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ABSTRACT
In order to better take advantage of the benefits from bike share
systems (BSSs), such as traffic congestion reduction and emission
reduction, many cities keep expanding their station-based BSSs.
Demand prediction for BSS expansion plays an important role in
sizing the new stations and preparing the operations when plan-
ning the BSS expansion. There are limited studies focusing on the
BSS-expansion demand prediction. Such studies mainly rely on
external socio-demographic and point-of-interest data, which lacks
the transferability across different cities. This study incorporates
spatial network information into the prediction models, which
shows that the spatial structure of BSS station networks contains
important information for the BSS-expansion demand prediction.
A Spatial-Eccentricity-Quantile-based Ensemble Model (SEQEM)
is also proposed, which requires no external data but yields better
prediction performance than external-data-based models.
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1 INTRODUCTION
Bike share can potentially benefit the cities and the society from
multiple aspects: reducing public transit travel time [1], alleviating
traffic congestion [2], enhancing multimodal transport connections
[3], saving travel cost [4], and reducing greenhouse gas (GHG)
emissions [3]. To better take advantage of these potential benefits
from bike share systems (BSSs), system operators are implementing
different strategies to improve the BSSs. One of the most important
strategies is to expand the system. As shown in Figure 1(a), many
cities kept adding new stations to their station-based systems to
expand the overall spatial coverage of the system or increase the
density of stations at high demand areas. Figure 1(b) shows the
locations of the BSS stations in Chicago as well as their year of
launch, illustrating the progress of expanding the station network
to the outskirt areas and also increasing the station density in the
central areas.

When planning the expansion of the station network, it is crucial
to estimate the demand of the newly added stations, which can guide
the decision of choosing the station capacity and allocating bikes [5].
However, very few studies have modeled the demand prediction for
BSS expansion. The major challenge for such prediction problems
is that no historical trip records exist for the new stations, while
the demand of existing stations can be predicted based on historical
trip records. Therefore, existing studies highly rely on external

(a) change of number of bike share stations in different cities

(b) locations of the stations in Chicago and their
launch years

Figure 1: Examples of expansion process of BSSs

information such as socio-demographic and Point-of-Interest (POI)
attributes to make the predictions [6, 7]. Such external data requires
time and effort to collect and process; in addition, because different
models used different data and the data availability may differ across
cities, the model transferability is often limited when applying the
models to different cities.

Additionally, existing studies only focused on the new stations
themselves without considering how new stations may also influ-
ence the demands of existing stations [6, 8]. Some empirical studies
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have shown that interactions exist between new stations and exist-
ing stations [8, 9]. New stations may compete with existing stations
when they are very close; while new stations could also complement
existing stations and increase their demands since the new stations
increase the choices of locations to pick up or return bikes, thus
encouraging more usages at some existing stations. Considering
such station interactions, the demand prediction for BSS expansion
should not only focus on the new stations, but also account for the
resulted demand change of existing stations. Models ignoring the
station interactions may lead to incorrect decisions when allocating
docks and bikes.

Therefore, demand prediction models that have low dependence
on external data and consider the station interactions in the BSS
expansion process are greatly needed. To address such model needs,
this study proposes new strategies to improve BSS expansion predic-
tion by incorporating spatial network information. First, to consider
the stations’ interactions with other stations in different distance
ranges, features of spatial station density in fine-grained concentric
bands are integrated into BSS expansion demand prediction models.
Then, a Spatial Eccentricity Quantile based Ensemble Model (SE-
QEM) is proposed that requires no external data but yields better
prediction performance than the model using external data.

The rest of this paper is organized as follows: Section 2 intro-
duces the data and methodology. Then, the results are presented
in Section 3. Lastly, Section 4 concludes the findings and discusses
the limitations.

2 DATA AND METHOD
2.1 Data processing
This study aims to analyze how new stations impact the demand
of existing stations. Therefore, the demand information needs to
be first extracted from historical bike share trip data. This work
selects Chicago as the case study city because the station-based
BSS in Chicago has kept expanding over recent years and has a
long enough history to study its expansion (Figure 1(a)).

