
Back to Basics:
Deep Reinforcement Learning in Traffic Signal Control

Sierk Kanis
sierkkanis@hotmail.com
University of Amsterdam

Amsterdam, The Netherlands

Laurens Samson
Daan Bloembergen
l.samson@amsterdam.nl

d.bloembergen@amsterdam.nl
CTO, City of Amsterdam

Amsterdam, The Netherlands

Tim Bakker
t.b.bakker@uva.nl

University of Amsterdam
Amsterdam, The Netherlands

ABSTRACT
In this paper we revisit some of the fundamental premises for a
reinforcement learning (RL) approach to self-learning traffic lights.
We propose RLight, a combination of choices that offers robust
performance and good generalization to unseen traffic flows. In
particular, ourmain contributions are threefold: our lightweight and
cluster-aware state representation leads to improved performance;
we reformulate the Markov Decision Process (MDP) such that it
skips redundant timesteps of yellow light, speeding up learning
by 30%; and we investigate the action space and provide insight
into the difference in performance between acyclic and cyclic phase
transitions. Additionally, we provide insights into the generalisation
of the methods to unseen traffic. Evaluations using the real-world
Hangzhou traffic dataset show that RLight outperforms state-of-
the-art rule-based and deep reinforcement learning algorithms,
demonstrating the potential of RL-based methods to improve urban
traffic flows.

KEYWORDS
Reinforcement Learning, Deep Reinforcement Learning, Q-learning,
Adaptive Traffic Signal Control

1 INTRODUCTION
Adaptive Traffic Signal Control (ATSC) aims to facilitate smooth
and safe traffic flow, thereby reducing travel times and cutting CO2
emissions[24]. While conventional methods rely on handcrafted
rules based upon specific traffic scenarios, the recent increase in
traffic data and enormous advances in optimization techniques
suggest that more opportunities are at hand [20].

In recent years, combining deep learning with reinforcement
learning (RL) has led to strong performance in many complex en-
vironments, often achieving super-human performance [8, 12, 14].
These methods have proven to be able to handle dynamic envi-
ronments, starting with a blank slate and learning directly from
feedback by trial and error without relying on simplistic data as-
sumptions. It is natural to wonder whether deep RL could be just
as beneficial for ATSC.

However, ATSC presents a challenge from an RL perspective.
While in some RL applications the environment straightforwardly
translates to a Markov Decision Process (MDP), ATSC has no prin-
cipled source of raw data and rewards, while also lacking a fixed set
of actions or action-rate. This means that success is highly reliant
on the quality of the MDP representation.

Models that aim to equip the agent with all possible informa-
tion are unnecessarily complex which consequently hurts perfor-
mance [25]. On the contrary, Light-Intellight (LIT) [25] aims to
propose a minimal set of features based upon a uniform traffic
distribution and shows good performance. However, traffic distri-
butions in dense urban areas are often non-uniform and consist of
clusters, see Figure 1. No prior work seems to specifically design
their state representation to fit clustered traffic data.

We propose Reinforcement-Learning-Light (RLight)1, a simple
yet concise RL framework that exploits inductive biases relevant
to the ATSC problem. We build upon the advantages of LIT using
a simple shaping reward, yet expand their state representation to
fit a more clustered data distribution. We represent approaching
and waiting vehicles separately and add the mean speed and dis-
tance of the approaching cluster to the state as an approximation,
thereby exploiting the specific structure of clusters to keep the state
representation compact and digestible. By using only structured
data, our method can exploit the current sensors in the ground and
GPS data, therefore contributing to the transition of adopting a
reinforcement learning approach in the real world.

Additionally, to our knowledge, no prior work has acknowledged
the ambiguity in modelling yellow light, while it does impact the
performance. So far the ATSC problem has mainly been formulated
as a standard MDP, whereas an underlying inductive bias could
be built in to skip redundant timesteps during yellow light, thus
cleaning up the reward signal by ignoring irrelevant state-action
pairs. We show that this reduces learning time by approximately
one third.

Furthermore, prior work does not agree on whether it is safe to
have an acyclic action space or not, whereas we find that limiting
the agent to cyclic control impacts the performance significantly.
Just as a human traffic warden would do, we think it is more natural
to be able to freely choose the optimal phase at every timestep. We
investigate this difference to provide more ground for utilizing
acyclic control.

We apply our approach to real data of five intersections in the
city of Hangzhou using the CityFlow simulator [23]. Since this
dataset is fixed and thus, in RL terms, the environment is deter-
ministic, we split up the data into train, validation and test sets to
provide insights into the generalisation of our method. To test our
approach against a rule-based method, we propose an extension of
the Self-Organizing Traffic Lights (SOTL) method [2] that works
in multi-phase settings as well as in the originally implemented
two-phase setting. Empirically, we show that our proposed method
1https://github.com/Amsterdam-Internships/Self-Learning-Traffic-Lights

https://github.com/Amsterdam-Internships/Self-Learning-Traffic-Lights


Sierk Kanis, Laurens Samson, Daan Bloembergen, and Tim Bakker

Figure 1: The left panel shows data from the first ten minutes of inflow on intersection Hangzhou 2, with every triangle
indicating a vehicle. The right panel shows the rate of vehicles per minute. Notice how traffic often appears in clusters.

RLight consistently outperforms state-of-the-art methods on all
five intersections.

In short, our contributions are the following:

• We propose RLight, a simple yet concise RL framework that
exploits inductive biases relevant to the ATSC problem:
– Our lightweight and cluster-aware state representation
outperforms state-of-the-art methods on the Hangzhou
dataset.

– We reformulate the MDP such that it skips redundant
timesteps of yellow light, speeding up learning.

– We investigate the action space and provide insight in
the difference in performance between acyclic and cyclic
phase transitions.

• In addition, we extend the rule-based algorithm SOTL to
work in an acyclic fashion for multi-phase intersections.

