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ABSTRACT
Unsupervised spatial representation learning aims to automatically
identify effective features of geographic entities (i.e., regions) from
unlabeled yet structural geographical data. Existing network em-
beddingmethods can partially address the problem by: (1) regarding
a region as a node in order to reformulate the problem into node
embedding; (2) regarding a region as a graph in order to reformulate
the problem into graph embedding. However, these studies can be
improved by preserving (1) intra-region geographic structures, which
are represented by multiple spatial graphs, leading to a reformula-
tion of collective learning from relational graphs; (2) inter-region
spatial autocorrelations, which are represented by pairwise graph
regularization, leading to a reformulation of adversarial learning.
Moreover, field data in real systems are usually lack of labels, an un-
supervised fashion helps practical deployments. Along these lines,
we develop an unsupervised Collective Graph-regularized dual-
Adversarial Learning (CGAL) framework for multi-view graph rep-
resentation learning and also aGraph-regularized dual-Adversarial
Learning (GAL) framework for single-view graph representation
learning. Finally, our experimental results demonstrate the en-
hanced effectiveness of our method.
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1 INTRODUCTION
A geographic entity is a spatial unit, such as a state, county, or
neighborhood, and is socially a place where people live, work, con-
sume, and entertain. For convenience, we refer geographic entities
as regions unless stated otherwise. Spatial representation learn-
ing aims to identify effective features to represent regions with
heterogeneous yet structural geographical data. Studying the repre-
sentations of regions can help us better understand the structures
and dynamics of cities, support regional planning, improve city
governance, and ultimately make our cities smarter and more sus-
tainable [18]. However, almost all field data are unlabeled, which
creates significant challenges toward practical deployment [31]. In
this study, we investigate the problem of deep unsupervised spatial
representation learning.

Existing network and word embedding techniques (e.g., Skip-
gram [5], LINE [22], DeepWalk [19], AutoEncoder [13]) can partially
solve the problem. Moreover, some preliminary studies [25, 27, 32]
have been developed for spatial representation learning. These stud-
ies typically tackle the problem from three perspectives: (1) Learn
spatial representations from homogeneous network, where a region
representation is regarded as a node embedding [25]; (2) Learn node
embeddings from heterogeneous networks, where nodes are mix-
ture of regions, mobility events, or texts [30]; (3) Regard a region as
a network, and learns representations from the entire network [27].
However, the three strategies have some limits. For example, the
first strategy only captures inter-region spatial autocorrelations.
The second strategy ignore intra-region structural information.
The third strategy captures intra-region structural information, but
ignores inter-region or cross geo-type correlations.
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Indeed, the emergence of representation learning and adversarial
learning techniques provide great potential to overcome the limita-
tions of prior literatures. However, several unique challenges arise
toward this goal. (1) How can we preserve intra-region geographic
structures? (2) How can we preserve inter-region spatial autocorre-
lations that are described by pairwise graph regularization? (3) How
can we simultaneously address (1) and (2) in a unified unsupervised
learning framework?

First, what differentiate a region from other regions? To answer
this question, we analogize a region with a webpage, which is
uniquely identified by not just contents, but also webpage layout.
Similarly, a region is uniquely identified not only by POIs (contents),
but also by geographic structures. Graphs with nodes and edges
have been proved to effectively describe network structures. We
propose to regard POIs as nodes and construct multi-view graphs:
(1) a POI-POI distance graph, and (2) a POI-POI mobility graph.
This leads to a new problem reformulation: Given a region that is
described by two spatial graphs, how can we learn region represen-
tations collaboratively from the two relational graphs to preserve
graph structures? We propose to revise the auto-encoder network
architecture through employing an assemble-disassemble strategy:
an assemble step to aggregate multiple graphs into a fused embed-
ding and a disassemble step to disaggregate a fused embedding into
multiple graphs. To preserve the graph structures, we adopt the
deep adversarial autoencoder to encode input graphs into embed-
dings that can minimize reconstruction loss as well as constrain
the embedding space to mach a desired statistical characteristics.

Secondly, geographic entities exhibit spatial autocorrelations
among them. If two regions show higher spatial autocorrelations,
their embeddings are more likely to be close to each other as well.
The pairwise inter-region spatial correlations of all regions can be
described by a similarity matrix calculated with prior edge informa-
tion (e.g., demographic data, geo-tagged posts). Traditional method
of employing spatial autocorrelations as a graph regularization
term (GRT) requires extensive parameter tuning efforts to identify
the weight of GRT. Thus, we propose to translate GRT into a batch
adversarial learning reformulation. We add a second adversarial
learning component into the training process. The second attacker
constrains the representations by matching the inter-region simi-
larities of learned latent representations to the graph regularization
term. Standard adversarial learning strategy draws the true samples
from a prior distribution. We analogize this process with sampling
subgraphs from the entire inter-region autocorrelation matrix. In
this way, we exploit a dual adversarial strategy to learn the attack
feedbacks benchmarked by not just intra-region geographic struc-
tures, but also inter-region spatial autocorrelations. Unfortunately,
the feedbacks of the second attacker are from the inconsistency
between embedding-based inter-region similarities and GRT, which
means the second attacker relies on the encoder outputs of all in-
puts. Thus, a batch adversarial method is proposed to address this
issue.