The demand variable of interest is the average daily bike with-
drawals𝑤𝑖𝑦𝑚 at station 𝑖 in month𝑚 of year 𝑦. The focus of bike
withdrawal is consistent with most of the previous studies mod-
eling bike share demand [9–13], but the same models can also be
applied to estimate bike returns. We chose to predict the average
daily demand because, for BSS expansion planning, the steady-
state demand level matters more to the decision makers than the
short-term (e.g., hourly) demand fluctuations [7, 9]. The average
daily bike withdrawals 𝑤𝑖𝑦𝑚 at station 𝑖 in month𝑚 of year 𝑦 is
computed as:

𝑤𝑖𝑦𝑚 = 𝑐𝑖𝑦𝑚/𝑎𝑖𝑦𝑚 (1)

where 𝑐𝑖𝑦𝑚 is the total bike withdrawals at station 𝑖 in month𝑚

of year 𝑦, and 𝑎𝑖𝑦𝑚 is the number of days that station 𝑖 is active
in month 𝑚 of year 𝑦. The first available date of each station is
identified as the date that the station first appeared in the trip
record.

2.2 Demand prediction for system expansion
Based on the observations from previous studies [8, 9, 14], the
distances between stations is a key factor for station interactions.

Inspired by this observation, this section integrates the distance in-
formation into the demand prediction model to improve prediction
performances.

2.2.1 Model task. The task of the BSS expansion demand predic-
tion is that, given the dependent variable {𝑤𝑖𝑦𝑚 |𝑦 = 𝑌,𝑚 = 𝑀} –
the average daily bike withdrawals for each station 𝑖 in month𝑀 of
year 𝑌 , train a demand prediction model using some independent
variables {𝑣𝑖𝑦𝑚 |𝑦 = 𝑌,𝑚 = 𝑀} associated with the stations. Then
the model is applied to predict the average daily bike withdrawals
{𝑤𝑖𝑦𝑚 |𝑦 = 𝑌 + 1,𝑚 = 𝑀} based on the independent variables
{𝑣𝑖𝑦𝑚 |𝑦 = 𝑌 + 1,𝑚 = 𝑀} of all stations in the same month 𝑀 in
the next year 𝑌 + 1. Year 𝑌 + 1 contains more stations than year 𝑌
because new stations have been added.

2.2.2 Features. The features (independent variables) considered in
the demand prediction model can be classified into the following
categories in Table 1: In this study, prediction models are trained
using different categories of features or a combination of different
categories of features to analyze which features are more predictive
for the demand prediction. The models that have been analyzed
include

• “GEO”, “GEO+DENS”, and “EXT”: “GEO+DENS” model (i.e.,
the model trained using both “GEO” and “DENS” features)
is compared with “GEO” model to evaluate whether adding
the information of concentric station density helps improve
the predictions. Because the “GEO+DENS” model performed
better for stations in central areas and the “GEO” model
performed better in outskirt areas of the city (discussed in
Section 3.1), a Spatial-Eccentricity-Quantile-based Ensem-
ble Model (SEQEM) is proposed to ensemble the prediction
results of the “GEO+DENS”model and “GEO”model in differ-
ent spatial ranges (the ranges are determined by a threshold
of “ECCQ”, more details in Section 2.2.4). The major objec-
tive of the “GEO”, “GEO+DENS”, and SEQEM is to predict
the demands for BSS expansion only based on the informa-
tion of station locations and the spatial structure of station
networks, which avoids using the external data as in “EXT”.

• “GEO+DENS+ECC” and “GEO+DENS+ECCQ”: Instead of
using ECCQ as a threshold in the SEQEM, this study also
directly adds the ECC and ECCQ features into the prediction
models to train the “GEO+DENS+ECC” and “GEO+DENS+ECCQ”
models, respectively. The performances of these two models
are compared with SEQEM to evaluate the necessity of using
the ensemble method of SEQEM.

• “DENS” and “DENS2”: The prediction performances of mod-
els using only DENS and only DENS2 as features will be
compared to evaluate whether the more fine-grained bands
improve the predictions (Section 3.3).

