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ABSTRACT
Buses are a vital component of an urban environment and shifting
away from private cars towards public transport is important inmin-
imising our environmental impact and creating sustainable cities.
Good bus services make urban life better and safer for everyone
and having reliable journey time estimates is a crucial component
of a good transit service. Many techniques have been developed
to predict journey times, including historical averages, statistical
approaches and more recently machine learning (ML) algorithms.
Several research efforts have shown that predicting the travel time
of a complete bus journey is more accurate than predicting par-
tial journeys. We propose a method of predicting travel time for
a whole bus journey using ML algorithms combined with a novel
post prediction segmentation technique to provide an estimate of
partial journey times. This novel approach proportions the jour-
ney dynamically based on historical averages for the relevant day
of the week and time of day. The ML algorithms we used to pre-
dict a whole journey time are Random Forest (RF), Support Vector
Machine (SVM) and k Nearest-Neighbor (kNN). Our approach is ap-
plied to one year of data from the city-wide bus network in Dublin.
Our proportioning technique gives excellent results compared to a
baseline of the ratio of stop pair segments on the partial journey
compared to the whole journey. The best performing ML algorithm
was RFwhich achieved 0.16 mean absolute percentage error (MAPE)
and 158 seconds mean absolute error (MAE) with our approach
compared to 0.42 MAPE and 245 seconds MAE with the baseline
method. The results are especially relevant on shorter journeys and
on routes with large data sets. Our method achieved 0.21 MAPE
on short journeys of less than 10 stops compared to 0.78 with the
baseline method. This is a significant result as short journeys are
challenging to predict accurately. Of the ML algorithms used, kNN
required the least resources to train, whereas SVM returned the
prediction quickest and required the least space to store.

CCS CONCEPTS
• Applied computing → Transportation; Forecasting; • Com-
puting methodologies→ Supervised learning by regression.
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1 INTRODUCTION
Buses have an essential role in an urban environment and are likely
to become more important with increased urbanisation and an
urgent need to reduce our environmental impact. The European
Environment Agency reports that road transport used 12.3 mil-
lion terajoules of energy in 2017, the majority of this coming from
oil-derived fuels [1]. While this is a global issue there are also prob-
lems caused by the burning of fossil fuels within cities themselves,
with the effect of air pollution causing significant mortality and
morbidity [25]. This has been a concern for some time now and is
reflected in many of the policies that are shape our world. The UN
Sustainable Development Goal 11 seeks to “Make cities and human
settlements inclusive, safe, resilient and sustainable”. Specifically,
target 11.2 states that cities should expand public transport [28].
The Paris Agreement is a legally binding agreement to limit global
warming that 196 countries signed up to in 2015. As a result, many
cities now have sustainable plans in place to discourage the use of
private vehicles and to encourage passengers towards sustainable
transport options [6]. There are many sustainable transport options
including rail, bus, cycling, walking. Cycling and walking are ideal
for shorter journeys, especially in milder weather. However, buses
are the most widespread form of transport because, unlike rail they
don’t need an extensive infrastructure to be in place, are flexible
and can be redeployed or rerouted as required. Bus services are
also cost-effective compared to rail [2]. The potential benefits of a
substantial proportion of urban dwellers switching to sustainable
transport are dramatic. Xia et al. did an analysis in the Adelaide
region of Australia on the benefit of shifting 40% of the passengers
from cars to alternative methods of transport (both public transport
and cycling) [34]. They found that 542 deaths/year could be pre-
vented due to improved air quality, active transport and changes in
traffic injuries. There would be further benefits in terms of improved
health.

It is therefore imperative that we make bus transport an at-
tractive option for passengers. It has been shown that punctuality
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and timeliness of journeys have the most significant impact on
passenger satisfaction [16]. Punctuality and accurately predicted
journey times are synonymous and are among the most frequently
requested improvements by passengers both pre-trip and during
the journey [13, 14, 16, 19]. This is because passengers place greater
value on low waiting time rather than decreased total journey time
[15]. Kroes et al. studied the economic value of timetable change
and grouped passengers into three categories [23]. Passengers ei-
ther plan their journey or they do not, and planning passengers are
either arrival-time constrained or departure-time constrained. An
example of a planning passenger who is arrival-time constrained
would be someone who must be at their office by 9 am. That same
passenger might be departure-time constrained on their return
journey if they want to leave the office at 6 pm. Arrival-time con-
strained passengers must arrive early at a bus stop to avoid missing
their chosen service. They may have to take an earlier service than
is necessary to guarantee they meet their arrival time constraint.
Accurate journey time predictions can significantly reduce this wait-
ing time from this type of passenger’s day and encourage greater
use of public transport. Cats et al. found that the potential wait-
ing time gains associated with a prediction scheme are equivalent
to the gains expected when introducing a 60% increase in service
frequency [5].