Along these lines, we develop an unsupervised collective graph-
regularized dual-adversarial framework to learn deep spatial rep-
resentations. Our main contributions are the following: (1) We
construct multi-view spatial graphs to characterize the geographic
structures of a region. (2) We reformulate the spatial representa-
tion learning problem as a joint objective of collaborative learning

from multi-view graphs, preserving intra-region geographic struc-
tures, and preserving inter-region spatial autocorrelations. (3) To
tackle the reformulation, we integrate an auto-encoder framework
with an assemble-disassemble strategy and a dual-adversarial learn-
ing strategy as a unified unsupervised model. (4) We examine the
impacts of different calculation methods of inter-region spatial
autocorrelations on the quality of representations. (5) As applica-
tions, we exploit the learned representations of geographic regions
for predicting urban community popularity. We conduct extensive
experiments to demonstrate the enhanced performance of the pro-
posed method with real-world big geo-tagged data (POIs, checkins,
GPS trajectories).

2 PROBLEM STATEMENT AND FRAMEWORK
OVERVIEW

We first introduce some important definitions and the problem
statement, and then present an overview of the proposed method.

2.1 Definitions and Problem Statement
Definition 2.1. Spatial Region In this paper, a spatial region

consists of a residential complex and its neighborhood area (e.g.,
area within a one-kilometer radius). In each residential complex,
there are multiple apartment buildings and each apartment building
has many apartments. Additionally, the neighborhood area of each
residential complex consists of various POIs that serve different
functions for residents and visitors in the community. For each
region, we have access to its POIs, road networks, checkin texture
comments, crowd flows at different time (taxi, bus, and bike GPS
trajectories). Without loss of generality, a spatial region can be
generalized to any spatial entity, that refers to a geographic unit
which occupies a position in space with data describing its features
and geographic location.

Definition 2.2. Intra-region Geographic Structure The intra-
region geographic structure describes the geographic configuration
and layout within a region, which are often represented by graphs
with POIs as nodes and POI-POI relations as edges. There are mul-
tiple relations from different viewpoints between two POIs. For
instance, we can measure the geographic distance between the POIs
to form a distance graph and count trajectories between the POIs
to form a mobility connectivity graph.

Definition 2.3. Inter-region Spatial Correlations The inter-
region spatial autocorrelations refer to the pairwise geographic
mutual information among all regions, which are represented by a
correlationmatrixRK×K whereK is the total number of regions and
Ri j shows the correlation between region i and j. To describe the
inter-region spatial autocorrelations, we learn three region-region
correlation matrices by exploiting (i) geo-tagged textual description
(i.e. property category, special features, business district, etc), (ii)
temporal dynamics of crowd flows, and (iii) urban function topics.

Definition 2.4. Problem Statement. In this paper, we study the
problem of unsupervised spatial representation learning by con-
sidering both intra-region geographic structures and inter-region
spatial autocorrelations. We aim to learn the vector representations
of regions which can preserve not only the geographic structures,
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Figure 1: An overview of the proposed framework for
unsupervised spatial representation learning

but also the region-region correlations. Formally, consider the ex-
istence of a set of K regions C = {ck }Kk=1. Each region ck ∈ C is
described by a distance graph Gdk ∈ G

d , whereGd = {Gdk }
K
k=1, and

a mobility connectivity graph Gmk ∈ G
m , where Gm = {Gmk }

K
k=1.

The inter-region autocorrelation matrix is denoted by S . The ob-
jective is to learn a mapping function f : {Gd ,Gm → Rn }, where
n is the dimension of embedding vectors, to map multiple spatial
graphs into the embedding space that preserves intra-region ge-
ographic structures and inter-region spatial autocorrelations. We
formulate this problem as a task of unsupervised collective graph-
regularized dual-adversarial representation learning. The reasons
are: (1) Field data in real systems are lack of labels, which creates
significant challenges for practical deployment. This task intends
to build a feature learning framework with unlabeled, heteroge-
neous, and relational spatial data in an unsupervised fashion. (2)
The intra-region geographic structures are represented by multiple
spatial graphs, leading to a reformulation of collective learning
from relational graphs. (3) The inter-region spatial autocorrelations
are represented by pairwise graph regularization, which can be
converted into an adversarial learning reformulation by regarding
graph regularization as attacks.