Our single agent is able to successfully control varying traffic
densities, enabling it to generalize to unexpected real-world situ-
ations such as a football event, a nearby accident or, let’s say, a
world-wide pandemic.

2 BACKGROUND
In this section we elaborate on the basics of traffic signal control,
we give an overview of reinforcement- and deep reinforcement
learning, and we go over the basics of the Self-Organising Traffic
Lights (SOTL) algorithm.

2.1 Traffic Signal Control
We address the traffic signal control problem using a set of incoming
lanes 𝜈𝜈𝜈 of cardinality 𝐽 , a set of outgoing lanes and a set of phases
𝜑𝜑𝜑 of cardinality 𝐼 . Each phase is a combination of green and red
lights and the set of phases consists of all possible combinations in
which conflicting directions do not have green light simultaneously.
In particular, this means every phase consists of two green lights,
while the other lights are red. A fixed yellow period of five seconds is
enforced after every switch of lights. For simplicity, we assume that
separating conflicting directions and forcing yellow light periods
account for safety and we do not consider safety in more detail.

2.2 Reinforcement Learning
Reinforcement learning is a computational approach character-
ized by its learning from direct interaction with the environment
without requiring supervision or a complete model of the environ-
ment [15].

Markov Decision Process. We consider a Markov Decision Pro-
cess (MDP), which is a formalization of sequential decision making
where actions not only influence immediate rewards, but also sub-
sequent states and through those future rewards. In an MDP, the
agent and environment interact at each of a sequence of discrete
timesteps, 𝑡 = 0, 1, ...,𝑇 . At every timestep 𝑡 , the agent receives a
representation of the environment state 𝑠𝑡 and selects an action
𝑎𝑡 , after which the environment transitions to the next state 𝑠𝑡+1
and the agent receives a reward 𝑟𝑡+1. The goal of reinforcement
learning is to learn a policy, i.e. a mapping from perceived states
to actions in those states 𝜋 : 𝑆 → Δ𝐴 that maximizes the expected
return, which is defined as:

𝑄𝜋 (𝑠, 𝑎) = E𝜋

[∑
𝑡 ≥0

𝛾𝑡𝑟𝑡

�����𝑆0 = 𝑠, 𝐴0 = 𝑎

]
for each initial state-action pair (𝑠, 𝑎) ∈ 𝑆 ×𝐴, where 𝛾 ∈ [0, 1]

is the time-discount factor that prioritises short-term rewards over
long-term rewards [15].

State. At each time step, the agent receives a quantitative repre-
sentation of the environment, i.e. a state representation 𝑆𝑡 . Ideally,
the state representation fully describes the environment, such that
the agent is given all information necessary to perform the right
action. However, an overly complex state representation tough-
ens distilling the useful information, while on the other hand, a
simple state representation may result in different states appear-
ing to be identical, making it impossible to learn the appropriate
behaviour. In some reinforcement learning applications the envi-
ronment straightforwardly translates to a state representation, e.g.
pixels on a screen. In the traffic signal control setting, however, no
principled source of raw data exists, which means success is highly
reliant on the quality of the hand-crafted state representation.

Reward. On each timestep the environment sends the RL-agent
a reward signal 𝑅𝑡 indicating the quality of its chosen action. This
allows the agent to estimate a value function, i.e. the total amount



Back to Basics: Deep Reinforcement Learning in Traffic Signal Control

of reward the agent can expect to accumulate over the future from
each state. Subsequently, actions are taken based on this estimated
value function, seeking to reach states with higher values.

Again, there is no clear-cut reward signal in the traffic signal
control setting, like points in Tetris or winning a game of chess. In
the case of very sparse reward signals like average travel time, the
addition of intermediate shaping rewards can be helpful to steer the
agent towards the goal [13]. However, rewards must be provided
in such a way that in maximizing them the agent will also achieve
the goals one want to be accomplished.

Actions. Each timestep 𝑡 the agent selects an action 𝐴𝑡 from the
action space 𝐴 = {1, ..., 𝐾}, i.e. the set of possible actions. Ideally,
the action space allows the agent maximum freedom in the envi-
ronment, such that all options are available necessary to perform
the right action. However, a too big action space imposes the agent
with the task to choose the right action from a bigger set, possibly
harming performance. In traffic signal control there is no fixed set
of available options in the environment, e.g. the legal moves in the
game of chess. This means that performance is reliant on the choice
of the action space.

2.3 Deep Reinforcement Learning
Deep reinforcement learning can be understood as consisting of
three fundamental components: a function approximator, a learn-
ing algorithm and a mechanism for generating training data. We
parameterize an approximate value function𝑄 (𝑠, 𝑎;𝜃𝑖 ) using a deep
neural network architecture in which 𝜃𝑖 are the parameters of the
network at iteration 𝑖 . Samples of experiences generated by our
traffic simulator (𝑠, 𝑎, 𝑟, 𝑠 ′) ∼ 𝑈 (𝐷) are drawn uniformly at random
from the memory of saved transitions and are used for learning by
updating the local neural network at iteration 𝑖 by the following
loss function:

𝐿𝑖 (𝜃𝑖 ) = E(𝑠,𝑎,𝑟,𝑠′)∼𝑈 (𝐷)
[
𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠 ′, 𝑎′;𝜃−𝑖 ) −𝑄 (𝑠, 𝑎;𝜃𝑖 )

]
in which 𝜃𝑖 are the parameters of the local neural network at

iteration i and 𝜃−
𝑖
are the parameters of the target network at iter-

ation i [12]. The target network is added to stabilize learning and
its parameters 𝜃−

𝑖
are being soft-updated with factor 𝜏 to slowly

catch-up with the local network [10].