Urban computing has been instrumental in improving the lives
of city dwellers [39]. A huge amount of data can now be collected,
stored and analysed. Examples of this include the ability to track
the location of vehicles in real-time. Many bus operators equip their
vehicles with GPS enabled in-vehicle devices. These Automatic Ve-
hicle Locators (AVL) suffer some issues in urban environments but
there are alternative methods such as using mobile phone network
infrastructure or Wifi access points [26]. This has led to some bus
operators including real-time bus tracking information at bus stops
or via a mobile app [4, 32] and using real-time data to dynamically
dispatch buses [38]. With our increased ability to generate and store
data, so has our ability to process and analyse this data. Advances in
ML methods allow us to detect subtle patterns in historical and real-
time data that were not possible with statistical methods [33]. Yet,
despite all the benefits of accurate journey travel time predictions
and the advances in technology, predicting bus arrival time with
high accuracy remains elusive. The prediction of bus arrival time is
somewhat underrepresented in the literature considering how es-
sential a mode of transport it is worldwide [30]. It is challenging to
predict journey times accurately because it is a highly complex and
multi-factorial problem. Bus journeys are affected by many factors,
including the day of the week, time of day, weather, the volume of
other traffic and passenger load. It can be challenging to disentangle
the sources of travel-time variation. Yetiskul et al. analysed service
characteristics, temporal and spatial dimensions and found they
were all important [36]. A sensitivity analysis by Chen et al. shows
that dwell time (the time the bus is stopped at a bus stop) has a
greater impact on travel time than the time of the day or day of the
week [10]. Dwell time is likely implicitly indicating passenger load
but may also have inputs from the general congestion level and time
lost rejoining the traffic flow after stopping. This likely also varies
from one bus network to another and from one route to another.
Chen found that ‘highway’ routes get higher accuracy scores and
are more predictable than ‘urban’ routes: 94% and 78% accuracy

Table 1: Terminology definitions

Term Definition

Network A group of connected bus routes. They
may be connected geographically (E.g.
Dublin) or by bus operator (E.g. Dublin
Bus).

Route A named (or numbered) series of stops
in a particular direction.

Segment A generic term for a sub part of a bus
route.

Consecutive stop
pair segment

A sub part of a bus route defined by two
consecutive designated stopping places
on a bus route.

Whole Journey The journey from the first stop on a route
(the origin stop) to the last stop on a
route (the terminus stop).

Partial Journey Any journey between two stops on a sin-
gle route that is not the whole route.

Proportion A ratio representing the part of a whole
journey that a partial journey represents.

ML Model A trained ML algorithm.

Model The conceptual model of the bus net-
work and how it is broken down into
segments for ML modelling.

for ‘highway’ and ‘urban’ routes, respectively [8]. Pandurangi et
al. also found that ‘rural’ routes were more accurate than ‘urban’
routes [29]. Generally, congestion on a route decreases the accuracy
of predictions. This is unfortunately of particular disadvantage to
the urban commuter.

We aim to contribute to the solution for this problem by predict-
ing whole and partial bus journey times with a low computational
and storage burden. This paper presents a ML whole route journey
time prediction method with a novel post-prediction proportion-
ing technique to estimate a given passenger’s journey. This paper
contains three main contributions:

• A review of the relevant literature on bus travel time predic-
tion using ML and bus route modelling.

• A new post ML segmentation approach to predict travel time
on a bus network and evaluation against a naive approach.

• A comprehensive demonstration of the scalability of the
novel approach by applying the method to a year of data
from a city-wide bus network .