2.2 Framework Overview
Figure 1 shows an overview of our proposed framework that in-
cludes the following essential tasks: (i) constructing multi-view
spatial graphs for each region; (ii) unsupervised spatial represen-
tation learning via a collective graph-regularized dual-adversarial
encoding-decoding framework; (iii) applications to checkin vol-
ume prediction. Specifically, in the first task, we collect large-scale
POIs and human mobility data, construct both geographic distance
graphs and human mobility connectivity graphs for each region.
In the second task, we develop a collective graph-regularized dual-
adversarial encoding-decoding framework to achieve a joint ob-
jective of intra-region structural preservation, relational learning
among multi-view spatial graphs, and inter-region spatial correla-
tions. In particular, for each region, the framework takes multi-view
graphs as inputs. An assemble encoding step will fuse multi-view
graphs into a fused latent embedding. Later, an disassemble step

will dis-aggregate the fused embedding to reconstruct the original
multiple graphs. In addition, we incorporate two adversarial compo-
nents. The first adversarial component imposes a prior distribution
on the embedding space to achieve peer preservation, in which two
structurally similar graphs share similar representations. The sec-
ond adversarial component matches the pairwise cosine similarities
of embedding vectors with given inter-region spatial autocorrela-
tions. In the third task, we exploit the learned representations of
multi-view region graphs to support important applications such
as checkin volume prediction.

3 CONSTRUCTING MULTI-VIEW GRAPHS OF
SPATIAL REGIONS

We aim to learn the representations of the structural information
of a spatial region from multi-view spatial graphs that describe a
region from different perspectives: (1) geographical distance and
(2) human mobility activity.
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Figure 2: An example of multi-view graphs [8].

A View of Geographical Distance. The geographical distance
view can demonstrate the static geographical distribution of POIs
within regions. In the geographical distance based spatial graph, the
vertexes denote POI categories, and the edges denote the average
distance among POI categories [18]. We use POI categories instead
of just POIs due to the reason that traditional graph embedding
methods, such as autoencoder, cannot take inputs with dynamic
sizes. Number of POIs in each community varies but the amount of
POI categories stays fixed.

A View of Human Mobility Connectivity. The human mo-
bility view can demonstrate the dynamic human mobility pat-
terns within regions. In the human mobility connectivity based
spatial graph, the vertexes denote POI categories, and the edges
denote the human mobility connectivities among POI categories.
To quantify the human mobility connectivity, we adopt the four-
step method [27] as follows: Specifically, we first estimate POI
visited probabilities as follows: Given the drop-off point dp of a
taxi trace, we model the probability of a POI p visited by a pas-
senger as a parametric function, whose input x is the road net-
work distance between the drop-off point dp and the POI p: P(x) =
β1
β2
· x · exp(1 − x

β2
), where β1 = max

x
P(x) and β2 = argmax

x
P(x);

Second, we aggregate all probabilities from all drop-off points in
taxi traces: τ (p) =

∑
dp∈D P(dis(dp,p)), where D is the drop-off

point set of taxi traces in the region; Then, for each POI category
i in a region, the POI category-level aggregated visit probabil-
ity is given by: ϕi =

∑
p∈i τ (p), where p ∈ i denotes the POI p

belongs to the ith POI category; Finally, we calculate the flow
probabilities from the ith POI category to the jth POI category:



ϕ ®i j =

{
ϕi · ϕ j , i f i , j
0, i f i = j

. We use the flow probabilities to rep-

resent the human mobility connectivities among POI categories.

4 COLLECTIVE GRAPH-REGULARIZED
DUAL-ADVERSARIAL REPRESENTATION
LEARNING

We present a collective graph-regularized dual-adversarial repre-
sentation learning framework to model both intra-region structures
and inter-region autocorrelations.

4.1 Model Intuitions
There are intra-region multi-view geographic structures and inter-
region spatial autocorrelations among regions. Therefore, in our
approach, we build the representation learning framework of geo-
graphic regions based on the following intuitions.

Intuition 1: Structural Preservation After reducing regions
into graphs, we need a representation learning model to convert
graphs into embedding vectors for automated quantification and
profiling. As a result, the model should be capable of projecting
graphs into latent space while preserve corresponding features and
graph structures.

Intuition 2: Collective Learning from Multi-view Graphs.
Each region can be represented by more than one spatial graph
as its features can be characterized from different perspectives.
Each independent view of the regions as well as their interactions
can contribute to the structure representation. In consequence, the
model should be able to collaboratively learn representations of
regions from multiple relational graphs.

Intuition 3: Inter-region Spatial Autocorrelation. Different
regions can also contain underlying spatial autocorrelations. For
example, those regions with similar intrinsic properties (e.g., similar
urban functions) should share similar feature representations as
well. In another word, the proposed method should have the ability
to model region-region spatial autocorrelation in representation
learning.