2.4 Self-Organizing Traffic Lights
Next to deep reinforcement learning, we examine the rule-based
Self-Organizing Traffic Lights (SOTL) algorithm, in order to com-
pare our RLight agent to a rule-based approach. SOTL is a dis-
tributed adaptive traffic light system with no communication be-
tween intersections. The method is considered self-organizing, be-
cause the global performance is only dependent on the local rules
of each intersection; each intersection is unaware of the state of
other intersections [2]. Still, it is able to achieve global coordination
of traffic because of the probabilistic formation of vehicle platoons,
i.e. convoys of vehicles [5].

Each traffic phase𝜑𝜑𝜑𝑖 keeps a count𝜅𝑖 , with 𝑖 from 1 to 𝐼 , in which
𝐼 is the number of phases. At every time-step, 𝜅𝑖 adds the number of
vehicles on the currently red lanes of 𝜑𝜑𝜑𝑖 , independently of whether

a vehicle is moving or waiting. When 𝜅𝑖 , representing the integral
of vehicles on the lanes of 𝜑𝜑𝜑𝑖 over time, reaches a threshold 𝜃 ,
the current phase switches to phase 𝜑𝜑𝜑𝑖 and 𝜅𝑖 is reset to zero. To
prevent fast switching of lights, additional constraints are tuned
per intersection [5]. The original implementation by Gershenson
only supports two phases, in Section 5 we extend the method to
work in multi-phase settings too.

3 RELATEDWORK
The ATSC problem has traditionally been approached using rule-
based methods that use manually tuned parameters, as well as
machine learning techniques [24]. Although approaches based on
RL go back more than two decades [22], the advent of Deep RL
has led to a new boom in research in this direction [7]. Many RL
approaches discuss various ways in which to define the underlying
Markov Decision Process (MDP) in terms of its state, action and
reward representation [20].

State. The introduction of deep learning has shown that training
directly from raw inputs can lead to better representations than
handcrafted features [12], but the ATSC setting does not have a
principled source of raw data. As an attempt to fully describe the
traffic situation recent studies have used grids [9] or images [17],
which led to state representations with thousands of dimensions.
This abundance of information however does not necessarily lead
to a gain in performance [20].

Reward. A principal goal of ATSC is to reduce the average travel
time in the system. However, this metric is hard to estimate out-
side a simulator and additionally leads to highly delayed signals.
Recent studies define the reward function as an ad-hoc weighted
linear combination of several direct traffic measures such as queue
length, waiting time, speed, and throughput [11, 17, 19]. Such multi-
component reward exhibits two drawbacks. First, there is no guar-
antee that the desired goal is optimized. Second, small changes
in the component weights could lead to drastically different re-
sults [25]. Unfortunately, there is no principled approach to tune
weights within a RL reward function [20].

The work closest to ours is Light-Intellight (LIT) [25]. Their
approach uses the cumulative queue length as a proxy for average
travel time. The authors show that queue length is proportional
to travel time and therefore optimizing queue length amounts to
optimizing travel time. With this reward, Zheng et al. claim that
only the number of vehicles and the traffic signal phase are needed
to fully describe the system, under the assumption of uniform traffic
inflow. Under this assumption their method worked well, but as
shown in Figure 1, urban areas with dense intersections cause traffic
to be highly clustered. In this work, we adopt the reward function
of Zheng et al. but challenge their assumption of uniformity by
expanding our state representation to adapt to more fragmented
traffic distribution.

Action. The LIT approach, among others, additionally assumes
that a predetermined phase order aligns best with drivers’ expec-
tations and avoids safety issues [9, 25]. Yet, there are urban traffic
control systems that do utilize acyclic phases (e.g. Amsterdam).
Since limiting the agent to a fixed cycle restricts it to learn the



Sierk Kanis, Laurens Samson, Daan Bloembergen, and Tim Bakker

optimal policy [4], we investigate the reduction of travel time when
allowing acyclic phase transitions.

Coordination. In recent years, studies have scaled up their ap-
proach to large multi-agent systems, proposing multiple forms of
coordination and communication between the agents [1, 7, 11].
Van der Pol and Oliehoek [17] have extended their single agent
DQN solution by making use of transfer planning and the max-
plus coordination algorithm while Wei et al. [18] have introduced a
graph attentional network to facilitate cooperation. However, under
certain circumstances, explicit coordination between intersections
may not be a necessity [6]. Traffic lights themselves already struc-
ture traffic flow in clusters of vehicles. When intersections follow
each other rapidly, clusters likely persist until the next intersection.
The large empty areas that appear between clusters could then be
used by crossing clusters; if agents can learn to anticipate this ap-
proaching traffic, the system can naturally become self-organizing
without the need for explicit coordination [2]. Empirically, Zheng
et al. [25] have shown that LIT outperforms the multi-agent ap-
proach of Van der Pol and Oliehoek [17] without adding explicit
coordination, which motivates us to investigate the quality of the
basic assumptions of single-agent control further.

4 RLIGHT AGENT DESIGN
Our RLight agent is based on the standard reinforcement learning
framework [15]. In the following, we describe how we formulate
ATSC as aMarkov Decision Process (MDP) and discuss the state and
action representation, as well as the reward function. We consider
the scenario in which the agent controls a single intersection with
𝐽 incoming lanes, and 𝐼 traffic light phases.

4.1 Markov Decision Process
To our knowledge, no prior work has investigated the difference in
modelling the action rate in ATSC problems. Assuming a timestep
rate of one simulation second per transition and a fixed period of
yellow light enforced by the environment, we consider two options.

MDP. The agent selects an action at every simulation second and
we accept that actions during yellow light are being ignored by the
environment. This means that the agent would have to learn that
actions in such states do not have any impact on the final reward,
and therefore, every action is equally good. In this way, training
effort is put into learning irrelevant state-action pairs, while it can
also be prone to making the reward signal noisier. Consider the
scenario when the agent has not fully learned to distinguish yellow
and non-yellow states, in which case it appears to the agent as if it
gets rewarded for its action, yet in a yellow state it would get this
reward anyway.

