couriers are considered. 

Immediate reward. After taking an action at the current 
state and transiting to the next one, a courier obtains a reward 𝑟𝑡, 
which means the total number of tasks she completed in period 𝑡. 

After formally formulating CCRL, we design a Deep Neural 
Network to estimate its optimal long-term value function by Eq. 
10. As discussed in section 3.2, the working area of each courier 
has been constrained to their corresponding clusters obtained 
from BDSB; which implicitly considers the geographical context 
of the region. Consequently, when some couriers are in some 
grids, they can only choose actions from a portion of all the nine 
possible ones. Instead of requiring the optimal long-term values 
corresponding to some state-action pairs to be zero, we prune the 
actions that will lead couriers to go out of their clusters directly. 
Pruning rules can largely improve the model training efficiency, 
which will be discussed in experiments. System simulator for 
model training and evaluation is elaborated in Appendix. 

4. EVALUATION 

Experiments on road network data and historical express data 
from Beijing are conducted to confirm the outperformance of our 
model. Express data are provided by one of the largest e-
commerce platforms in China. Tab. 2 gives the data statistics. 

Tab. 2. Real-world data 

Time Duration 1, Aug. – 15, Aug. 2018 
# range ≈ 15 × 15 km2 
# grids 30 × 30 

# transit stations 106 
# couriers 1, 786 
# parcels 531, 920 

4.1 Metric and Baselines 

Metric. Percent of Completed Tasks (PCT) in an episode. 
Baselines. Eleven baselines are adopted; the first two are 

clustering algorithms to confirm the outperformance of BDSB 
while the remaining ones are for online management. Baselines 
3−6 are heuristic algorithms considering the context of the region 
and 7−11 are based on reinforcement learning theory. 
PNC. Component 1 in BDSB algorithm. 
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PC. Do not consider the neighboring property in PNC. 
Random. Select a random action for each courier at each time. 
Value Greedy (VG). Conduct random policy for many times and 
calculate the value of each grid in each period by the averages of 
their immediate rewards. In each period 𝑡, a courier chooses the 
action whose value is the largest in 𝑡. 
Value Softmax (VS). Similar with VG; but in each period each 
courier chooses the action based on the Softmax probability 
estimated from the average values instead of a greedy way. 
Top−𝒌. For each courier, estimate how many remaining tasks 
each grid has, and randomly choose one from the top−𝑘 ones. 
Q-Learning. Standard Q-Learning [5][17] where a value table is 
learned for online guidance; the state reduces to (𝐿𝑤𝑡, 𝑡). 
Only parcel (OP). Only consider the remaining parcels of each 
courier; the state of each courier at period 𝑡 is (𝑊𝑤𝑡 , 𝐷𝑤𝑡, 𝐿𝑤𝑡 , 𝑡). 
Only request (OR). Only consider the currently unserved 
requests; the state of each courier at period 𝑡 is (Υ𝑤𝑡 , 𝑊𝑤𝑡 , 𝐿𝑤𝑡 , 𝑡). 
Independent DQN (IDQN). Do not consider the cooperation 
among couriers; therefore, the state of each courier at period 𝑡 is 
(Υ𝑡, 𝐷𝑤𝑡, 𝐿𝑤𝑡 , 𝑡); here Υ𝑡 is shared by all couriers in 𝑡. 
No Context (NC). Do not consider the context of the region; 
therefore, no pruning rule are adopted when generating actions. 

4.2 Evaluation Results 

Experiment results for the hyper region in Fig. 4 A) are 
detailly analyzed in this section. We respectively set the number 
of couriers in it as 𝑛 = 40, 60, 80, which correspond to no more 
than 35, 50, 65 percent of the currently hired ones in it. We 
consider the morning in the day as an episode, i.e. 8:00am–
1:00pm. Experiments in other regions and episodes are also 
conducted; as the results are similar, we do not discuss them here. 

An Operation Trick. In each episode, we allocate little more 
parcels to couriers than those should be delivered, e.g. 8:00am–
1:00pm corresponds to 0.4 day time, but we allocate 50 instead of 
40 percent of all the parcels in the day to couriers for this episode. 
Because couriers may not complete all the loaded parcels in each 
episode, this setting avoids parcel accumulation, e.g. 50 percent of 
the parcels are dispatched, of which 80 percent are completed in 
the episode, thus 50 × 80% = 40 percent of all the parcels in the 
day are delivered to their customers in 0.4 day. Based on this 
setting, we guarantee that our model can averagely complete all 
the delivery tasks per day. Otherwise, more and more parcels will 
accumulate at the transit station, which is not reasonable as 
parcels arrived at transit station must be delivered. 