4.2 Base Models
Autoencoder [2] is an unsupervised neural network model that is
trained to project input signals through layers of linear mapping
into lower-dimension embedding space and can map embedding
vectors back to input space such that the reconstructed input is as
close to the original input as possible.

The network consists of two main parts: encoder and decoder.
The encoder takes an input x and maps it to an embedding vector z.
The process can be viewed as an encoder function z = σ (Wx + b)
where b is the bias term, W is the weight matrix, and σ is the
activation function. The decoder reconstruct the embeddings back.
This step can be viewed as a decoder function x̂ = σ (W ′z+c)where
c is the bias term,W ′ is the weight matrix, and σ is the activation
function. The entire autoencoder network is trained to minimizing
the reconstruction error LR (x ,x ′) = ∥x − x ′∥2.

Recent autoencoders, such as Variational Autoencoder and Ad-
versarial Autoencoder, incorporate encoder and decoder as stochas-
tic mappings, pencoder (z |x) and pdecoder (x̂ |z), instead of determin-
istic functions. In Variational Autoencoder, a KL divergence penalty

is used to impose an arbitrary prior distribution on the embedding
vectors. While in Adversarial Autoencoder, generative adversarial
network is used to adversarially learn an encoder that can map the
aggregated posterior to a prior distribution. For our base model, we
utilize the adversarial autoencoder mode.

4.3 Integrating Graph Regularization via Dual
Adversarial Learning

Traditional adversarial autoencoder network constrains the aggre-
gated posterior distribution of encoder output to match an arbitrary
prior distribution. The model does that by attaching an adversarial
network to the embedding vector of the autoencoder. The encoder
also functions as a generator and the adversarial network ensures
that the output of encoder can trick the discriminator to think that
the output of encoder is from the true prior distribution.

We expect to achieve inter-region graph regularization by adding
a second adversarial learning network to the embedding layer of
the autoencoder. To measure the inter-region spatial correlations,
we can calculate the pairwise cosine similarity matrix for learned
embedding vectors. The true prior similarity matrix is provided as
the target matrix. Meanwhile, in our second adversarial network, we
introduce a new loss function LS , which measures the normalized
Frobenius distance between two matrices, R ∈ Rn×n , the target
similarity matrix given as prior, and M ∈ Rn×n , the calculated
similarity matrix obtained through taking normalized inner product
of learned embedding vectors. The goal is to minimize the loss
function LS to match the inter-region correlation matrix with prior
correlation matrix.

We implement LS as follows,

LS (M,R) = ∥M − R∥F (1)

where each element Mi j is calculated by Mi j =
zi ·zj
|zi | |zj |

and zk
represents the learned embedding vector of kth region.

Since we typically train our model using mini batches due to
computational resource limitations, we can tweak the loss function
a little to adapt the batch training method. Given b, the mini-batch
size, IB , the set of region indices in the batch, K , total number of
input regions, the loss function LS is defined as

LS (Mb ,R,U ) =
Mb −URUT


F

(2)

whereMb ∈ R
b×b includes pairwise similarity among the learned

embedding vectors of batched inputs, U ∈ Rb×K is the selection
matrix including kth row of identity matrix for k ∈ IB such that
the product URUT represents the prior sub-similarity matrix with
matched indices as the batched inputs.

4.3.1 Inter-region Autocorrelations. One key question raised
here is how we calculate the similarity matrix. The pairwise similar-
ity of embedding vectors we learn should reveal underlying spatial
autocorrelations among regions that are not described by structural
similarities. Thus, we show three methods of defining the similarity
Si, j between region i and region j.
POI Distribution Based Autocorrelation Since regions serve
diverse functions, we can assume that the distribution of POI cate-
gories of each region varies too. As a result, based on the difference



between two regions’ POI distributions, we can acquire the similar-
ity between those two regions. We construct the POI distribution
vector for every region by setting each element in the vector to the
frequency of the corresponding POI category.
Text Based Autocorrelation Each region comes along with tex-
tual information that describes some properties of the region in de-
tail, such as property category, special features of housing, business
district the region belongs to, surrounding environment, school dis-
trict, etc. Those information are essential to depict a region yet they
cannot simply be revealed from geographical structure. Therefore,
we adopt Word2Vec to obtain document vectors from description
word lists and calculate the pairwise cosine similarity between
document vectors to construct the similarity matrix.
Temporal Mobility Dynamics Based Autocorrelation Tempo-
ral patterns of human mobility can reflect a region’s region type
as well as its vitality. We model human mobility of each region
based on the amount of arriving and leaving activities at that re-
gion within different time intervals. In order to represent temporal
mobility dynamics of each region, we count the frequency of ar-
riving and leaving events during each 2-hour interval and build
two 12-dimensional vectorsMA for arriving mobility andML for
leaving mobility. Then, we calculate the similarity between two
regions based on their mobility vectors.