The remainder of this paper is organised as follows: Section 2
discusses relevant previous work in the area of bus journey time
prediction, Section 3 describes our approach, and Section 4 con-
tains the results and a discussion. Finally, Section 5 presents some
conclusions and areas for future work.
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2 LITERATURE REVIEW
There has been a large body of work and much research effort in
the area of estimating journey times within the bus network. The
research traditionally relied on a statistical analysis of historical
journey times and the consensus is that such approaches are not
performing as hoped because the data is non-linear [27, 31, 33].
Many ML approaches have been used to predict travel time with
reasonable success. The approach taken can be impacted by the
objective (e.g long-term or short-term prediction) of the research as
well as the data and resources available. Studies are carried out on
different data sets in different cities which hides the transferability
of approaches and can lead to conflicting results. Furthermore,
existing studies have used a variety of terminology which makes
direct comparison of approaches and results non-trivial. We try to
be explicit and consistent in our use of terminology in this paper,
but for clarity, definitions of important commonly used words and
phrases are given in Table 1. In this section, we examine the state-of-
the-art in terms of the objective of the intervention, the conceptual
model of the bus network used and the application of ML.

2.1 Objective of Applications
Many of the proposed approaches on this topic are not directly
comparable because they have different primary objectives. It is
important to distinguish between short-term travel time prediction
and long-term travel time prediction [12]. Short-term travel time
predictions are designed to predict the time a bus will arrive based
on monitoring its current position after its journey has begun and
constantly updating its arrival time. This type of prediction is also
used for the scheduling schemes by the operations team [38]. Short-
term travel time prediction is useful for the passengers waiting to
board the bus or for passengers planning to connect with other
forms of transport. Updated estimates reduce the uncertainty of
arrival for passengers and improve passenger satisfaction but it is
not designed to provide a fixed estimate of when a passenger will
get to their destination before the journey begins [40].

Long-term travel time prediction is required for timetable prepa-
ration and scheduling services [18]. An objective of long-term pre-
diction is to reduce the burden on short-term prediction as much
as possible. Long-term travel time prediction tries to account for
cyclical traffic patterns, general weather trends, and the dwell times
at various stops based on repeating trends in passenger numbers.
However, it will never predict unpredictable events like road traf-
fic accidents, roadworks or bus breakdowns. Events like this are
best monitored separately and adjusted for using short-term travel
time prediction. The approach we propose is focused on long-term
travel time predictions. Accurate long term travel predictions are
normally what is meant by punctuality and, as mentioned earlier,
is highly sought after by the urban commuter.

2.2 Conceptual Model of Bus Networks
There is very little discussion in the literature about the conceptual
model of a bus route or network, although there is some evidence
that it has an impact on the accuracy of predictions. The most
common approach within the literature is to conceptualise a bus
network as a series of routes made up of consecutive stop pair
segments [12, 17, 38]. This natural segmentation of a bus route can

have different implications depending on the number of stops on
a bus route. The distance between stops on a particular route or
network would likely have an impact as it will affect the granularity
of the network and the size of the segment being predicted. Some
networks, like Dublin, have consecutive stops about 200m apart,
whereas other networks can have stops multiple kilometres apart
[27]. A significant implication of modelling a route by consecutive
stop pairs is that you need multiple models for each route, usually
one less than the number of stops on the route. This adds to the
training and prediction time, as numerous models must be retrieved
and multiple predictions made, as well as increasing the storage
required for the models. Another major implication is that making
predictions based on smaller sections of a route may be less accurate.
Pandurangi et al. [29] found that whole network modelling was
more accurate than a consecutive stop pair approach. Chien et al.
[11] used Artificial Neural Networks (ANN) with their ‘link-based’
approach and their ‘stop-based’ approach, which is segments of
consecutive stop pairs and found that the longer segment of the
‘stop based’ approach was superior. Chen et al. [9] define ‘link’
travel time as the time from arrival at one stop to arrival at the next
stop on the route. ‘Sections’ are composed of multiple such ‘links’.
The longer ‘sections’ were modelled more accurately than the in-
dividual ‘links’, and the error reported decreased with increased
‘links’ per ‘section’. The common pattern in all of these studies,
predicting for a longer segment resulted in a smaller relative error.

