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ABSTRACT
Short-term traffic flow prediction in intra-urban regions plays a

significant role in traffic management and public safety. However,

it is still a challenging task due to the complex spatial and temporal

dependencies in traffic data. Existing studies usually modeled the

spatial and temporal dependencies separately, and neglected to

integrate the spatial context in the temporal dependency modeling.

In addition, most of the studies either ignored semantic relation-

ships among regions or built multiple graphs to model different

relationships. In this study, we propose a spatial-temporal graph

convolutional network with temporal dependency modeling en-

hanced by spatial context (ST-GCN-SC) for short-term region-based

traffic flow prediction in the urban environment. First, a spatial-

context enhanced long short-term memory network (SC-LSTM)

is presented to utilize both the sequential information and spatial

context for the temporal dependency modeling. Second, a graph

construction method is proposed to construct a relation graph to

model both the adjacent relationships and the semantic relation-

ships (i.e., flow pattern similarities) among regions, which helps

ignore false signals from adjacent regions and model the long-

range spatial correlations from a globally spatial perspective. Our

experiments on two public datasets show that the proposed model

achieves an RMSE reduction of 4.8% and 5.7% on the BikeNYC and

TaxiBJ datasets, respectively, compared with several state-of-the-art

methods, proving that the proposed model can facilitate short-term

region-based traffic flow prediction.
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1 INTRODUCTION
Short-term traffic flow prediction tasks can be divided into two

types: network-based and region-based predictions [30]. The first

type usually aims to predict the traffic flow collected by the sensors

of the road network [5]. By dividing a city into a grid map (each grid

is defined as a region), the second type is to predict the traffic inflow

and outflow in each region of the city [6, 31, 32]. The region-based

traffic flow can be calculated from the mobile phone data, floating

car data, shared bicycle data, and etc.

In this study, we only study the second prediction task: short-

term traffic flow prediction in intra-urban regions. Knowing the

future region-based traffic flow accurately, governments can take

better control measures to avoid large crowds of people, travelers

can make better routing plans, and enterprises can also dynamically

allocate transportation resources (e.g., shared bikes and taxis). To

this end, accurate region-based traffic flow prediction is essential.

However, predicting traffic flow in intra-urban regions is primarily

challenging owing to the complex spatial and temporal dependen-

cies in traffic data. On the one hand, the traffic inflow and outflow

of a region are correlated with its historical inflows and outflows

(i.e., temporal dependency). On the other hand, the traffic inflow

and outflow of a region are also correlated with those of its adja-

cent regions (i.e., spatial dependency). In addition, the temporal

dependency may exist at multiple different time scales (e.g., hours,

days, and week) and environmental factors (e.g., temperature and

rainfall) can affect the traffic inflows and outflows of the regions.

https://doi.org/10.1145/1122445.1122456
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Early studies utilized two representative methods: classical sta-

tistical methods (e.g., ARIMA and its variants) [13, 16, 19] and

machine learning methods (e.g., neural networks and support vec-

tor machines (SVM)) [23–25, 28] for traffic prediction. However,

most of these methods can merely utilize the historical features of

individual regions and do not capture the complex spatial-temporal

dependency, which limits the prediction performance.

Recently, deep learning has achieved remarkable success across

several domains, including computer vision and natural language

processing [11, 12]. This development had inspired many attempts

to use deep learning for short-term region-based traffic flow pre-

diction. Typically, the traffic inflow and outflow of the gird map

(i.e., the partitioned city) can be treated as an image with multiple

channels. By given a set of historical images as the input, a feasible

schema is using deep learning methods to predict the future image

(i.e., the future traffic flows of the city). Several models using con-

volutional neural networks (CNNs) have been proposed to model

the spatial dependency, and thus they can learn features from the

spatially adjacent regions for better prediction [31, 32]. However,

these methods are based on the spatial modeling method and failed

to model the temporal sequential dependency. Therefore, to model

both the spatial and temporal sequential dependencies, several mod-

els (e.g., ST-3DNet) are proposed to improve the region-based traffic

prediction performance [6].

