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Abstract
Deep convolutional neural network (CNNs) have prolifer-

ated in recent years as its great efficiency in robust feature

extraction and information mining. This method has been

widely applied in image classification as a state-of-the-art

method in many fields, but less in the urban planning field,

such as parks’ image classification. Few studies have applied

CNN-based or other computational models to classify parks,

but still depend on traditionally manual classifications by

local planners. To fill the gap, in this study, we propose a

deep neural network framework based on transfer learning

for park classification using geo-located images. The image

dataset of urban parks in each domain are usually from local

government or social media data, where the number and

quality of images are limited. Another challenge in classi-

fying park images is that the similarity between different

parks’ images are naturally high. To address these two chal-

lenges, we used transfer learning in the proposed framework

to pretrain the CNN model to learn the generic feature ex-

tracting on a large and varied dataset before applying to the

target dataset. Fine-tuning strategies and image augmenta-

tion strategies were applied in the proposed framework to

better combine the target dataset knowledge with the pre-

trained CNN models and to decrease overfitting problems

brought by small dataset. Since our final goal is to classify

each park using a group of images, rather than the individual

images, we designed a further step to aggregate the group

of images’ classification results. Experiment result on Seat-

tle park images supported the effectiveness of the proposed

park classification framework.

Keywords Image classification, Transfer learning, Small

dataset, Park

1 Introduction
Classifying parks builds the basic principle for urban green

space planning and design.The current park classifications

used in urban planning field mostly depend on local planners

manual labeling, using their empirical benchmarks, such as

park size, vegetation, location and recreational activities.

Such benchmarks vary among different cities, bringing bias

and inefficiency. Some academic researchers have realized

the gap, and attempted to apply data-based analysis in classi-

fying parks or other places of interests (POIs). Ibes [11] used

a multidimensional method to classify urban parks accord-

ing to their physical, land cover, and built features, which

however, still empirically selects features and weightings.

Other studies tried to use big data, usually geo-located so-

cial media check-in or review data, to extract features for

POIs [13] [8]. The geo-located images, however, were used

in much fewer study in extracting POIs’ features for classi-

fication, while they have potential to provide more robust

and comprehensive information. For example, the landscape

quality and vegetation features are usually missed in social

media users’ unprofessional descriptions, but provided in

images.

For classifying images, deep convolutional neural net-

works (CNNs) is one of the most state-of-the-art method in

various domains, having advanced development of computa-

tional capability. Deep CNNs typically can achieve high ac-

curacy and efficiency in large dataset [21][22]. However,the

park amount in each city domain usually only range from

dozens to hundreds. And the images dataset for parks are

mostly sourced from local governments’ field studies or so-

cial media platforms. The number of open-access captured

images from field studies or social media users for each parks

are limited. So the qualified park image dataset in each city
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domain is generally not large, only having hundreds or thou-

sands of images. Moreover, the quality of these images, ac-

cording to the metrics of capture view, resolution and bright-

ness are not guaranteed. The park images between different

classifications also have high similarity. These challenges

from park images may cause serious over-fitting problems

when using deep CNNs for classification.

One popular approach to address small dataset issue in

deep CNNs is transfer learning, which has a significant

performance in keeping robustly high accuracy on small

and low-varied training dataset[23][15]. In transfer learning,

the deep network structure is pre-trained on a large image

dataset to learn to extract generic features, and then applied

on the small dataset in the target domain to further extract

local features [15]. The transfer learning approach lowers

the requirements of dataset size, variation, and hardware

environment. These lower requirements increase models’

adaptability and replicability across different city domains,

since most urban models are difficult to be replicated because

of being spatially sensitive and data hungry [25].Transfer

learning, targeting for cross-domain tasks, can solve the ob-

stacles in model replication. Few studies have applied trans-

fer learning approach with deep CNNs in urban planning

field for POIs’ image classification, as urban planning is a

relatively traditional and low-technique major.

In this study, we use three different deep CNNs: VGG16 as

a feature extractor (VGG16 FE), VGG16 as a feature extractor

with image augmentation(VGG16 FE AUG), and VGG16 with

fine-tuning and with image augmentation(VGG16 FT AUG).

All of the three CNNs are pre-trained on ImageNet dataset[3]

and designed to incorporate both low- and high-level infor-

mation. Moreover, since each park has a group of images, to

aggregate the classification results of image groups for each

geo-located park, we proposed and tested three aggregation

approaches, namely absolute voting, sum of probabilities,

and sum of squared probabilities.