The main trend in the literature to date is that while absolute
error predictably increases while predicting for longer segments,
the percentage (or relative error) decreases significantly [9, 17, 40,
41]. Outside of bus journey time predictions, research on traffic
prediction, in general, has also established that long term prediction
is less susceptible to random disturbances and shows more regular
patterns than short-term predictions [7]. We build on these findings
with our approach and predict the whole journey time from origin
to terminus stop in a given direction. Having only a single model
for each route reduces the storage and computational resources
required. However, the accuracy of a given passenger’s journey
time prediction is of more importance than whole journey time
metrics.Whole journey predictionmay be themost accurate but this
approach creates a problem of accurately predicting the journey
time for partial journeys as most bus users do not travel from
origin to terminus stops. To our knowledge, there is no literature
addressing the specific problem of segmenting a whole bus journey
prediction into partial journeys.

In this paper, we compare two approaches for estimating the
travel time for a partial route from a ML whole journey prediction
(post ML segmentation). As a baseline, we use a straightforward
approach similar to the baseline used by Pandurangi et al. and use
a ratio of the number of consecutive stop pair segments travelled
compared with the number of consecutive stop pair segments on
the route [29]. For example, if the whole bus journey consists of 50
stop pair segments and a partial journey consists of 10 stop pair
segments, the proportion of the whole journey represented by the
partial journey would be 10 divided by 50, or 0.2. We call this the
static proportion because it stays the same regardless of the day or
time, which are factors known to affect the journey time. For our
proposed method, we borrow ideas from the historical averages
approach [27], and apply it to calculate the proportion of the whole



Beijing ’21, Nov 01, 2021, Beijing, China Dunne & McArdle

Table 2: Example of the data after cleaning and preparation

Trip ID First Stop Second Stop First Stop Arrival Second Stop Arrival Month Day Time Journey Time

2071806 1 2 36027 36067 1 0 7 40
2071806 2 3 36067 36174 1 0 7 107
2071806 3 4 36174 36236 1 0 7 62
2071806 4 5 36236 36245 1 0 7 9
2071806 5 6 36245 36259 1 0 7 14

journey time that each consecutive stop pair stop represents. We do
this for each day and time represented in our data set and store the
results as a reference data set. This allows us to quickly compute
the proportion of a whole bus journey that any partial journey
is likely to take based on the day and time it occurs. We propose
that this approach will leverage the accuracy of whole journey
time predictions while also accounting for the cyclical variability
that characterises urban transport in general and bus network in
particular.

2.3 Machine Learning
As mentioned earlier, ML approaches have been shown to out-
perform historical averages and statistical methods for predicting
journey travel time. The main ML approaches used in the literature
for predicting journey times are ANN, SVM, kNN and RF [12].

It is usually not possible to make direct comparisons between
studies predicting bus travel time, as the objective of the research
and the conceptual model of the network varies widely as does the
type and quality of data available to researchers [27]. For example.
depending on the locality, supplemental traffic information may or
may not be available. It is difficult to compare the performance ofML
models trained on different input features (weather, headway, traffic
information, passenger numbers, etc.). Throughout the literature,
we see different results on different routes even with the same
bus network as the characteristics (E.g. rural or urban, level of
congestion, the number of intersections etc.) of the route change
[3, 8, 38].

Gal et al. [17] compare many different ML models, including
RF on data from Dublin. RF performed well, especially with more
data. RF is very scalable compared to other methods, and in studies
where it is not the best performing ML model, it still performs well.
Yu et al. [37] proposed an interesting approach combining kNN and
RF on a data set from Shenyang. They found this hybrid method
outperformed kNN, SVM and RF, but only slightly outperformed RF,
and the authors acknowledge the increased computational burden
of this method. Zhang et al. [38] compared a hybrid method of SVM
with a Kalman Filter (KF), RF and an ARIMA method in Shenzhen.
The SVM-KF was found to outperform the other methods. Across
the eight routes evaluated, the RFmodel’s mean absolute percentage
error (MAPE) was within 1% for SVM-KF. It outperformed SVM-KF
during the peak morning period and was significantly worse during
mid-week off-peak and weekend periods.