4.2.1      BDSB Clustering Results 

Fig. 8 shows the clustering results of BDSB or PNC or PC. Fig. 
8 A) − C) show the delivery-service burden of each cluster 
obtained by BDSB, respectively under each given number of 
couriers, i.e. 𝑛 = 40, 60, 80. As we can see, almost even work 
burdens among clusters can be guaranteed. Relative standard 
deviations of the burden under these three conditions are 
respectively 0.029 , 0.041 , 0.046 , which are very small. 
According to Lemma 2, all the clusters can have an equal 
delivery-service burden after enough iterations, however, after a 
given number of iterations, we pause the algorithm and return 

the result. We do this for two reasons; firstly, this step only aims 
to give a good initialization, thus it is not necessary to ensure an 
exact balance; besides, we pause earlier thus the coverage area of 
each cluster is not large, which is preferred in practical operation. 

Fig. 8 D) shows the delivery-service burden of each cluster 
obtained by PNC when 𝑛 = 40. As we can see, PNC cannot 
ensure the work burden balance property satisfactorily, thus the 
second component BIC in BDSB is necessary. Fig. 8 E) – F) show 
the burden of each cluster obtained by PC when 𝑛 = 40 and 60 
respectively; their unbalance issue is less severe than those of 
PNC, which is intuitive because PNC also tries to ensure the 
neighboring property. However, PC still cannot perform well 
enough, especially when 𝑛 is large, i.e. 𝑛 = 60 in Fig. 8 F), leading 
to unfair revenues, labor waste and overwork. 

Fig. 8 G), H) and L) show some clusters obtained by BDSB 
when 𝑛 = 40 , confirming that BDSB can guarantee the 
neighboring property. 

4.2.2      CCRL Online Management Results 

Obtaining clusters by BDSB / PNC / PC, we conduct online 
courier management by nine baselines and our model; 
experiment results are summarized in Tab. 3, where the PCT of 
delivery, request and ALL tasks are summarized. 

As we can see, more delivery tasks can be completed than the 
request ones when 𝑛 is small while more requests can be served 
when 𝑛 becomes large; this is reasonable as we always ask 
couriers to deliver parcels first in each period; when the number 
of couriers increases, more labor can be devoted to serve the pick-
up requests. Because delivery tasks in one grid can only be 
conducted by the couriers who have loaded its parcels while the 
request tasks can be served by any one working inner it, it is 
reasonable that more requests can be completed when 𝑛 is large. 

According to Tab. 3, the first four heuristic algorithms cannot 
work satisfactorily; this is intuitive as they consider neither 
cooperation among couriers nor the long-term optimization 
target. VG can rarely improve Random or even performs worse 
when 𝑛 = 60 and 80 while VS has obvious improvement; this is 
because the system is very dynamic, thus historical values cannot 
be totally trusted. However, they can be partially referred to, 
therefore, VS which combines historical values with random 
policy performs the best among these three algorithms. Top−𝑘 
performs the best among all heuristic algorithms, as it has a 
myopic optimization target, besides, it depends on real-time 
observations, which is more suitable to a dynamic system. 

Baselines 5 − 9 confirm the necessity of each component in 
CCRL model. As a traditional RL method, Q-learning cannot 
address the large space issue, thus can only consider limited 
information of the environment, leading to a poor performance. 
OR does not consider parcel information, thus can complete a 
little bit more service tasks; this is possible as the model may 
make couriers sacrifice some delivery tasks to complete more 
service ones. However, as our target is to complete more total 
tasks, OR is not good enough, neither is OP which does not 
consider the pick-up requests. IDQN focuses on each courier in a 
parallel way and does not consider the cooperation among them; 
therefore, its performance is worse than our model. NC also 



 

 

performs poorly as it does not incorporate prior knowledge in model training, leading to slow convergence, or even bad results. 