2.2.3 Model training, hyper-parameters, and performance evalua-
tion. This study applies the XGBoost [20] algorithm to train all
the models with different features. We chose XGBoost because it
can handle high-dimension data with feature-selection ability [21],
especially for the “DENS” features that have 45 variables for all
the distance bands. For different models, the hyper-parameters are
tuned using grid search [22] with 10-fold cross validation. In this
study, prediction models are trained using the data in month 𝑀
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Table 1: Categories of features used in this study

Feature category (acronym) Feature details

DENS Station density (we propose to use such features to represent station network structure). For each station,
first construct the concentric distance bands around the station at 0.1-mile interval, i.e., 0 – 0.1, 0.1 – 0.2,
. . . , 4.4 – 4.5 miles. Then, for each distance band, compute the number of other stations (including both
new and old stations) that are located in the band. We only computed the station density within 4.5 miles
from the target station. This threshold is selected based on the trip distance of historical trips. In all trips
from 2013 to 2019, the travel distances of 99% of the trips are within 4.5 miles.

DENS2 Station density (literature method). Construct concentric distance bands and compute station density in a
similar way as “DENS”, but with only two coarse distance bands: 0 – 0.5 and 0.5 – 3.1 miles, which is the
arbitrarily selected bands from a previous study [9].

GEO Geographic information. It includes the latitude and longitude of the stations.
EXT External information. It denotes the external information around the locations of the stations, which

covers the following variables that are found to be important for bike share demand prediction in the
previous studies [9, 15, 16]: (1) demographic information - collected from American Community Survey
[17] at the census-tract level, the values of one census tract is assigned to a station if the station is located
within the census tract. Such features include population density and per capita income; (2) point of
interest - collected using Google Maps Places API. Such variables are the counts of points of interest (e.g.,
bus stations) within a 1,000 feet (305 meters) buffer around a station. The 1,000 feet buffer is selected as
an appropriate distance that people can walk between a bike share station and surrounding points of
interest [8, 18]. Such features include number of bus stations, subway stations, restaurants, parks, parking
lots, museums, and schools (each point-of-interest category corresponds to one feature).

ECC Spatial eccentricity. The spatial eccentricity of a certain station 𝑖 is defined as the average distance from
station 𝑖 to all other stations [19]. Note that the spatial eccentricity of a certain station could be different
in different months since new stations are added in the expansion process.

ECCQ Spatial eccentricity quantile. For year 𝑦 and month𝑚, the ECCQ of station 𝑖 is the quantile value of the
ECC𝑖𝑦𝑚 value of station 𝑖 corresponding to the ECC distribution of all stations in year 𝑦 and month𝑚.

in year 𝑌 and evaluated using the data of month 𝑀 in year 𝑌 + 1.
Instead of only evaluating the prediction performance on new sta-
tions [6], the predictions on all stations (including both new and
existing stations) were evaluated to analyze the effects of station
interactions. Root-mean-square error (RMSE) and mean-absolute-
percentage error (MAPE) are adopted to evaluate the performance
of predictions.

2.2.4 Spatial-Eccentricity-Quantile-based EnsembleModel (SEQEM).
After observing the predictions of “GEO” and “GEO+DENS” model,
it is found that the “GEO+DENS” model performed better in the
central area of the station network (regarding RMSE), while the
“GEO” model performed better at those outskirt low-demand sta-
tions (regarding MAPE). Therefore, to take advantage of the good
performance of both “GEO+DENS” and “GEO” models in different
areas, the Spatial-Eccentricity-Quantile-based Ensemble Model (SE-
QEM) is proposed, which switches the applied prediction models
based on the spatial eccentricity quantile threshold 𝑄 . Besides po-
tentially improving the overall prediction performance, another
objective of the SEQEM is to identify a spatial boundary within
which the station interactions should be considered. The detailed
procedure of SEQEM is presented in Algorithm 1. Note that a quan-
tile threshold𝑄 is used as the threshold instead of an absolute value
of spatial eccentricity, because the spatial eccentricity of each sta-
tion can change when new stations are added. In this study, SEQEM
is applied on all the data with a list of𝑄 in𝑄𝐿 = {0.02, 0.04, ..., 0.98}.

By analyzing the RMSE and MAPE changes with varying 𝑄 , the 𝑄
value that yields the best overall performance can be identified.

3 RESULTS AND DISCUSSIONS
In this section, we first compared the performances of the “GEO”
and “GEO+DENS” models in Section 3.1 to evaluate whether inte-
grating the spatial structure information can improve the predic-
tions. Then, Section 3.2 compares the performances of the proposed
SEQEM with the baseline “EXT” model. Lastly, the performances of
models using only “DENS” and only “DENS2” as features are com-
pared to explore whether the fine-grained distance bands improve
the predictions in Section 3.3.