There are also studies that compare ANN with SVM with or
without KF. Bai et al. [3] found that for three stop-pair segments
in Shenzhen, ANN, SVM and KF performed similarly and were
significantly outperformed by an ANN-KF and a SVM-KF. Maiti et

al. [27] found SVM to outperform ANN. However, a few studies
have found ANN to outperform other methods. Lin et al. [24] found
ANN and hierarchical ANN to outperform KF significantly. Jeong et
al. [21] found ANN outperformed historical data (HD) approaches
and statistical regression approaches on data from Houston. Julio et
al. [22] found ANN (Bayesian Regulation back-propagation training
function) to outperform SVM on data from Santiago. The majority
of the recent literature on this topic focuses on ANNs. A promising
recent approach is Long Short-Term Memory (LSTM) ANN, which
seems to be performing well [20, 35, 38].

However, ANNs take a long time to train and lack scalability
[12]. In one example, Jeong et al. [21] looked at ANN with fourteen
different training functions, and researchers chose to use Levenberg-
Marquardt Backpropagation over Bayesian regularisation despite
better results using Bayesian regularisation due to excessive run-
ning time on their small experimental dataset of 340 unique trips.
Maiti et al. [27] demonstrated comparable levels of error with large
differences in training and test time between ANN, SVM and HD
approaches.

No consensus on the best ML model for bus journey time pre-
diction has been reached. It is not even clear in which situations a
particular ML model may be preferred. Even if the most accurate
ML model could be identified, it may not be the deciding factor for
the best algorithm, as speed and scalability are also important. Any
method employed to predict journey times will need to be updated
regularly and this should be considered in the design of potential
solutions. The resources required for expanding the prediction ap-
proach from a limited number of routes to the entire bus network
should be considered. For this reason, we chose to include RF, kNN
and SVM in our experiments, but not ANN. In the next section, we
detail the implementation of our proposed method.

3 METHODOLOGY
The data set used in this study was provided by the National Trans-
port Authority (NTA) in Ireland and contains details of all of the
journeys on the Dublin Bus network of 253 routes from 1st January
2018 to 31st December 2018. This represents over ten million unique
bus journeys and serves a population of approximately 1.3 million
people. We describe our approach in four stages: The initial stage
is data preparation, followed by ML modelling with the training
data for the whole bus journey with RF, kNN and SVM. A reference
data set is then generated from the training data. It contains the
average proportion of each consecutive stop pair segment on each
route for each day/time combination. Finally, withheld test data is
used to randomly generate partial journeys which are evaluated
for error with our approach and baseline method.



A Novel Post Prediction Segmentation Technique for Urban Bus Travel Time Estimation Beijing ’21, Nov 01, 2021, Beijing, China

Table 3: Example of the data at the point of ML modelling

Month Day Time Total Journey Time

8 3 21 1762
11 4 12 1751
8 5 12 2151
1 2 20 1732
6 4 21 2270

3.1 Data preparation
The data set was originally structured detailing the arrival of a bus at
a bus stop. The data was restructured to represent consecutive stop
pair segments rather than arrival events. We cleaned and analysed
the data set, identified unique bus journeys and removed constant or
irrelevant columns and any missing or corrupted data (E.g. negative
journey times). We divided the data set by bus route and calculated
the journey time between each consecutive stop pair. An example of
the prepared data is shown in Table 2. For our purposes, we consider
buses with the same headsign (E.g. 46A) going in different directions
(E.g. northbound or southbound) as separate routes. One challenge
was to identify a sequence of stops that defined a bus route. On
some bus routes, there were over 1000 unique combinations of stops.
Some reasons for this were due to arrival events being duplicated
in the data set, or missed. There are also some route variations at
different times of day on some routes. We determined the sequence
of stops that would allow us to include the maximum amount of
unique bus journeys. The data quality varied between routes and
had on average 70% usable data. This ranged from 17% to 95%, with
a median value of 75%. We then prepared our data set for modelling.
The features in our data set after processing are three ordinally
encoded categorical features for the day of the week, time of day
and month. We decided not to include additional features, such as
weather, to easily allow future comparisons, perhaps in different
regions. An example of our data at the time of ML modelling is
shown in Table 3. The three temporal features should allow the ML
model to detect cyclical patterns in traffic volume and passenger
numbers and make accurate predictions. The Month feature is
intuitively encoded 1 to 12. The Day feature starts at 0 for Monday
and ends at 6 for Sunday. The time group feature has a variable
granularity. Suspected peak periods are 30 minutes long, and off-
peak periods are 1 hour long and are encoded 0 to 29 starting at
midnight. The reason for this is we suspected that patterns of travel
might be lost if the granularity was too large at peak times, but
sufficient data for predictions at off-peak times when bus services
are less regular is also required. Our data structure was bench-
marked against the data set with one-hot encoding, and one-hot
encoding was found not to be beneficial for these MLmodels on this
data set. Eighty five percent of the data for each route was used for
bothMLmodelling and the precalculated reference proportions data
set (Section 3.3) and the remaining 15% was withheld for testing.