Tab. 3. PCT of each model with a given number of couriers 

# Couriers 40 60 80 
Parcel Request All task Parcel Request  All task Parcel Request All task 

Random 0.619 0.482 0.552 0.717 0.694 0.705 0.752 0.829 0.790 
Value Greedy 0.553 0.653 0.602 0.555 0.692 0.622 0.567 0.820 0.691 
Value Softmax 0.687 0.657 0.672 0.712 0.791 0.751 0.726 0.886 0.804 

Top−𝑘 0.766 0.596 0.684 0.808 0.757 0.783 0.802 0.880 0.840 
Q-Learning 0.719 0.700 0.710 0.731 0.822 0.775 0.785 0.916 0.849 
Only Parcel 0.802 0.695 0.750 0.831 0.836 0.833 0.811 0.919 0.864 

Only Request 0.776 0.740 0.758 0.760 0.859 0.809 0.768 0.935 0.850 
Independent DQN 0.794 0.666 0.731 0.801 0.821 0.811 0.814 0.903 0.857 

No Context 0.733 0.634 0.684 0.758 0.747 0.752 0.723 0.790 0.756 
BDSB + CCRL 0.812 0.715 0.765 0.835 0.846 0.841 0.825 0.925 0.874 

 

Fig. 8. Clustering results with BDSB / PNC / PC algorithm

4.2.3      Case Study 

 

Fig. 9. Sequence of actions of a courier 

Fig. 9 shows a sequence of actions of a specific courier, where 
an arrow with a number means the action order, red grids show 
the locations of her remaining parcels while the green ones 
describe hot request grids around her; the darker the color is, the 

more tasks there are. As we can see, when choosing the next 
action, there is no priority between delivery and service, i.e. the 
courier does not try to complete any of them firstly but conduct 
them alternatively; this is reasonable as our target is to complete 
more tasks instead of any one of them. Besides, we can see that 
the courier does not work greedily, i.e. always chooses the grid 
with the most tasks; we think she works in this way to achieve a 
long-term instead of myopic good result. 

Cooperation among couriers are also analyzed, i.e. will 
couriers go to the same grid and compete for tasks. According to 
experiments, we observe that couriers often go to the same grid 
under three scenarios; the first one is as Fig. 10 where 𝑐1 and 𝑐2 
both go to 𝑔1 in the same period; Fig. 10 A) and B) respectively 
show the remaining parcels of them; Fig. 10 C) show the unserved 
requests around them. Although both 𝑐1 and 𝑐2 go the 𝑔1, there is 
no competition between them, because 𝑐1 goes to 𝑔1 for requests 
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while 𝑐2 goes there to deliver as she has remining parcels in 𝑔1. 
Another scenario is that multiple couriers go to a same grid but 
neither of them has remaining parcels there. In this condition, 
there are often many requests in that grid waiting for service, 
thus these couriers work together there instead of competing. 
Last scenario is that several couriers have their own parcels in a 
same grid, thus they work separately there without competing. 

 

Fig. 10. Cooperation among couriers 

5. RELATED WORK 

Express System and Operation. Express systems are widely 
deployed in many major cities and generating massive express 
data. Zhang et al. [4] systematically studied the large-scale 
dynamic city express problem and proposed some heuristic 
algorithms. However, no real-world express data are analyzed 
nor used in their work. Besides, they gave not only each request, 
but also each parcel a deadline, which is not often the case in 
practical operation; random noise was not considered neither. 
Some studies tried to adopt crowdsourcing to deliver parcels to 
customers, e.g. Sadilek et al. [3] asked a group of twitter users to 
deliver parcels; Mclnerney et al. [2] employed mobile users for 
delivery; Chen et al. [1] exploited existing taxi service to deliver 
packages to their destinations. As our problem is to effectively 
manage the hired couriers for delivery and pick-up service, these 
previous works cannot be adopted to our problem directly. 
Besides works on express system, many studies of operation on 
spatio-temporal systems are conducted as well. Lin et al. [5] gave 
a solution to the large-scale fleet management problem for ride-
sharing platforms. Wei et al. [8] focused on how to intelligently 
control the traffic light such that the average waiting time of each 
vehicle is minimum. For a bike-sharing system, there are multiple 
studies [7][9][12][14] about how to reposition bikes among 
stations in a city to reduce the customer loss. As a specific 
operation problem with specific formulation, we cannot adopt 
these previous models in our work directly. 