SMDP. The agent only chooses actions when its decisions ac-
tually have an impact on the environment, meaning it is inactive
during yellow light. This can be seen as a Semi-Markov Decision
Process (SMDP) [16]. Assume that the yellow period has a fixed
length of 𝜓 timesteps. Whenever the agent decides to switch to
another phase (and thus the yellow light period starts) at timestep 𝜏 ,
in state 𝑠𝜏 with action 𝑎𝜏 , it receives the cumulative discounted re-
wards during the yellow period added to the discounted immediate

reward after the yellow period:

𝑟𝜏 (𝑠𝜏 , 𝑎𝜏 ) =
𝜓+1∑
𝑡=1

𝛾𝑡𝑟𝜏+𝑡 (𝑠𝜏+𝑡 )

The advantage of this way of modelling is that irrelevant state-
action pairs do not have to be learned, saving training time and
simplifying optimization. Note that, since the queue length of each
timestep is still implicitly perceived by the agent, the proportion-
ality of queue length and average travel time which we discus in
Section 4.4 still holds.

4.2 State representation
At each time step, the agent receives a quantitative representation
of the environment, i.e. a state representation. Our goal is to choose
a representation that is easily digestible, yet concise enough to
contain the information necessary to select the appropriate actions.

As a starting point, we consider only the number of vehicles and
the current phase as used in LIT [25]. The current phase is necessary
for the agent to knowwhether lights will switch by taking an action
and the waiting and approaching vehicles are represented jointly
based upon the idea that, if the inflow of traffic is constant, the
agent can estimate these instead of perceiving them directly.

This leads to:
𝑠𝑡𝑠𝑡𝑠𝑡 = [𝑤𝑤𝑤⊺𝑡 +𝑎𝑎𝑎

⊺
𝑡 , 𝑝𝑝𝑝
⊺
𝑡 ],

in which𝑤𝑤𝑤 + 𝑎𝑎𝑎 ∈ R𝐽 is a transposed vector representing the total
number of vehicles (waiting,𝑤𝑤𝑤 , plus approaching, 𝑎𝑎𝑎) on each lane
and 𝑝𝑝𝑝 is the phase represented as a one-hot vector of size 𝐼 , where
𝐼 and 𝐽 are the number of phases and lanes, respectively. While LIT
uses phase-gate [21] to condition the action-value function on the
current state, we simply encode the phase as a one-hot vector and
append it to the state.

However, not distinguishing approaching and waiting vehicles
may result in different states appearing to be identical, making it
impossible to learn the appropriate behaviour. In particular, this
state representation cannot distinguish patterns in the traffic flow,
and thus also cannot be used for implicit coordination between
traffic lights.

We extend this approach by explicitly separating the waiting
and approaching vehicles and thereby fitting the more fragmented
distribution of urban traffic. Additionally, we concatenate the aver-
age speed and distance of the approaching traffic to improve traffic
anticipation, i.e. switch lights earlier if a cluster moves faster or
closer.

This results in the following state representation:

𝑠𝑠𝑠𝑡 = [𝑤𝑤𝑤⊺𝑡 ,𝑎𝑎𝑎
⊺
𝑡 ,𝑑𝑑𝑑
⊺
𝑡 , 𝑠𝑠𝑠
⊺
𝑡 , 𝑝𝑝𝑝
⊺
𝑡 ]

in which𝑤𝑤𝑤 represents the number of waiting vehicles,𝑎𝑎𝑎 the number
of approaching vehicles, 𝑑𝑑𝑑 the average distance of approaching
vehicles, 𝑠𝑠𝑠 the average speed of approaching vehicles, and 𝑝𝑝𝑝 the
phase represented as a one-hot vector as before. All values are
normalized by dividing by their maximum observed value. We use
the average speed and distance of the cluster as an approximation
to keep the state representation compact, under the assumption
that vehicles behave like steady convoys. In an eight-approach,
twelve-phase setting (𝐽 = 8, 𝐼 = 12) this results in a state-space of
dimension 4 × 8 + 12 = 44. Note that even under uniform traffic



Back to Basics: Deep Reinforcement Learning in Traffic Signal Control

scenarios our expansion will be minimally as descriptive as LIT’s
approach.

4.3 Action Space
Each timestep 𝑡 the agent selects an action 𝑎𝑡 from the available set
of actions 𝐴 = {1, ..., 𝐾}. Our goal is to allow the agent maximum
freedom, such that all necessary possibilities are available to select
the right action. We investigate the following two options.

Cyclic. We use a predetermined phase sequence in which the
agent can either keep the current phase or switch to the next phase.
Specifically, the neural network outputs a value to switch or to
keep.

Acyclic. We use an acylic phase sequence in which the agent can
freely choose which phase to switch to next, allowing more flexible
control. In this case, the network outputs as many values as there
are phases.

4.4 Reward Function
At every timestep the agent receives a numerical reward 𝑟𝑡 defined
by the reward function. Our goal is to define a reward function to
minimize average travel time which for simplicity we assume to be
the main objective.

Since average travel time can only be computed at the end of
a simulation trajectory, using this as the reward signal leads to
extremely sparse and delayed rewards. In addition, the average
travel time is generally not readily available outside a simulator.
Following Zheng et al. [25] we use the total queue length at the
intersection as a shaping reward:

𝑟𝑡 (𝑠𝑡 ) = −
𝐽∑
𝑗=1

𝑤 𝑗 (𝑠𝑡 )

in which𝑤 𝑗 is the queue length at the lane 𝑗 and J is the number of
lanes. This shaping reward is proven to be approximately propor-
tional to the average travel time, when neglecting speed changes
for simplicity [25].

5 SELF-ORGANIZING TRAFFIC LIGHTS 2.0
In this section, we explain how we generalize the rule-based Self-
Organizing Traffic Lights (SOTL) algorithm to multi-phase settings.