4.4 Collective Adversarial Learning
4.4.1 Collective Learning fromMulti-viewSpatialGraphs

via assemble-disassemble Strategy. The basic autoencoder is
not capable of learning region representations collaboratively from
multiple relational graphs. Sowe propose to incorporate an assemble-
disassemble strategy in the framework. In the assemble step, the
vector of each spatial graph, denoted by (G1,G2, ..,Gk ), is first trans-
formed to a lower-dimension vector representation individually
and then all low-dimension vector representations of multi-view
graphs are aggregated together into a fused input.

The detailed assembling and disassembling procedures of multi-
view spatial graphs are shown in Figure 3. Given a spatial region,
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^

g3
^

Figure 3: Illustration of Assemble-disassemble Strategy

we have k-view graphs which are represented by Gk . We transform
all Gk into a series of vectors. Each vector is first projected to
lower dimension through multi-layer perceptrons. Then these low-
dimensional vectors of different views, serving as multi-inputs,
are mapped together into one vector space through one layer of
network. The vector resulted from this assemble step is then further

projected into embedding space. The disassembling process inverts
the above procedures to reconstruct the original multi-view graphs
from the embedding vector.

4.4.2 Integrating Inter-Region Spatial Autocorrelation via
Dual-Adversarial Learning. In adversarial autoencoder, themodel
aims to reduce the reconstruction loss as well as minimize the
Jensen-Shannon divergence, JSD(p(z)| |q(z)), on the embedding vec-
tors,

JSD(p(z)| |q(z)) =
1
2
KL

(
p

��������p + q2 )
+
1
2
KL

(
q

�������� p + q2 )
(3)

where p(z) is the prior distribution and q(z) represents the aggre-
gated posterior distribution defined as follows,

q(z) =

∫
x
q(z |x)pdata (x)dx (4)

where pdata (x) is the data distribution.
However, minimizing JSD is intractable. Recall that maximiz-

ing the likelihood estimation is also equivalent to minimizing KL
divergence. So the adversarial autoencoder leverages a discrimi-
nant network and the objective function of the adversarial network
becomes the following,

min
G

max
D

Ep(z)[logD(z)] + Epdata (x )[log(1 − D(G(x)))] (5)

In our framework, CGAL, in order to incorporate both intra-
region structural preservation and inter-region spatial correlation
regularization, we append another adversarial network to the em-
bedding layer of adversarial autoencoder. Formally, we obtain the
objective function of graph-regularized dual-adversarial network
as follows:

min
G

max
D1,D2

Ep(M |K)[logD1(M)] + Epdata (X )[log(1 − D1(G(X )
TG(X )))]

+ Ep(z)[logD2(z)] + Epdata (x )[log(1 − D2(G(x)))]

where G refers to the generator, D1 measures the gap between
calculated autocorrelation matrix M and the true prior autocor-
relation matrix R, D2 discriminates generated embedding vectors
against real embedding vectors coming from prior distribution, and
K refers to the hidden prior knowledge of all regions from which
we calculated regions’ pairwise similarity. D1, along with G, aims
to minimize the difference between calculated pairwise similarity
matrix of embedding vectors and the given inter-region similarity
matrix. D2, along with G, imposes a prior distribution on the ag-
gregated posterior distribution of generated embedding vectors. To
train the graph-regularized dual-adversarial network, we alternate
between learning the generator, G, and the discriminators, D1 and
D2. The objective follows a minimax game where D1 and D2 aim to
distinguish embedding vectors coming out of real distribution from
generated ones whileG intends to fool the discriminative models.
To train the whole CGAL model, we also include the reconstruction
error of the autoencoder network, i.e., Eq(z |x )[−loдp(x |z)]. During
training, we alternate between optimizing the adversarial network
and minimizing the reconstruction error.



4.4.3 Solving theOptimizationProblem. In practice, to solve
the optimization problem, we need to optimize the discriminator
D2 with parameters θ , the generator G with parameters ψ , and
the autoencoder α . Even though the prior autocorrelation matrix
is sampled from a prior knowledge distribution, we can not actu-
ally generate it for more times during the experiment. In another
word, the prior autocorrelation matrix we obtain is deterministic.
However, standard adversarial learning requires sampling true data
points from a prior distribution. To tackle this problem, we pro-
pose to leverage the mini-batch training strategy. We can view
the process of drawing random sub-matrix from the whole
inter-region autocorrelation matrix equivalent to the process
of sampling from true distribution. And then, we try to mini-
mize the gap between the calculated autocorrelation matrix and
the sampled sub-matrix. Since the encoder part of autoencoder also
acts as the generator, ψ and α will share part of the parameters.
The updating rules of parameters are as follows,

θt+1 ← θt −ϵD
∂

∂θ

[
Ez∼pr eal logD2(z)+Ex∼p(x ) log(1−D2(G(x)))

]
(6)