3.1 Performance of “GEO”, “GEO+DENS”, and
“EXT” models

Figure 2 presents the overall prediction performances of the “GEO”,
“GEO+DENS”, and “EXT” models in different years. For all three
models, the RMSE in 2015 is much higher than other years, because
the expansion in 2015 was in a much larger scale than other years
– there were 174 new stations in July 2015, while in July 2014, the
system only had 300 stations. In contrast, there were 82, 8, 9, and 32
new stations in July of 2016 to 2019, respectively. When the number
of stations is quickly increased by 58% in July 2015, the information
learned from the previous year’s data is insufficient to provide a
desirable prediction.
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Algorithm 1: Spatial-Eccentricity-Quantile-based Ensem-
ble Model (SEQEM)
Input : (1) the average daily demand𝑤𝑖𝑦𝑚 for each station

𝑖 in different months and years as well as the
corresponding “GEO”, “DENS”, and “ECCQ”
features; (2) 𝑄𝐿: a list of candidate spatial
eccentricity quantile threshold 𝑄 , in this study,
𝑄𝐿 = {0.02, 0.04, ..., 0.98}; (3)𝑀𝑒𝑡𝑟𝑖𝑐 : the model
evaluation metric(s), which in this study are RMSE
and MAPE.

Output : {𝐸𝑉𝑄 }: The evaluated model performances
corresponding to the 𝑄 values in 𝑄𝐿

1 for any month𝑀 and year 𝑌 in the training data do
2 Train models𝑀𝐷𝐺𝐸𝑂

𝑌𝑀
and𝑀𝐷𝐺𝐸𝑂+𝐷𝐸𝑁𝑆

𝑌𝑀
using data

{𝑤𝑖𝑦𝑚 |𝑦 = 𝑌,𝑚 = 𝑀} and the corresponding “GEO”
and “GEO+DENS” features, respectively

3 end for
4 for 𝑄 in 𝑄𝐿 do
5 for any month𝑀 and year 𝑌 in the training data do
6 for each station 𝑖 do
7 if 𝐸𝐶𝐶𝑄𝑖𝑌𝑀 < 𝑄 then
8 Predict the demand 𝑓𝑖𝑌𝑀 using

𝑀𝐷𝐺𝐸𝑂+𝐷𝐸𝑁𝑆
(𝑌−1)𝑀

9 else
10 Predict the demand 𝑓𝑖𝑌𝑀 using𝑀𝐷𝐺𝐸𝑂

(𝑌−1)𝑀
11 end if
12 end for
13 end for
14 Compute an overall performance 𝐸𝑉𝑄 based on all the

demand rates {𝑤𝑖𝑦𝑚} and predicted values {𝑤𝑖𝑦𝑚}
using𝑀𝑒𝑡𝑟𝑖𝑐 , which is then recorded in {𝐸𝑉𝑄 }

15 end for

In the years from 2016 to 2019, when the expansion is more grad-
ual, the RMSE is lower and in an identical level in different years. In
these four years, overall, the “GEO+DENS” outperforms “GEO” re-
garding the RMSE metric (Figure 2(a)). However, the “GEO+DENS”
model has larger overall MAPE error than the “GEO” model (Fig-
ure 2(b)). In Figure 3(d), the spatial distribution of the absolute
percentage errors is plotted, which shows that stations with very
large percentage errors are located in the Southern outskirt area of
the BSS (bottom in the figure).

In the following sections (Section 3.2 and 3.3), this study will
only focus on “gradual expansion” and only compare the prediction
performances of different models evaluated using 2016-2019 data.

After further exploration, it is found that the “GEO+DENS”
model outperforms “GEO” model in the central area of the city
by considering the changes of station density in the concentric
buffers, but it tends to overestimate the demands in the outskirt
areas, which leads to larger MAPE for these low-demand stations.
Considering the entire system, the benefits from better predictions
in the central high-demand areas outweigh the poor predictions in
the outskirt low-demand areas. Therefore, the “GEO+DENS” model
pays more attention to the spatial structures of the stations in the

Figure 2: Overall model performance on all stations in dif-
ferent years: (a) RMSE, (b) MAPE

central areas, but such knowledge learned from the central areas
does not apply to the outskirt areas. In contrast, the simpler model,
“GEO”, which only considers the latitude and longitude of stations,
yields better predictions for those low-demand stations.