This study focuses on the application of transfer learning

based deep CNNs in an interdisciplinary field of computer

science and urban planning to provide advanced spatial anal-

ysis, in order to better support the future planning policies

and strategies. The proposed park classification framework

has potential to be used to classify all types of geo-locations

using images and provide better analytic support for many

other fields, such as geography and landscape architecture

majors. The park image dataset of Seattle City, Washington

is chosen for testing our proposed park classification frame-

work. The VGG16 FT AUG model has the best performance,

achieving the accuracy of 73.34%, which is satisfying perfor-

mance considering the whole dataset only has 122 images for

55 parks. The contributions of this study can be summarized

as follows.

1) To our knowledge, this is the first attempt to use trans-

fer learning with deep CNNs for park classifications.

This interdisciplinary study also provides a pioneer

framework in applying advanced computational ap-

proaches for other POIs’ feature extraction and classi-

fication.

2) We integrate and test the fine-tuning and image aug-

mentation strategies with pre-trained deep CNNs on

park images to better address the issues of small size

and high similarity in park image data.

3) We design the summing approaches to aggregate the

individual image classification results to each geo-

located park.

2 Related Work
2.1 Deep CNNs
Deep convolutional neural networks (CNNs) have been pop-

ular in recent years as its great efficiency in robust feature ex-

traction and information mining, especially on image data. A

typical CNNs architecture is composed of convolutional lay-

ers, pooling layers and fully-connected layers.The three main

CNN architectures in existing studies include AlexNet[14],

VGG16[20] and VGG19. The AlexNet[14] aims to solve the

object recognition problem, which acts as the first try to

learn the network parameters in the object recognition task

on large-scale database. As Figure 1 (a) shows, AlexNet has

overall 26 layers, which can be divided into three repetitive

sections and the last two SoftMax and classification layers.

Each section is repeated several times to better adapt the

specific data and extract robust features. The last section is

consist of fully connected, relu and drop-out layer, which

correspond to the non-linear activation unit and deal with

the over-fitting problem during training.

To improve the CNN accuracy, Simonyan[20] proposed

VGG16 CNN architecture for object detection, which went

deeper in the network in order to extract more complicated

and robust features as Figure 1 (b) shows. Compared with

AlexNet, VGG16 architecture has more repeating times for

deeper network, more replicative structure, but smaller size

of receptive window for each convolutiona filter. The main

novel part of VGG16 was to make a thorough evaluation of

networks with increased based on small (3x3) convolution fil-

ters. The method achieved a significant improvement on the

prior-art configurations through pushing the depth to 16-19

weight layers [20].VGG 19 was proposed to further deepen

network for object detection task. It has similar replicative

architecture with VGG16, but has several additional con-

volutional and relu layers in the repeated sections located

at the network’s middle part [12]. In this paper, we mainly

extended VGG16 with image augmentation, transfer learn-

ing and fine-tuning strategies to achieve more robust image

classification. [16].
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Figure 1. Three existing CNN architectures[16]. (a) AlexNet[14] (b) VGG16[20] (c) VGG19[12]

2.2 Transfer learning
Transfer learning targets to learn from related tasks and

handle the different distribution issue across various do-

mains. Since Ando and Zhang [1] explored to transfer knowl-

edge from supervised learning to unsupervised learning and

proposed that there were common structure of hypothesis

spaces shared among the multiple tasks, a number of stud-

ies have developed multiple transfer learning methods to

achieve cross-domain models [26][6]. For example, Tian, Tao

and Rui[24] mapped source domain and target domain into

a new space to reduce the bias caused by cross-domain cor-

respondence to implement transfer learning. Their focus

was to resort the sparse coding method to look for a proper

mapping space.

In more recent years, a number of advanced transfer learn-

ing techniques [17][5][18] were proposed for processing

text data from different languages or the image data from

different domains. They can be summarized into two main

categories: (1) to re-weight instances[2] and (2) to find com-

mon features [5][10]. The transfer learning approach used

in Yosinski et al.[26]’s study was a popular one of the second

category, which transferred the pre-learned knowledge from

a large image dataset - ImageNet, to the target domain’s

image dataset, demonstrating the transferability of image

features. In his study, fine-tuning strategies were also used

in deep CNNs to better learn the features in the targeted

datasets. The transfer learning used in this study can be seen

as an extension based on Yosinski et al.[26]’ study.

2.3 Image augmentation
Image augmentation technique is typically used to expand

the dataset to decrease the over-fitting problems during

training on small dataset. The main image augmentation

approaches include flipping images, adding noise and ap-

plying affine transformations (translation, zoom, flips, shear,

mirror and color perturbation)[19][7]. Many studies[27][9]

have proved the efficiency of image augmentation on con-

batting the over-fitting problems. For example, Yosinski et

al.[26] augmented the MNIST dataset (a popular dataset con-

taining handwritten digit images), through simply setting

with randomly (by at most 5%) translated images,and found

the testing error greatly decreased from 28% to 20%.