ψt+1 ← ψt − ϵG
∂

∂ψ

[
Ex∼p(x ) log(1 − D2(G(x)))

]
(7)

αt+1 ← αt − ϵae
∂

∂α

[∑
i ∈b

∥xi − x̂i ∥
2
]

(8)

ψt+1 ← ψt − ϵG
∂

∂ψ

[ G(X )TG(X ) −URUT

F

]
(9)

where ϵD , ϵG , and ϵae are learning rates for discriminator, genera-
tor, and autoencoder respectively. Equation (6) and (7) together play
a min-max game, aiming to impose a normal distribution on embed-
ding vectors by updating generator and discriminator iteratively.
Equation (8) trains the autoencoder to minimize the reconstruc-
tion error and Equation (9) trains the generator to approximate the
generated autocorrelation matrix with the prior autocorrelation
matrix.

5 AN APPLICATION: PREDICTING
REGIONAL POPULARITY

The representations learned from CGAL are capable of capturing
the intra-region geographic configuration, structural information,
as well as inter-region spatial autocorrelations. And thus, we can
feed them into many important downsteam applications. One such
example is to predict the popularity of regions. More specifically,
we can represent the popularity of an urban region with the number
of mobile check-in events, such as hotel check-ins, mall check-ins,
restaurant check-ins, etc, occured in that region. Intuitively, a region
with a larger amount of check-in events indicates that people are
more willing to pay to transport to that region, to shop, to consume,
to live, or to carry out many other activities in that region.

For this task, we take our learned representations of geographical
regions as inputs of a linear regression model. Formally, let zi
denotes the embedding feature vector of region ri , Pi denotes the
ground truth of region i’s popularity, and P̂i indicates the predicted
measure of region i’s popularity. Our objective is to fit a linear
regression model:

P̂i =WT zi + b (10)

whereW and b are the weights and biases respectively. Through
learning the regression model with representations obtained from
our framework and other baseline methods, we can conduct per-
formance analysis with experimental results.

6 EXPERIMENTAL RESULTS
This section details our empirical evaluation of the proposedmethod
on real-world data.

6.1 Data Description
Table 1 shows the statistics of four data sources used in the experi-
ment. The taxi GPS traces are collected from a Beijing taxi company.
Each trajectory contains trip id, distance(m), travel time(s), average
speed(km/h), pick-up time and drop-off time, pick-up location and
drop-off location. Also, we extract POIs related data from Dian-
ping.COM which is a business review site in China. Moreover, we
crawl the Beijing residential region data from www.soufun.com
which is the largest real-estate online system in China. Further-
more, the check-in data of Beijing is crawled fromwww.jiepang.com
which is a Chinese version of Fourquare. Each check-in event in-
cludes name, category, address, longitude and latitude of POIs.

Table 1: Statistics of the Experimental Data
Data Sources Properties Statistics

Taxi Traces

Number of taxis 13,597
Effective days 92
Time period Apr. - Aug. 2012
Number of trips 8,202,012
Number of GPS points 111,602
Total distance(km) 61,269,029

Residential
Regions

Number of residential regions 2,990
Latitude and Longitude
Time period of transactions 04/2011 - 09/2012

POIs
Number of POIs 328668
Number of POI categories 20
Latitude and Longitude

Texts
Number of textual descriptions 2,990
Time Period 04/2011 - 09/2012

Check-Ins
Number of check-in events 2,762,128
Number of POI categories 20
Time Period 01/2012-12/2012

6.2 Evaluation Metrics
To evaluate our proposed representation learning framework, we
perform a regression task on regional check-in volume. Each re-
gion k is associated with a benchmark check-in volume vi and
a predicted check-in volume v̂i . To show the effectiveness of the
proposed model, we use the following metrics for evaluation.
Mean Squared Logarithmic Error. Since both actual and pre-
dicted check-in volumes are likely to be huge numbers, we utilize
Mean Squared Logarithmic Error (MSLE) to measure regression er-
rors.MSLE = 1

N
∑N
i=1(log (v̂i + 1) − log (vi + 1))

2, where N is the
number of regions. The lower the MSLE is, the better the learned
representation is.

6.3 Baseline Algorithms
We compare the performances of our method against the following
baseline algorithms. For all methods, we set the representation size
as 32.
(1) AdversarialAutoencoder.TheAdversarial Autoencoder (AAE)
model [15] minimizes the loss between the original data represen-
tations and reconstructed ones while also imposing an aggregated
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Figure 4: (a) Convergence of reconstruction loss. (b)
Convergence of similarity loss.