The original method was only implemented for two-phase set-
tings, which means it was implemented to switch to the next phase
instead of explicitly switching to the phase with the most waiting
time. In a two-phase setting, this amounts to the same policy, be-
cause in a two-phase setting cyclic and acyclic control is ambiguous.
In a multi-phase setting, however, a phase should not only switch
but also decide which phase to switch to. Also, in a multi-phase
setting, multiple phases can get above the threshold simultaneously.
Therefore we augment the algorithm by letting it choose the phase
corresponding to the maximum 𝜅 instead of the next phase in the
sequence, such that the phase with the most cumulative waiting
time is chosen.

The original implementation brings along another issue when
adapting it to a multi-phase intersection: Resetting 𝜅 to zero is
not anymore sufficiently informing the system that vehicles have
passed through green, as a green light is part of multiple phases.

Algorithm 1: SOTL generalized to multi-phase settings
initialize 𝜅 and 𝜌 to 0
for 𝑡 ← 1 to 𝑇 do

for 𝑗 ← 1 to 𝐽 do
𝜌 𝑗 += 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑗𝑡

for 𝑖 ← 1 to 𝐼 do
𝜅𝑖 =

∑𝐽
𝑗=1 𝜌 𝑗 · 1𝜑𝜑𝜑𝑖

(𝜈 𝑗 )

if 𝜙𝑔𝑟𝑒𝑒𝑛 > 𝜙𝑚𝑖𝑛 then
if not 0 < 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝜙𝑔𝑟𝑒𝑒𝑛 < 𝜇 then

if max𝜅 > 𝜃 then
action = argmax𝑖 𝜅
𝜌𝜌𝜌𝑖 = 000

Consider 𝜅𝑖 and 𝜅 𝑗 (𝑖 ≠ 𝑗), which share one lane. If phase 𝜑𝜑𝜑𝑖 is set
to green, vehicles on the shared lane will pass through green, yet
only 𝜅𝑖 is reset, while 𝜅 𝑗 does not get updated. Consequently, the
passed vehicles are still present in the integral of 𝜅 𝑗 , which results
in phase 𝜑𝜑𝜑 𝑗 being chosen next, although no vehicles are waiting
anymore. Since SOTL uses counters to represent the integrals, there
is no way to remove only the waiting time of one lane. This means
that to keep functioning solely with counters (such that only one
induction loop per lane is necessary) an additional parameter is
called for.

Let us introduce 𝜌𝜌𝜌 ∈ N𝐽 , where 𝜌𝜌𝜌 = (𝜌1, ..., 𝜌 𝑗 ) is a set of coun-
ters which represent the integrals of vehicles per lane over time
and 𝐽 is the number of approaching lanes. Now, when lane 𝜈 𝑗 gets
green light, independently which phase turned this light into green,
𝜌 𝑗 corresponding to lane 𝜈 𝑗 is reset to zero.

Then, instead of counting𝜅𝑖 directly,𝜅𝑖 is calculated by summing
its corresponding 𝜌-values:

𝜅𝑖 =

𝐽∑
𝑗=1

𝜌 𝑗 · 1𝜑𝜑𝜑𝑖
(𝜈 𝑗 )

where 1𝜑𝜑𝜑𝑖
(𝜈 𝑗 ) is a function that indicates whether lane 𝑣 𝑗 has green

light in phase𝜑𝜑𝜑𝑖 . Note that 𝜅𝑖 remains the cumulative waiting time
of phase 𝜑𝜑𝜑𝑖 , like in the original SOTL method.

Now, whenever a lane 𝜈 𝑗 gets green light, all the corresponding
𝜅-values are updated accordingly, because they are all dependent on
the same 𝜌 𝑗 . So, by introducing an additional parameter, passed cars
will be removed from all corresponding integrals, and consequently,
true to the original SOTL method, the phase with the most waiting
time is chosen.

The full algorithm is presented in Algorithm 1, in which 𝜙𝑔𝑟𝑒𝑒𝑛
is the current duration of the phase, 𝜙𝑚𝑖𝑛 is the minimal duration
a phase must be, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝜙𝑔𝑟𝑒𝑒𝑛 is the number of vehicles within a
hand-tuned distance from the green lights, 𝜇 is a tunable parameter
indicating the number of vehicles that is needed to split up a cluster
and 𝜌𝜌𝜌𝑖 is the set of 𝜌 values corresponding to phase𝜑𝜑𝜑𝑖 . Note that in
the original two-phase, four-approach setting SOTL and SOTL-2.0
are identical.



Sierk Kanis, Laurens Samson, Daan Bloembergen, and Tim Bakker

6 EXPERIMENT SETUP
In this section, we discuss the experimental setup to evaluate our
method. We describe the dataset, model architecture and baseline
methods.

6.1 Data
Weperform experiments on five simulated intersections inHangzhou,
China. The data are based upon real-life traffic recordings and con-
tain two hours of vehicle trajectories per intersection [18]. We
simulate the traffic in CityFlow2 [23] by feeding the route and
spawn time of each vehicle and let our RL agent control the traffic
lights. Each green light is followed by five seconds of yellow light.
Each intersection has eight approaches, four going straight and
four turning left. We use all possible phases as actions, i.e. non-
conflicting green light configurations. Note that our method can be
applied to intersections of any size.

Usually, RL environments are either deterministic or contain
some randomness that makes every run different. However, when
simulating vehicles based upon a fixed dataset, every run is very
similar, while in reality traffic is always different. Therefore, we split
the data into training, validation and test sets to avoid overfitting
to a specific hour of traffic flow data, similar to supervised learning.
Besides that, using test and validation sets allows us to compare
the generalisation of the different methods.

In order to increase generalization to unseen traffic scenarios
and simultaneously make maximum use of the available data, we
train our model on four intersections and use the two different
hours of the remaining fifth intersection for validating and testing.
We repeat this for all five intersections.