Other recent studies explored more image augmentation

approaches. Goodfellow et al.[9] proposed an Generative Ad-

versarial Networks (GANs) to regenerate graphs. The GANs

was composed of two competing neural network models

in order to drive the generated artificial data to be indistin-

guishable from real graphs. The experiments of GANs on

MNIST showed good performance on re-generating high-

quality artifical digit images. DeVries and Taylor[4] proposed

a relatively simple, but highly applicable domain-agnostic

approach for data augmentation. The proposed approach

departed from existing data points and applied simple trans-

formations, such as noise adding or extrapolating between

them, which focused on performing the transformation in a

learned feature space, rather than in the input space. These

approaches have described multiple ways to implement im-

age augmentation, and demonstrated the efficiency of im-

age augmentation (even simple approach) in improving the

model performance. In this study, we applied and tested the

image flipping and distortion strategies with deep CNNs in

the proposed park classification framework.

3 Methodology
Our proposed framework firstly classifies individual images,

and then aggregates the classification results of image groups
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for each park to decide final park classification. For classi-

fying the images, we designed and tested three deep CNNs

based on the classical VGG16 model [20] and applied a trans-

fer learning approach to all three CNNs.

3.1 Pretrained CNNs for image classification
In this section, we adopt three pre-trainned deep CNN archi-

tectures in classifying individual images, including VGG16

as a feature extractor, VGG16 as a feature extractor with

image augmentation strategy, and VGG16 with fine-tuning

and image augmentation strategies. We pre-trained the three

deep CNNs on a nature image dataset (ImageNet) before

training on the target park image dataset. ImageNet is a

large open-access image dataset containing over 1 million

natural images with 1000 categories, which has been used for

pre-training in many studies [3]. Through pre-training, the

deep CNNs could learn to extract distinct generic features.

After pre-training, the deep CNNs can be applied to extract

discriminative features from park images with no need to

train from scratch on target tasks.

The pre-training, as a typical transfer learning approach,

enables learning feature extraction from ImageNet and trans-

ferring to target park images. Two benefits can be obtained

from applying transfer learning approach for our study. Firstly,

transfer learning can significantly improve deep CNNs’ per-

formance on small dataset, because it helps to reduce over-

fitting through pre-training process[16]. Secondly, transfer

learning lowers the requirement of training dataset size and

variation for target task, because the model’s ability to ex-

tract general features has been pre-trained. The training

time on target task can also be reduced because only the last

layers of the deep CNNs models need to be trained in new

domains. So the proposed park classification framework can

have better applicability and replicability when applied in

different city domains since the lower requirement for new

data and hardware environment. The three adopted deep

CNNs are specifically described as follows:

VGG16 as a feature extractor (VGG16 FE). VGG16 FE

adds a pre-trained process on VGG16[20], which keeps the

same network structure with VGG16 as shown in 2. The fully

connected layers, combined with Dense layers and Dropout

layers, enables regularization and reduces over-fitting prob-

lem. In VGG16 FE, we replace VGG16’s original top layers

with our own fully connected layers, to use the pre-trained

model as a feature extractor.

VGG16 as a feature extractor with image augmenta-
tion (VGG16 FE AUG). This approach also keeps the same

structure with VGG16 FE as Figure 2 shows, but contain an

extra image augmentation strategies. We flip and distort

the existing images in the target domain to generate more

images for training. The image flipping strategies we use

include rotating, zooming in and out and shifting the image,

as displayed in Figure 3. Image augmentation can efficiently

Figure 2. VGG16 FE structure

decrease the overfitting problem, which usually exists during

training on small dataset [26]. It can also help the CNN mod-

els avoid learning irrelevant patterns, thus boosting overall

performance.

Figure 3. Example of Image Augmentation

VGG16as a feature extractorwithfine-tuning andwith
image augmentation (VGG16 FTAUG). We develop this

model based on the VGG16 FE and VGG16 FE AUG. Except

the pre-training and image augmentation, the fine-tuning
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strategy is added on some convolutional layers in VGG16

FT AUG. So we not only train the fully connected layers,

but train several convolutional blocks as shown in Figure

4 on the target park image dataset. Through fine-tuning

strategy, the coarse features that are detected at lower lay-

ers remain the same, but the last layers that extract more

specific-domain features are re-trained on park images. That

means the local features in target task can be better learned.