Deep Reinforcement Learning. Because of the large state 
and action spaces in many practical problems, DRL is proposed to 
utilize deep neural networks for function approximation in the 
traditional RL model, which significantly improve the 
performance of many challenging applications [10][11][13]. 
Currently, some studies [5][7][8] try to adopt DRL to solve 
practical problems on spatio-transit data. Besides, models 
applying DRL to recommendation is proposed as well; e.g. Chen 
et al. [15] proposed a robust DQN method to gain better 
recommendation performance in a dynamic e-commerce platform; 
Hu et al. [16] adopted DRL to learn an optimal ranking policy for 
each search, etc. However, these models cannot be directly 
adopted to our problem neither. 

 

6. CONCLUSION 

In this paper, we propose a reinforcement learning based 
framework to manage the couriers in an express system. We 
firstly divide the entire city into independent regions, each of 
which has a constant number of couriers. A BDSB clustering 
algorithm is then proposed to dispatch parcels to couriers at 
transit station in each region. Afterwards, couriers in each region 
are guided to deliver and serve by a common policy, which is 
learned by CCRL model. We confirm the outperformance of our 
model by experiments on real-world data from Beijing. 
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Appendix - SYSTEM SIMULATOR 

In this section, we design a simulator based on road network 
data and historical express data, to simulate how the system 
operates in each episode. Firstly, we estimate the driving distance 
between any two tasks in each grid based on the road network, 
e.g. assuming that any two road nodes 𝑒𝑣 and 𝑒𝑘 has a distance 
𝜑𝑣𝑘 , we estimate the task distance inner 𝑔𝑤  with a normal 
distribution 𝑁𝑤 by fitting all 𝜑𝑣𝑘 where 𝑒𝑣, 𝑒𝑘 ∈ 𝑟𝑛𝑤 and 𝑟𝑛𝑤  is 
the road network in 𝑔𝑤. As parcels and requests are robust from 
day to day, we then adopt normal distributions learned from 
historical data to generate them at each grid. 

An episode. Initially, our simulator generates parcels located 
in each grid for the entire episode; then BDSB allocates them to 
each courier. Afterwards, for each period 𝑡 in this episode, we 
firstly update the unserved requests, i.e. those which are not 
served in a waiting time 𝜗 are deleted and those that may come in 
𝑡 are generated; then our simulator simulates the activities of 
each courier in 𝑡 one by one. Each courier works as follows. 

 Courier 𝑐𝑤 conducts her action, i.e. goes to 𝐿𝑤𝑡 to work in 𝑡. 
 If 𝑐𝑤 has undelivered parcels in 𝐿𝑤𝑡 on her van and there is 

remaining time before the next period, generate a distance for 
𝑐𝑤 to go and deliver. Duration for this parcel delivery is 

estimated by Eq. 11, where 𝑑𝑥~𝑁𝑤𝑡 is the delivery distance; 
𝑁𝑤𝑡 is the task distance distribution in grid 𝐿𝑤𝑡 ; 𝑣𝑟  is the 
speed of a delivery van; 𝑡𝜀 is a constant time needed by each 
task, e.g. the time for checking or form filling, etc. 

𝑡𝑥 =
𝑑𝑥

𝑣𝑟
+ 𝑡𝜀                                      (11) 

Check whether the remaining time in 𝑡 is enough for 𝑡𝑥, if yes, 
conduct this parcel delivery, update the remaining time in 𝑡 by 
reducing 𝑡𝑥 , update the remining parcels of 𝑐𝑤  in 𝐿𝑤𝑡  by 
reducing one, and repeat step 2; otherwise, go to step 3. 

 If there are unserved requests in 𝐿𝑤𝑡 and there are remaining 
time in 𝑡, generate a distance for 𝑐𝑤 to go and serve. Duration 
for this service is also estimated by Eq. 11. Check whether the 
remaining time is enough for this service, if yes, conduct it, 
update the remining time, update the remining unserved 
requests in 𝐿𝑤𝑡 by reducing one, and repeat step 3; otherwise, 
𝑐𝑤 terminates her work in 𝑡. 

Simulating the activities of each courier one by one matches the 
action generation process well, forcing each courier to consider 
the already determined actions of others enough. 

 