3.2 Machine Learning
Whole route ML modelling was performed on all the routes on the
bus network with three traditional ML algorithms (RF, kNN and
SVM) using SKLearn. These algorithms are scalable algorithms that

Table 4: Example of the proportions reference data set

Day Time First Second Mean Sample
Stop Stop Proportion Size

0 7 1 2 0.021494 88
0 8 2 3 0.021106 96
0 9 3 4 0.022436 177
0 10 4 5 0.025301 210
0 11 5 6 0.025802 194

Figure 1: Bus route divided into segments by consecutive
stops.

have been shown to perform well in previous studies. The ML mod-
els were optimised using a limited GridSearchCV with three-fold
cross-validation. Prior to the final training of the ML models, the
GridSearchCV hyper-parameter options were bench-marked using
ten representative routes to determine the best range of hyper-
parameters for routes in this data set. From these, 24 combinations
of hyper-parameters were selected for each ML algorithm to al-
low for comparability of computational resources. However, the
absolute minimisation of error was not the primary focus of this
experiment. The purpose of the ML model is to provide a reason-
able baseline prediction with which to compare the post modelling
segmentation techniques.

3.3 Generating the Proportions Data set
After training the ML models, the same data was used to calculate
the dynamic proportions for each consecutive stop pair on all of
the routes. Table 2 shows the data after cleaning and preparation
for a particular bus route. This data is at an earlier stage than the
data used for ML modelling in Table 3. Each row in this data set
refers to a consecutive stop pair segment as shown in Figure 1. Each
segment is bounded by two consecutive stop pairs and there is one
less segment on the route than the number of stops on the route.
For each route, the training data set (Table 2) was filtered to the
first segment (between stop 1 and 2). The data set now contains all
incidences of this segment for the year and nothing else. The data
set is further filtered to the first day and time combination present
in the data set (E.g. Day 0 (Monday) and Time 7 (7-7:30 am)). The
Trip IDs represent unique bus trips. All of the Trip IDs of buses that
travelled on that segment on that day and time are retrieved and the
segment journey time and the whole journey time are calculated
for each unique trip. The segment proportion for each unique trip
is calculated by dividing the segment journey time by the whole
journey time. The average of these proportions is then saved to the
new reference data set (Table 4). This is repeated for every day and
time combination (E.g. Monday at Time 8, Monday at Time 9, etc.),
and then the process is repeated for the remaining segments on the
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Figure 2: Comparison of static and dynamic proportioning on an off-peak and peak test sample.

bus route. The five examples in Table 4 refer to Day 0 (Monday)
and Time 7-11 (6 am to 10 am) and the five segments between stops
1 and 6. The mean proportion for the segments at the given time
and day is shown. The sample size is the number of unique bus
journeys that served this segment at this time and day during the
year. It was included for future analysis.

3.4 Evaluation Method
After producing ML models that predict travel time for the whole
route and generating the dynamic proportions data set, we evalu-
ated our model’s accuracy on whole journey predictions and com-
pared our proposed dynamic proportioning method against the
baseline method for partial journeys. All experiments were per-
formed on a 2017 MacBook Pro with a 3.3 GHz Intel Core i5 pro-
cessor and 16GB of memory.

We did not have access to real commuter partial journeys so we
generated a random sequence of stops from each unique journey
in our test set. This was achieved by choosing two random indices
from a sequential list of stops for the route the unique journey is
from. We check that the same index has not been chosen twice, and
the lower index becomes the boarding stop and the higher index
becomes the disembarking stop of the pseudo passenger.

The static proportion (baseline) was calculated as the ratio of the
number of consecutive stop pair segments on the partial journey
divided by consecutive stop pair segments on the whole journey.