posterior distribution on the latent vectors through adversarial
learning. In the experiments, we set the number of hidden layers
= 4.
(2) DeepWalk. The DeepWalk model [19] performs network em-
bedding task by leveraging local information learned from short
random walks on vertices in graphs. In the experiments, we set the
number of random walks = 10, the length of random walks = 40,
and the window size of skip-gram model = 10.
(3) GraphFactorization. GraphFactorization is a matrix factoriza-
tion based graph embedding model. It represents graphs in the
form of matrices and matrices are factorized to obtain embedding
vectors.
(4) GraRep. GraRep [4] learns low dimensional embedding vectors
of graphs by aggregating representations obtained through matrix
factorization method applied on all k-step transition probability
matrix. By considering all k-step transitions, GraRep is able to learn
both local structural information and global structural properties
of the graph. In the experiments, we set the maximum number of
steps K = 4.
(5) HOPE. HOPE [16] is a scalable graph embedding algorithm
that is developed to preserve high-order proximities of large graphs
while also capturing the asymmetric transitivity.
(6) Node2Vec. Node2Vec [9] learns continuous feature representa-
tions for nodes in a graph while preserving network neighborhoods
of nodes. It leverages a biased random walk procedure to help ef-
ficiently explore neighborhoods of nodes. We set the number of
walks = 10, the length of walks = 80, the window size of skip-
gram model = 10, the return hyperparameter = 0.25, and the inout
hyperparameter = 0.25.
(7) SDNE. SDNE [24] aims to learn graph representations that
can capture highly non-linear structure of networks. It preserves
such network structure by collectively exploiting the network’s
first-order and second-order proximity. We set the dimension of
intermediate layer as 1000, hyperparameter that controls the first
order proximity loss as 1e −6, the batch size = 200, and the learning
rate = 0.01.
(8) PCA. PCA aims to find low dimensional representations of
graphs by applying orthogonal transformations on original graph
representation vectors such that the result has the largest variance.

Baseline models (2)-(7) are all implemented with OpenNE (https:
//github.com/thunlp/OpenNE), an open source toolkit for network
embedding. For our proposed framework CGAL, we set the dimen-
sions of assemble layers and corresponding disassemble layers as
512 and 256. The dimensions of hidden layers in the encoder are set
to be 256 and 128. Tensorflow implementation of Adam algorithm
is used to optimize the model. We set the batch size as 281, the
learning rate to be 0.00001 and the training epochs as 6000. For
representation learning on single-view graph, we use GAL model
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Figure 5: Overall performance comparison with CGAL
models and other baseline methods using Linear, Lasso,

and Ridge regression models.
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Figure 6: Performance comparison with models using
single-view and collective-view relational graphs.

which does not contain assemble and disassemble networks. The
hyperparameters remain the same. In each experiment, we ran-
domly select 80% of data as training dataset and the rest 20% as
testing dataset. For each regression model on every representation
learning method, we run the experiments for 100 trials and take
the mean MSLEs as our results.

6.4 Study of Convergence
In Figure 4, we analyze the convergence rate of CGAL in terms of its
reconstruction loss and similarity loss. Both losses reduce rapidly
with a few epochs but takes some more time to finally converge.
We observe that there is fluctuation in the similarity loss but only
to a small extent. The models takes approximately 70 minutes to
run 6000 epochs.

6.5 Overall Performance Comparison
In the first study, the prediction errors of three different linear re-
gression models using representation vectors learned from CGAL
models are compared with those obtained from other baseline repre-
sentation learning methods as mentioned above. Figure 5 presents
the results of comparison.

CGAL models outperforms most baseline methods. However,
CGAL models regularized with POI based similarity matrix and
with text based similarity matrix result in greater MSLEs than Deep-
Walk. Whereas CGAL regularized with mobility-based similarity
matrix performs significantly better than any other method. We
will analyze the impact of different similarity matrix on CGAL in a
later study.

6.6 Study of Performance in Different Views
This experiment studies the effect of learning representations from
multi-view relational graphs collectively and from single-view
graph independently. We demonstrate the comparison results in

https://github.com/thunlp/OpenNE
https://github.com/thunlp/OpenNE
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Figure 7: (a) Regression performance comparison of CGAL
models using different similarity matrices. (b)

Performance comparison between dual-adversarial
learning and single adversarial.

Figure 6. As we can see, models learning representation vectors
from multi-view relational graphs significantly outperform those
learning from only mobility view or only distance view except in
Node2Vec and SDNE models. By learning from two views collabo-
ratively, models are able to capture information of the regions from
each viewpoint as well as from the interaction of both perspectives.

6.7 Study of Performance with Similarity
Matrix Constructed using Different Priors

As discussed in section 4.3.1, we calculate our similarity matrix
used in CGAL with three types of prior information - text based
autocorrelation, POI distribution based autocorrelation, and tem-
poral mobility dynamics based autocorrelation. In this study, we
examine the performance of CGAL models regularized with those
three inter-region similarity matrices. The comparison of regres-
sion results using all three regression methods are shown in 7a.
We notice that there is no significant difference between the per-
formance of CGAL models with text based regularization and POI
distribution based regularization. However, we observe significant
improvement in regression performance with CGAL regularized
with mobility based similarity regularization. This is likely due to
that the information our model obtained from mobility based simi-
larity matrix has strong association with checkin volumes. Thus
representation vectors of regions with close checkin volumes are
enforced to be similar to each other as well.