However, if re-training too many convolutional blocks, the

benefits of transfer learning would be decreased and more

over-fitting problems would occur. After testing for the bal-

ance between local features learning and transfer learning

benefits on park images, we found re-trained the last two

convolutional blocks has the best performance.

Figure 4. VGG16 FT AUG architecture

3.2 Aggregating image classification results to parks
Our final goal is to classify the geo-located park. Each park

generally has more than one images. However, the deep

CNNs’ classifications are based on individual images. So we

need to aggregate the group of individual image classification

results to each park. We adopt and test three aggregation

approaches, which are described as follows.

1) Absolute Voting, which selects the most frequently

appeared classification label within the image group of

each park, and assign that label as park classification.

It is a simple and direct choosing method, which is

expected to have worst performance. We adopt it as a

baseline method for comparison purpose.

2) Sum of Probabilities, which firstly sums the proba-

bilities of individual image classifications within the

image group of each park and then select the classifica-

tion label having the highest sum as park classification.

This method considers the confidence of individual im-

age classification, which represents their weight in the

final classification decision for park.

3) Sum of Squared Probabilities, which uses the same

summing method with Sum of Probability. The differ-

ence is that the probabilities of the individual image

classifications are squared before they are added up

within each image group. Through squaring, the high-

confidence classifications for individual images can

occupy a bigger weight in the final park classification.

This method better considers the situations that some

park classifications have key features, which are easy

to detect and specific to that classification. For exam-

ple, the detected residential building in a park image

can narrow the park classification down to Commu-

nity Park or Neighborhood Park. Such key features

can provide higher confidence for image classification,

as well as the final park classification.

4 Evaluation
4.1 Dataset Description
We evaluated the proposed park classification framework

on Seattle park image dataset, which is obtained from the

open-access Seattle GeoData Portal. The dataset is consist of

122 images and 55 geo-located parks. Each park has 2 4 im-

ages, captured from different views by the urban Splanning

department of the Seattle City. Since these images have been

sampled by local planners in order to contain information

(e.g. facility, activity, building) presenting park identities, the

whole dataset was used for evaluation. These images have

different resolutions, brightness, sizes and focused items. The

55 parks are classified in 4 categories manually by the local

planners: Recreational Park, Natural Park, Community Park,

Neighborhood Park shown in Figure 5. The ground-truth

classification labels were assigned empirically based on the

planners’ observations on the park size, canopy rate, location

(eg. beside neighborhood, or beside city boundary), activities

(eg. boat, swimming, picnic), landscape style (eg.human-built

green spaces, wetlands, or natural preservation), vegetation,

ecosystem and other features that can be detected by field
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studies or images manually. The image similarity between

different classifications appears to be high from human ob-

servations. The image similarity is especially high between

Community Park and Neighborhood Park, both of which

are close to residential areas and serve for daily activities.

The small size, low variation between different classifica-

tion, and uneven quality in the Seattle park data represents

the typical problems in most cities’ park image data, which

form big challenges for image classification. However, such

dataset can better guide us to meliorate the proposed park

classification framework and provide a robust evaluation

result.

Figure 5. Typical images for each park classification

4.2 Experimental Results and Analysis
The 122 images in the dataset are randomly divided into 70

images for training, 26 images for validation and 26 images

for testing. We firstly train the three proposed deep CNNs

using the loss functions, and compare their performance in

terms of the over-fitting and accuracy on individual image

classifications. Then, we test the three aggregation methods

on park classification by randomly spliting the 55 parks into

38 for training and 17 for testing. All the three deep CNNs are

trained fro 30 epochs using the cross entropy loss function,

and compared in terms of loss and accuracy. The hardware

we use for testing the models is a MacBook Pro laptop, with

3.5 GHz Intel Core i7 double core and 16 GB 2133 MHz.

VGG16 FE cost approximately 30 minutes for 30 epochs’

training. Its accuracy and loss during training are displayed

in Figure 6. As expected, due to the small size of the training

park dataset, even after pre-training on the ImageNet dataset,

VGG16 FE still suffered high over-fitting problem.

Figure 6.Accuracy and loss for VGG16 as a feature extractor
(VGG16 FE)

VGG16 FE AUG cost about 70 minutes for 30 epochs’

training and the evaluation results are shown in Figure 7.

The over-fitting problem decrease a lot through the image

augmentation strategies, as the training and validating ac-

curacy and loss has much smaller difference compared with

VGG16 FE. The overall accuracy of the model in classifying

individual images is also improved.