6.2 Model Architecture
To test our framework we use the Deep Q-learning algorithm as
proposed by Mnih et al. [12] with soft-updates [10]. Our neural
network consists of two fully-connected hidden layers of 64 nodes
with ReLu activation followed by a fully-connected linear layer
with a single output for each phase. We use the hyperparameters
as proposed by Mnih et al. [12], except for using a minibatch size
of 512, a learning rate of 1𝑒−3 and a replay memory size of 360k.
We optimize our network with the Adam algorithm and use an
𝜖-greedy behaviour policy. We use the same network architecture
and hyperparameters across all datasets, showing that our approach
is robust to a variety of intersections.

6.3 Baselines
In addition to the earlier described RL method LIT [25], we also
report scores for a set of rule-based methods to give an intuition
about the complexity of the intersection. The method labeled fixed
is a cyclic phase order with 20 seconds of green time per phase and
the method labeled random is a policy that selects actions uniformly
at random. SOTL-1.0 is an implementation3 of the rule-based Self-
Organizing Traffic Lights (SOTL) algorithm [2]. Note that, although
Zheng et al. use this implementation throughout their studies, it
resembles more the cut-off method designed by Fouladvand et al.
than it does resemble the original SOTL method as introduced by
2https://cityflow-project.github.io/
3https://traffic-signal-control.github.io/code.html

Figure 2: This plot shows how the average travel time per
50 epochs evolves during training on Hangzhou 1 of RLight
(blue) compared to LIT (orange). Every 50 epochs correspond
to 45000 weight updates or approximately 12 minutes of
training time.

Gershenson. SOTL-2.0 is our augmented version of the original
SOTL method and picks the phase with the most waiting time in a
multi-phase setting as well as in a two-phase setting, as described
in section 5.

7 RESULTS
In this section, we discuss how the performance of our learning
algorithm is influenced by choices regarding the state and action
representation as well as the nature of the MDP formalisation.
For simplicity, we use average travel time as an evaluation metric,
which we compute every 50 epochs on the validation set during
training. We save the model corresponding to the best score on the
validation set and use that model on the test set to compute the final
evaluation score. We only perform one run for each experiment,
since the low variance between runs, due to the deterministic traffic
scenarios used for data generation, does not impact the relative
performance of the methods.

State representation. We compare our results with some of the
best-performing methods from the ATSC literature, both rule-based
and RL-based [2, 25]. The lower four rows of Table 1 show the scores
on the validation/test set for each part of our state representation
compared to the state representation of LIT. Note how we consis-
tently outperform LIT on all five intersections.

LIT learns policies that are on par with SOTL-2.0 on the vali-
dation set but fails to generalize to the test set on intersections 1
and 5. As shown in Figure 2, the validation performance of LIT
is quite unstable during training, which goes some way towards
explaining its poor test time performance. This figure also shows
that our streamlining of the framework and consequently of the
optimization process has paid out, resulting in very stable learning.

From our different state representations, [𝑤𝑤𝑤⊺,𝑎𝑎𝑎⊺,𝑑𝑑𝑑⊺] achieves
the best results on four of the five intersections. The addition of
the average speed 𝑠𝑠𝑠 of the cluster of approaching vehicles leads to
slightly worse performance, which might indicate that it does not
contribute enough to compensate for the expansion in state space.

Additionally, we show that SOTL-2.0 consistently achieves at
least 30% lower travel times than SOTL-1.0, with an average re-
duction of 38%. Still, our RLight agent using state representation
[𝑤𝑤𝑤⊺,𝑎𝑎𝑎⊺,𝑑𝑑𝑑⊺, 𝑝𝑝𝑝⊺𝑡 ] outperforms SOTL-2.0 by a substantial margin of

https://cityflow-project.github.io/


Back to Basics: Deep Reinforcement Learning in Traffic Signal Control

Table 1: The upper table shows the average travel time in seconds for various rule-based methods on the validation/test set.
The lower table reports results of each component in our state representation on the validation/test set, while being trained
on the other four intersections. 𝑤𝑤𝑤 represents the number of waiting vehicles, 𝑎𝑎𝑎 the number of approaching vehicles, 𝑑𝑑𝑑 the
average distance of approaching vehicles and 𝑠𝑠𝑠 the average speed of approaching vehicles. Additionally, every state contains
the current phase as described in Section 4.2. The experiments are performed with the Semi-Markov Decision Process model.

Hangzhou 1 Hangzhou 2 Hangzhou 3 Hangzhou 4 Hangzhou 5

Random 981 / 1086 613 / 520 649 / 844 830 / 1110 967 / 1064
Fixed time 440 / 632 283 / 213 252 / 278 319 / 599 539 / 613
SOTL-1.0 221 / 335 160 / 165 117 / 132 174 / 290 215 / 325
SOTL-2.0 120 / 234 77 / 78 81 / 87 96 / 159 115 / 193

[𝑤𝑤𝑤⊺ +𝑎𝑎𝑎⊺] (LIT) 112 / 422 79 / 73 96 / 111 100 / 148 96 / 842
[𝑤𝑤𝑤⊺,𝑎𝑎𝑎⊺] 103 / 138 71 / 74 85 / 92 88 / 104 99 / 116
[𝑤𝑤𝑤⊺,𝑎𝑎𝑎⊺,𝑑𝑑𝑑⊺] 95 / 151 66 / 65 78 / 83 82 / 100 85 / 107
[𝑤𝑤𝑤⊺,𝑎𝑎𝑎⊺,𝑑𝑑𝑑⊺, 𝑠𝑠𝑠⊺] 95 / 142 67 / 65 80 / 87 82 / 100 85 / 144

at least 34% on all five intersections despite incorporating almost
no prior knowledge about traffic flows.

Note that intersections 1, 4 and 5 are more crowded than the
other intersections, which increases the impact of each action and
therefore requires more precise control. We show that in these
cases SOTL and LIT do not generalize well from the validation set
to the test set, while our method excels especially in these cases,
achieving a striking average of 75% lower travel times than LIT.