6.8 Study of Performance in Dual-Adversarial
Learning

CGAL integrates dual-adversarial learning rather than a single ad-
versarial component in AAE. Here we compare the linear regression
performance with representation vectors obtained from CGALmod-
els and AAE using different views, as shown in Figure 7b. As we
can see, with dual-adversarial learning implemented, CGAL models
consistently performs better than AAE. With the second adversar-
ial network, CGAL not only preserves the intra-region geographic
structure, but also maintains the inter-region spatial correlations
which helps learn more effective and powerful representations.

6.9 Impact of Regularization Term in
Parameter Learning

We notice that when comparing the performance of three linear
regression models using representation vectors learned from CGAL,
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Figure 8: Comparison of regression performance using
three different linear regression models

Lasso generally performs a bit worse than the other two, as illus-
trated in Figure 8.

Our interpretation is that, as Lasso regularizes the parameters
of learned linear model with L1 norm, it forces some impactful
parameters to be zeros, which, in turn, degrades the model perfor-
mance. Further, this finding actually reflects that CGAL can very
effectively compress all useful information of the graphs into the
learned representation vectors.

7 RELATEDWORK
Graph representation learning and its variants. Graph repre-
sentation learning algorithms can be categorized into three main
approaches: (1) the probabilistic models, (2) the manifold-learning
approaches, and (3) the reconstruction-based algorithms. Probabilis-
tic model approaches use unsupervised feature learning to learn
a hierarchy of features one level at a time [11, 20]. For example,
Wang et al. used a regression learner to learn the optimized layout
of heterogeneous elements on the search result page (SERP) [29].
In the second category, the large majority of the algorithms adopt a
non-parametric approach, based on a training set nearest neighbor
graph [1]. The auto-encoder based methods projects the instances
in original feature representations into a lower-dimensional feature
space via a series of non-linear mappings, by minimize the loss
between original and reconstructed spaces [10, 12].
Adversarial Learning Methods. More advanced methods inte-
grate adversarial strategies and multiple-input to improve repre-
sentation learning. For example, the work in [17] proposed adver-
sarially regularized graph autoencoder (ARGA) and adversarially
regularized variation graph autoencoder (ARVGA) to encode the
topological structure and node features of a graph into a latent repre-
sentation which can be used by the decoder to reconstruct the graph
structure and is enforced to match a prior distribution. [3]proposed
Adversarial Learning for Knowledge Graph Embeddings (KBGAN)
which has a generator that generates negative samples to fool the
discriminator and aims to adversarially train a good discriminator
that produces final knowledge graph embeddings.
Collective Multi-View Learning. Real-world data often provide
more than one set of information over the same set of entities.
For graphs, this is usually represented by multiple sets of edges
associated with the same nodes. One simple method to learn graph
representations collectively is to embed each view of the graph first
and then concatenate all learned embeddings for each node [21].
There are also probabilistic collective matrix factorization (PCMF)
methods that learn collective representations over multi-view data
to fully extract complementary information. Some more complex



methods are based on matrix factorization [23] and spectral embed-
ding [6] which focus more on clustering multi-view graphs.
Spatial Representation learning and Applications. Our work
is relevant to spatio-temporal representation learning, which is the
elevation of graph representation learning in the spatio-temporal
contexts. Graph representation learning, also known as graph em-
bedding, aims to learn a low-dimensional vector to represent ver-
texes or graphs[7, 14, 16, 24, 26, 28, 29]. For spatio-temporal rep-
resentation learning,Wang et al. proposed a collective embedding
framework to learn the community structure from multiple pe-
riodic spatial-temporal graphs of human mobility [27]. Yao et al.
developed an embedding method to learn the urban functions by
exploring human mobility patterns.

8 CONCLUSION REMARKS
We studied the problem of of deep unsupervised spatial representa-
tion learning. We constructed multi-view spatial graphs to charac-
terize the geographic structures of a region. Then, we reformulated
the spatial representation learning problem as a joint objective of
collaborative learning from multi-view graphs, preserving intra-
region geographic structures, and preserving inter-region spatial
autocorrelations. Specifically, we developed an assemble-dissemble
paradigm to take multiple graph views as inputs. Moreover, we
incorporated two adversarial components. The first adversarial
component imposes a prior distribution on the embedding space
to achieve peer preservation, and the second adversarial compo-
nent matches the pairwise cosine similarities of embedding vectors
with given inter-region spatial autocorrelations. In addition, we
applied our method to the applications of predicting regional pop-
ularity. The extensive experimental results with real-world data
demonstrated the effectiveness of our method.
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