In the example shown in Figure 2, we are predicting the travel time
for 5 segments on a route with 60 segments, so the static proportion
is 0.0833. To find the dynamic proportion, the reference data set
for this route is filtered to only the day and time when the partial
journey took place. The data set is then further filtered to only
the segments in the partial journey. The mean proportions that we
precalculated in the proportions data set are retrieved and summed
to produce the dynamic proportion. The whole journey predic-
tion from the ML model is multiplied by the static and dynamic
proportion to get their respective predictions. All partial journey
predictions were compared to the actual journey time for these par-
tial journeys, and the MAE, MAPE, root mean square error (RMSE)
and the coefficient of determination (R2) score were calculated for
both the static and dynamic predictions.

In Figure 2 Test Sample 1 is an off-peak travel time test sample,
and the static and dynamic predictions are similar. The true value
of this partial journey was 305s, the dynamic prediction was 317s
and the static prediction was 339s. This is typically what we see
at off-peak times, when there is little congestion on the route and
the bus makes steady progress, the static and dynamic predictions
are very similar. Test Sample 2 is a peak travel time test sample
on the same 5 segments as Test Sample 1 and it took 1139s, more
than 3.5 times longer. The whole journey time prediction in this
example is longer, but only by 10%. This is also typical, usually, only
some parts of a bus route are heavily congested even during peak
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Table 5: Results for whole journeys for all ML Models

Metric RF kNN SVM

MAPE 0.07 0.08 0.12
MAE/s 237 261 396
RMSE/s 320 349 522
R2 0.93 0.92 0.78

Table 6: Results for partial journeys for all MLmodels using
both static (Stat) and dynamic (Dyn) proportioning

ML Model RF kNN SVM
Approach Stat Dyn Stat Dyn Stat Dyn

MAPE 0.42 0.16 0.43 0.17 0.45 0.18
MAE/s 245 158 248 161 280 194
RMSE/s 332 281 337 286 393 331
R2 0.91 0.93 0.9 0.93 0.87 0.9

travel times. The static proportion, by its nature, remains the same,
and the dynamic proportion more than doubles. The relative error
for both the static and dynamic prediction increased significantly
compared to the off-peak test sample, but the dynamic prediction
is significantly superior.

4 RESULTS AND DISCUSSION
The error metric and performance time results obtained from our
approach on data fromDublin Bus are presented here. Table 5 details
the results of the three ML Models for the whole journey prediction.
RF outperforms the other MLmodels, with an average MAPE of 0.07
and an R2 of 0.93. These results are comparable to what is reported
in the literature, although direct comparisons are not possible due
to different levels of irreducible error in different data sets. It is
important to note that in this study we applied our method to every
route in the network and did not pre-select particularly frequent
routes, or routes with high-quality data.

Table 6 shows the full results for all partial journeys. Our pro-
posed dynamic proportioning technique outperforms the baseline
across all ML models and various metrics, with 0.16 MAPE. We
consider the MAPE to be the primary metric as it allows compar-
isons between bus routes of different lengths and different duration.
RF performs best but the results from kNN are very similar. SVM
performs worse, likely because SVM usually requires more hyper-
parameter tuning than RF or kNN. By design, all ML models had the
same amount of tuning in this experiment as described in Section
3.2 as we are also considering the resources required to produce
the predictions.

4.1 Segment Length
An analysis was performed of the results by the length of the seg-
ment. We used RF and MAPE for this analysis. Short segments
consisted of less than 10 stop pairs, medium segments were 10-20
stop pairs and long segments were greater than 20 stop pairs. The
average segment length was 17 stop pairs. The results are shown
in Table 7 and Figure 3.

Figure 3: MAPE with RF by segment length

Table 7: MAPE by segment length using RF

Segment Length Static MAPE Dynamic MAPE

Short 0.78 0.21
Medium 0.28 0.14
Long 0.17 0.12

The results seen with dynamic proportioning are an improve-
ment over those obtained by Gal et al. on a route from the same data
set using a consecutive stop pair model and various ML models [17].
They found MAPE decreased with the length of the segment (from
as high as 70% with 1-2 stops to about 15-18% for 50 stops plus).
The dynamic proportioning proposed in this paper outperforms
static proportioning at all segment sizes, it has the most signifi-
cant performance improvement in short segments. This is the most
significant result because across the literature we see far higher
relative error in shorter predictions [9, 17, 41, 42]. The majority of
passengers do not travel the whole bus route, so having a method
to accurately predict shorter journey times would be of the most
benefit to the urban population.