Finally, we show that the results on the validation and test set
vary significantly from each other, suggesting the methods are
prone to overfitting to a specific hour of traffic flow at the intersec-
tion. This confirms the decision to split the data into train, validation
and test sets, which is uncommon in reinforcement learning. This
is probably because we generate experiences based upon real data,
which only allows for a finite amount of experiences, whereas many
reinforcement learning applications allow for the generation of an
infinite stream of non-deterministic data.

Action space. We compare the effect of using a cyclic versus acylic
phase order in Table 2. The freedom the agent gets in choosing
a phase independently of the last phase improves performance
consistently on all intersections. Moreover, selecting a wrong action
in cyclic control has a longer effect on the queues since each action
determines the next actions, becoming more sensitive to mistakes.
Additionally, we show that also when adopting a cyclic phase order,
our state representation outperforms LIT’s, even when LIT’s state
representation was specifically aimed towards cyclic phase orders.

Markov Decision Process. In Table 3 we compare modelling the
process as a Markov Decision Process (MDP) versus a Semi-Markov
Decision Process (SMDP). Both methods result in similar scores, but
the SMDP requires 37% less training time than the MDP, because
the replay memory is filled only with valuable timesteps, thereby
needing fewer gradient updates relative to the MDP.

Reward function. Figure 3 visually shows the proportionality of
our reward function and the average travel time, which confirms
that negative cumulative queue length is a good shaping reward
for average travel time.

Table 2: The average travel time in seconds of a cyclic
and acyclic action space using our state representation
[𝑤𝑤𝑤⊺,𝑎𝑎𝑎⊺,𝑑𝑑𝑑⊺, 𝑝𝑝𝑝⊺𝑡 ] relative to the state representation of LIT.
Note that our state representation also outperforms LIT’s
when adopting a cyclic phase order.

H1 H2 H3 H4 H5

Cyclic LIT 422 88 119 470 184
Cyclic RLight 248 78 93 142 142

Acyclic RLight 151 65 83 100 107

Table 3: The difference in average travel time in seconds of
modelling the problem as a Markov Decision Process (MDP)
versus a Semi Markov Decision Process (SMDP) using our
state representation [𝑤𝑤𝑤⊺,𝑎𝑎𝑎⊺,𝑑𝑑𝑑⊺, 𝑝𝑝𝑝⊺𝑡 ]. The results are similar
but the SMDP requires significantly less training time.

H1 H2 H3 H4 H5

MDP 134 68 83 97 101
SMDP 151 65 83 100 107

Generalisation. To investigate the generalization we input arti-
ficial states with zero to five vehicles per direction into a trained
Q network in a simple four-approach two-phase intersection. We
depict the corresponding Q values in Figure 4 to show the decision
boundary of choosing one over the other phase. The consistent
linearity between the Q values indicates that the model has learned
to generalize well to unseen states, which suggests that there exists
an underlying function over the traffic densities, independent of a
specific intersection. Consequently, we hypothesize that the more
diverse the training samples are, the more this underlying func-
tion gets explored and learned, resulting in good understanding
of where the decision boundary lies. This suggests that training
on multiple intersections and augmenting the data could increase



Sierk Kanis, Laurens Samson, Daan Bloembergen, and Tim Bakker

Figure 3: The left andmiddle plots show the average negative queue length and average travel time respectively during training.
The right plot shows the proportionality between these two quantities by depicting the log travel time upside-down.

Figure 4: This figure shows the difference between the two
Q-values corresponding to switching to WE or keeping
phase NS in a simple four-approach two-phase intersection.
Warmer colors indicate a switch, cooler colors indicate keep-
ing the phase and grey values indicating indifference. This
shows how the decision boundary is fairly symmetrical in
the diagonal, indicating an underlying function over the
traffic densities. Note how the decision boundary is shifted
to the right due to the costs of switching (the addition of yel-
low light).

generalisation, which consequently could increase performance in
the unpredictable traffic scenarios of the real-world.

8 DISCUSSION
While our results look promising, we have only tested our approach
on data from one source with only two hours of traffic data per
intersection. In addition, the layouts of the intersections are identi-
cal, although we have designed our method to be applicable to any
form of intersection.

Our results are also dependent on the realism of the simulation.
Firstly, all vehicles are simulated with the maximum speed, which
unrealistically makes it an undescriptive factor in our RL envi-
ronment. Secondly, vehicles are unable to collide in the simulator,
which should be built in to provide a balanced view on safety.

Our state representation can be extended to incorporate bicycle
lanes, which we reckon to be fairly straightforward due to the com-
pact nature of our state representation. Furthermore, in extremely
dense urban environments, augmenting the state representation
by including the amount of free space on the outgoing lanes could
become useful. This is because in these cases not every vehicle
might be able to pass through green and accordingly, the agent
should change its decisions.

The reward function could potentially be augmented to prioritize
certain vehicles (e.g. trucks, public transport, bicycles) by assign-
ing each of them a different weight. Also, each vehicle could be
weighted by its waiting time in order to decrease the variance of
the travel time at the expense of the average travel time.

Interesting follow-up research would be to investigate whether
our algorithm performs strongly in a multi-agent scenario as well,
where several connected intersections are controlled by individual
agents. We hypothesize that the natural formation of clusters allows
for implicit coordination between intersections, due to our agent’s
ability to deal with clustered traffic.

9 CONCLUSION
In this work, we have opted to overcome the lack of a straight-
forward reinforcement learning framework in traffic signal control
by investigating choices regarding the fundamental premises of a
deep reinforcement learning agent. Concretely, we have sought to
find ways to exploit relevant inductive biases regarding the state,
reward, action and MDP formulation. We have shown that we
can speed up learning by reformulating the MDP as an SMDP by
discarding yellow phase time from the learning process, that acyclic
phase transitions consistently yield better performance than cyclic
phase transitions, and that distinguishing approaching and waiting
vehicles is necessary to effectively deal with non-uniform traffic
flows. Additionally, we have shown that splitting up the data into
train-validation-test sets is appropriate in traffic signal control and
that our generalisation of the Self-Organising Traffic Lights leads
to a strong baseline in multi-phase intersections.