3.2 Performance improvement by SEQEM
Based on the observations from the performances of “GEO” and
“GEO+DENS” models, the proposed SEQEM is applied to further
improve the prediction performances. Figure 4 shows the overall
performance of SEQEM with different spatial eccentricity quantile
threshold (evaluated using all the 2016-2019 data). Considering
both RMSE and MAPE, a quantile of 0.78 is identified as a quantile
threshold that yields the best overall performance. This threshold
can also be viewed as the spatial boundary only within which the
station interactions should be considered. Using the 0.78 quantile
threshold, the SEQEMachieved a better performance than the “EXT”
model regarding both RMSE and MAPE. In addition, compared with
the “EXT” model, the SEQEM model has better transferability to be
applied to other cities, because it does not require external data.

There are other options such as simply adding the spatial eccen-
tricity or spatial eccentricity quantile as a feature into themodel (i.e.,
the “GEO+DENS+ECC” model and “GEO+DENS+ECCQ” model,
respectively). These two models are also evaluated. The results
show that, for RMSE (Figure 5(a)) and MAPE (Figure 5(b)), both
“GEO+DENS+ECC” (RMSE: 10.37,MAPE: 1.52) and “GEO+DENS+ECCQ”
(RMSE: 9.22, MAPE: 1.54) yield poorer performance than SEQEM
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Figure 3: Spatial visualization of the prediction errors of
“GEO-DENS” model in July 2015 ((a) locations of new sta-
tions, (b) absolute error) and August 2016 ((c) locations of
new stations, (d) absolute percentage error)

(RMSE: 9.12, MAPE: 1.42). Therefore, the spatial eccentricity quan-
tile should only serve as a threshold to identify a spatial boundary,
but its value does not addmore useful information for the prediction.

3.3 The impact of concentric band construction
By comparing the performance of models that only uses “DENS” or
“DENS2” (literature method) features, it is found that the “DENS”
model has a much lower RMSE of 10.31 than that of the “DENS2”
model (22.97); “DENS” model also has a lowerMAPE (2.47) than that
of “DENS2” (2.99). Overall, the more fine-grained distance bands
can better reflect the structure of the station network and lead to
better prediction performances.

Figure 4: Performance of SEQEM by varying the spatial ec-
centricity quantile based on (a) RMSEand (b) andMAPE. The
horizontal lines indicate the performance of the correspond-
ing models in the right-hand side). The quantile 0.78 pro-
vides the overall best performance considering both RMSE
and MAPE.

Figure 5: The performanceswhen adding spatial eccentricity
(“ECC”) and spatial eccentricity quantile (“ECCQ”) features:
(a) RMSE, (b) MAPE (the vertical dashed lines indicate the
performance of SEQEM)

4 CONCLUSIONS AND LIMITATIONS
This study focuses on improving the demand prediction for bike
share system expansion. Features of spatial station density in fine-
grained concentric bands around a station are constructed to rep-
resent the number of stations in different distance ranges that the
station can interact with. A Spatial Eccentricity Quantile based
Ensemble Model (SEQEM) is proposed to further improve the pre-
diction performances and also identify the spatial range that the
station interactions take effects. The results of the demand predic-
tion models show that: integrating the station density in concentric
distance bands improves the prediction performance by consider-
ing the spatial structure of the station network. The “GEO+DENS”
model performed well for central areas but has poor performance
for outskirt low-demand stations. The proposed SEQEM addresses
this limitation and improves the prediction performance for the
entire system. With the 0.78 spatial eccentricity quantile threshold,
the SEQEM yields better performance than the “EXT” model regard-
ing both RMSE and MAPE. This indicates that the spatial structure
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of the station network contains very important information for the
small-scale expansion demand prediction, which can also save the
effort to collect and process the external data.

This study provides insights for the station interactions in the
BSS expansion process and practical suggestions to integrate spa-
tial station network information to improve the BSS expansion
demand prediction. However, there are some limitations that need
to be improved in future research. First, the prediction results in-
dicate that all models have poor performances for the large-scale
expansion in 2015, which should be improved in future research.
Second, this study only focuses on the BSS in Chicago. Future stud-
ies can apply the SEQEMmodel to other BSSs to evaluate the model
transferability in different cities.
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