Figure 7.Accuracy and loss for VGG16 as a feature extractor
with image augmentation (VGG16 FE AUG)

VGG FT AUG takes about 2 hours for training and eval-

uation results are in Figure 8. Even suffering some extent

of over-fitting problem compared with VGG FE AUG, the

fine-tuning strategies appiled in VGG FE AUG model signifi-

cantly improves the accuracy in both stability and precision

value than the VGG FE and VGG FE AUG. The balancing

between the VGG FT AUG and VGG FE AUG is the balanc-

ing between over-fitting and accuracy. It is important to test

which convolutional layer should be chosen for re-training

on new domain’s park images to minimize over-fitting and

maximize accuracy. After testing several scenarios, we found

re-training the last two convolutional layers achieves best

overall performance.

Then, we tested the three aggregation methods, Absolute

Voting, Sum of Probabilities and Sumof Squared Probabilities,

in summing the group of image classifications for classifying

parks. The results are shown in Table 1, 2 and 3 respectively.

Under all three aggregation methods, VGG16 FT AUG keeps
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Figure 8.Accuracy and loss for VGG16 as a feature extractor
with fine-tuning and with image augmentation (VGG16 FT

AUG)

Metric VGG16 FE VGG16 FE AUG VGG16 FT AUG

Precision 49.66% 56.12% 66.66%

Recall 42.12% 46.46% 62.16%

Table 1. Precision and recall of the model with absolute

voting method.

Metric VGG16 FE VGG16 FE AUG VGG16 FT AUG

Precision 49.66% 56.12% 69.87%

Recall 44.44% 50% 66.66%

Table 2. Precision and recall of the model with sum of

probabilities aggregation method.

the best performance in classifying parks. It further confirms

our choice to re-train two last convolutional layers for VGG

FT AUG.

In terms of aggregation methods, the sum of squares has

overall best precision and recall for all three deep CNNs mod-

els in final park classifications. It proves that the individual

image’s high-confidence classifications should occupy more

weights in summing image prediction probabilities within

image group for park classification.

The VGG16 FT AUG with the aggregation method of Sum

of Squared Probabilities brings the best park classification

accuracy of 73.34%, and the best recall of 69.86%. The over

70% accuracy is a satisfying result, considering the dataset

only has 122 images with uneven quality, and the image

similarity between the different park classifications are quite

high. Compared with the best 51.11% precision using VGG16

FE and 58.12% using VGG16 FE AUG, the VGG16 FT AUG

has a jumply improved accuracy, around 15%. Such result

demonstrate the significant benefits and efficiency of ap-

plying fine-tuning strategies in improving pre-trained deep

CNNs’ performance on small park image dataset.

5 Conclusion
In this study, we propose a park classification framework

using geo-located image data. To address the challenges of

small dataset, high image similarity between different park

Metric VGG16 FE VGG16 FE AUG VGG16 FT AUG

Precision 51.11% 58.12% 73.34%

Recall 44.44% 50% 69.87%

Table 3. Precision and recall of the model with sum of

squares aggregation method.

classifications, and uneven image quality in most cities’ park

image data, we apply a transfer learning approach for all

three designed deep CNNs. Through pre-training process,

the transfer learning approach enables to alleviate the re-

quirement for dataset size and variation for park images in

target city, and at the same time provides robust and pow-

erful classification. VGG FT AUG has the best performance

classifying in the experiment, which proves the efficiency of

adopting the image augmentation and fine-tuning strategies.

We also compare the three aggregation methods to summing

group of image classifications. The Sum of Squared Proba-

bilities method has best performance, which highlights the

weightings of high-confidence individual image classifica-

tion.

Our proposed park classification framework can provide

strong and robust classification for small, low-quality and

low-variation image dataset. The hardware requirement is

also low for running the framework in multiple tasks since

the training working load is significant decreased by transfer

learning approach. These benefits allows it to be generally

applicable to most domains and running environments. This

framework can potentially be applied to all other types of

POIs’ classifications, such as stores and restaurants. In urban

planning, this tool is very helpful to train the model in a

main city, and easily replicates in new urban settings.

In future work, we plan to evaluate the framework on

other cities’ park image data, and other POIs’ images to test

the universality of the framework. A data sampling strategy

will be designed to filter out the less informative images (e.g.

park images taken in the woods) to increase the robustness

of the framework testing. Moreover, we will explore to future

improve the framework with more complicated fine-tuning

strategies,such as assigning different learning rate to layers,

and other image augmentation strategies, such as generative

adversarial networks (GANs). In addition, we plan to try

unsupervised or weakly supervised classifications to more

objectively classify parks, rather than only relying on the

manually created classifications.
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