Our empirical evaluations on real-world datasets have shown
that our proposed RLight method produces stable learning and
outperforms the chosen baseline methods by a substantial margin.
These results demonstrate the potential of reinforcement learning
methods to improve urban traffic flows, thereby reducing travel
time and cutting CO2 emissions.



Back to Basics: Deep Reinforcement Learning in Traffic Signal Control

REFERENCES
[1] Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong,

Kai Xu, and Zhenhui Li. 2020. Toward A Thousand Lights: Decentralized Deep
Reinforcement Learning for Large-Scale Traffic Signal Control. Proc. of the AAAI
Conference on Artificial Intelligence 34, 04 (2020), 3414–3421. https://doi.org/10.
1609/aaai.v34i04.5744

[2] Seung Bae Cools, Carlos Gershenson, and Bart D’Hooghe. 2008. Self-Organizing
Traffic Lights: A Realistic Simulation. Advanced Information and Knowl-
edge Processing (2008), 41–50. https://doi.org/10.1007/978-1-84628-982-8_3
arXiv:0610040 [nlin]

[3] M Ebrahim Fouladvand, Zeinab Sadjadi, and M Reza Shaebani. 2004. Optimized
traffic flow at a single intersection: traffic responsive signalization. Journal of
Physics A: Mathematical and General 37, 3 (2004), 561.

[4] Wade Genders and Saiedeh Razavi. 2019. An open-source framework for adaptive
traffic signal control. arXiv X, X (2019), 1–11. arXiv:1909.00395

[5] Carlos Gershenson. 2004. Self-Organizing Traffic Lights. (2004).
arXiv:0411066 [nlin] http://arxiv.org/abs/nlin/0411066

[6] Jan-Torben Girault, Vikash V Gayah, Ilgin Guler, and Monica Menendez. 2016.
Exploratory analysis of signal coordination impacts on macroscopic fundamental
diagram. Transportation Research Record 2560, 1 (2016), 36–46.

[7] Ammar Haydari and Yasin Yilmaz. 2020. Deep reinforcement learning for intelli-
gent transportation systems: A survey. IEEE Transactions on Intelligent Trans-
portation Systems (2020).

[8] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. 2019. A survey and
critique of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems 33, 6 (2019), 750–797.

[9] Xiaoyuan Liang, Xunsheng Du, Guiling Wang, and Zhu Han. 2019. A deep
reinforcement learning network for traffic light cycle control. IEEE Transactions
on Vehicular Technology 68, 2 (2019), 1243–1253.

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[11] PatrickMannion, JimDuggan, and Enda Howley. 2016. An experimental review of
reinforcement learning algorithms for adaptive traffic signal control. Autonomic
road transport support systems (2016), 47–66.

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[13] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In Icml,

Vol. 99. 278–287.
[14] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362, 6419 (2018), 1140–1144.

[15] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction (2nd ed.). MIT press.

[16] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1-2 (1999), 181–211.

[17] Elise Van der Pol and Frans A Oliehoek. 2016. Coordinated deep reinforcement
learners for traffic light control. In NIPS’16 Workshop on Learning, Inference and
Control of Multi-Agent Systems.

[18] Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen,
Weinan Zhang, Yanmin Zhu, Kai Xu, and Zhenhui Li. 2019. CoLight: Learning
network-level cooperation for traffic signal control. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. 1913–1922.

[19] Hua Wei, Huaxiu Yao, Guanjie Zheng, and Zhenhui Li. 2018. IntelliLight: A
reinforcement learning approach for intelligent traffic light control. Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2018), 2496–2505. https://doi.org/10.1145/3219819.3220096

[20] Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. 2019. A survey on
traffic signal control methods. arXiv preprint arXiv:1904.08117 (2019).

[21] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. 2018. Intellilight: A
reinforcement learning approach for intelligent traffic light control. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2496–2505.

[22] Marco A Wiering. 2000. Multi-agent reinforcement learning for traffic light con-
trol. In Machine Learning: Proceedings of the Seventeenth International Conference
(ICML’2000). 1151–1158.

[23] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou,
Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Li. 2019. CityFlow: A multi-
agent reinforcement learning environment for large scale city traffic scenario. In
The World Wide Web Conference. 3620–3624.

[24] Dongbin Zhao, Yujie Dai, and Zhen Zhang. 2011. Computational intelligence in
urban traffic signal control: A survey. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42, 4 (2011), 485–494.

[25] Guanjie Zheng, Xinshi Zang, Nan Xu, Hua Wei, Zhengyao Yu, Vikash Gayah, Kai
Xu, and Zhenhui Li. 2019. Diagnosing reinforcement learning for traffic signal
control. arXiv preprint arXiv:1905.04716 (2019).

https://doi.org/10.1609/aaai.v34i04.5744
https://doi.org/10.1609/aaai.v34i04.5744
https://doi.org/10.1007/978-1-84628-982-8_3
https://arxiv.org/abs/0610040
https://arxiv.org/abs/1909.00395
https://arxiv.org/abs/0411066
http://arxiv.org/abs/nlin/0411066
https://doi.org/10.1145/3219819.3220096

	Abstract
	1 Introduction
	2 Background
	2.1 Traffic Signal Control
	2.2 Reinforcement Learning
	2.3 Deep Reinforcement Learning
	2.4 Self-Organizing Traffic Lights

	3 Related Work
	4 RLight Agent Design
	4.1 Markov Decision Process
	4.2 State representation
	4.3 Action Space
	4.4 Reward Function

	5 Self-Organizing Traffic Lights 2.0
	6 Experiment Setup
	6.1 Data
	6.2 Model Architecture
	6.3 Baselines

	7 Results
	8 Discussion
	9 Conclusion
	References