Figure 4: R2 with RF by number of trips in route dataset
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Table 8: Average resource per route required per algorithm

Algorithm GridSearchCV Time/s Training Time/s Prediction Time/s Size ML Models/MB

RF 11.66888 0.33726 0.00992 7.31
kNN 0.32317 0.00179 0.00052 0.317
SVM 22.83578 1.25737 0.00020 0.165

4.2 Size/Quality of Data
Many authors have discussed the importance of sufficient good
quality data in the prediction of bus journey times and this was also
an issue in this experiment [29, 41]. The overall results show the
benefit of dynamic proportioning over static proportioning. The
weakness of the dynamic proportioning approach can be seen in
the plot of the R2 score against the number of trips in the data
set (Figure 4). All of the routes with large data sets showed very
good performance, as did many of the smaller data sets. The strong
performance of dynamic proportioning over static proportioning
can be seen in the upper right of the plot. However, in the lower-
left section of the plot, we can see some of the smaller data sets
have poor R2 scores. We looked at these routes and found that
they are very infrequent services that operate an express service to
universities. These routes have on average 48% usable data, whereas
those routes with an R2 greater than 0 have an average 70% usable
data, but there is no absolute correlation. It is possible that some
routes have data quality issues that are not detectable, perhaps
less accurate sensors. With very poor quality or very small data
sets using dynamic proportioning is likely resulting in error and
noise in the data being compounded. There are other ways that this
dynamic proportioning could be implemented. We experimented
with a variant that also filtered the data frame by month. The
rationale was that there are cyclical patterns in the lives of urban
dwellers, like holidays or festivals, captured by season or month
but not by day and time. However, this approach resulted in twelve
times as many entries in the reference data set, each proportion
being based on much smaller sample sizes and was found to be less
accurate. Another variant that could be trialled is a coarse-grained
approach where the dynamic proportions are grouped into working
day or weekend and into peak or off-peak. This variant may be
more appropriate on less frequent routes.

4.3 Resources Required
Any potential solution to the problem of accurately predicting jour-
ney times must be scalable and implementable for a city-wide bus
network with reasonable resources. With that in mind, we analysed
the average resources required to train, predict from and store the
ML models used in this research. The results are shown in Table 8.
We include GridSearchCV time separately to the training time with
known optimal hyper-parameters. Models would likely have to be
retrained daily as new data became available but the addition of a
small amount of new data is unlikely to result in different optimal
hyper-parameters. We expect that hyper-parameter tuning would
likely be updated at a much lower frequency, perhaps monthly.
The resources required by the kNN model represents the best error
metrics per resources required, however the SVM has the shortest

prediction time and smallest storage size. RF has an average Grid-
SearchCV and Training time of less than SVM, however, analysis
of the run times revealed that SVM is faster for the routes with
smaller data sets up to around 40k-50k unique trips.

5 CONCLUSION
In this work, we have investigated the problem of long-term bus
journey time prediction using ML. We evaluated the existing litera-
ture and determined the state-of-the-art methods of journey time
prediction. Whole route ML modelling has been shown to have the
least relative error and is a conceptual model of a bus network that
is underrepresented in the literature. However, it presents a problem
of accurately predicting partial journey travel times, which repre-
sent the majority of passenger bus journeys. We have proposed
a method of post ML modelling segmentation based on historical
averages (dynamic proportioning) and applied this method to one
year of bus data on a city-wide bus network. We compared this
method to a proportioning method using the number of stops on the
partial journey as a ratio of the number of stops on the whole jour-
ney (static proportioning). Of the two methods compared, dynamic
proportioning is more accurate than static proportioning. Dynamic
proportioning is especially useful for short partial journeys which
usually have poor metrics using a stop pair approach. By improving
journey time predictions in a scalable way, we hope to meet the
urban passenger’s requirements for reliable and punctual service
and encourage passengers towards public transport. The next step
in our work is to compare a consecutive stop pair model of the
network with the approach presented in this paper and evaluate
for error, storage and computational costs. We would also like to
experiment with variants of dynamic proportioning to improve
results on small data sets.
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