Although these studies have achieved reasonable performance,

there is still scope to improve the short-term region-based traffic

flow prediction accuracy from the following two perspectives.

First, populationmovement is always across regions, and changes

of the traffic flows in one region will inevitably lead to the changes

in another. Therefore, the spatial context can carry essential infor-

mation about traffic flow changes in the adjacent regions and help

improve the spatial-temporal prediction. In recent spatial-temporal

prediction studies, the spatial and temporal dependencies were usu-

ally separately and sequentially modeled [4, 26, 27]. However, we

argue that while modeling the temporal dependency, the spatial

context of each region is not well-utilized in these studies. Geng

et al. achieved taxi demand prediction improvement by utilizing

the global contextual information of the city to re-weight observa-

tions in different time slices while modeling the temporal relations

[4]. However, we find that the locally spatial context of each re-

gion can help improve prediction, and it is better than the globally

spatial context in the temporal modeling process for short-term

region-based traffic flow prediction.

Second, traditional convolutions are usually utilized to model

the spatial dependency for region-based traffic flow prediction,

which cannot well model the non-Euclidean spatial relationships

(e.g., nonadjacent relationships) among regions. In real world, the

functionality of a location can affect human mobility. For example,

people arrive at the office area in the morning and depart in the

afternoon. In addition, commercial areas will attract more crowd

on weekends. Therefore, locations with similar functionalities may

have similar traffic flow patterns and the similarities between traf-

fic flow patterns may exist persistently. If we model the spatial

relationships of these semantic neighbors (i.e., regions with similar

traffic flow patterns), the prediction model can have a long-range

spatial perception capability to capture the traffic flow changes of

the entire city by another dimension of the spatial dependencies,

which can improve the prediction performance.

To address these challenges, we propose a spatial-temporal graph
convolutional network with temporal dependency modeling en-

hanced by spatial context (ST-GCN-SC) to concurrently predict the

traffic inflow and outflow in each region of a city. Our contributions

are as follows:

• We propose a spatial-context enhanced long short-term
memory network (SC-LSTM) to model the temporal depen-

dency. In SC-LSTM, both the sequential information and

spatial context of each region are utilized.

• We design a histogram-based similarity algorithm to mea-

sure the semantic similarities (i.e., flow pattern similarities)

among regions and then model the semantic relationships.

Based on this, we propose a graph construction method to

construct a relation graph for depicting both the adjacent

and semantic relationships among regions and utilize graph

convolutional networks to model the spatial relationships.

• Comprehensive experiments are conducted on two public

traffic flow datasets. It indicates that the proposed ST-GCN-

SC outperforms several state-of-the-art methods, proving the

effectiveness of our spatial-temporal dependency modeling

strategy for short-term region-based traffic flow prediction.

The rest of this study is organized as follows. First, we review

some related works in Section 2 and introduce some preliminaries

in Section 3. Then, we detail the proposed model in Section 4. Exten-

sive evaluation and comparisons are conducted in Section 5. Finally,

this paper is concluded with a discussion of the contributions and

future work in Section 6.

2 RELATEDWORK
Deep-learning-based models have significantly improved traffic

prediction performance. Thus, in this section, we mainly discuss

the deep-learning-based methods for traffic prediction.

By treating the features across the regions in the city at every

time slice as an image with multiple channels, Zhang et al. proposed

a deep learning model called DeepST for spatial-temporal data pre-

diction [32]. They added residual learning [7] and further proposed

a new model named ST-Resnet for better traffic flow prediction [31].

However, although these studies can model the spatial dependency

by taking historical city-level traffic flow images as inputs, they

still failed to model the temporal sequential dependency.

To concurrently model both the spatial and temporal dependen-

cies, one category of the studies is using different structures of

convolutions. Guo et al. adopted 3D convolutions [22] to extract

both the spatial and temporal features of traffic data and proposed

a ST-3DNet for traffic prediction [6]. However, 3D convolutions are

ineffective and consume substantial time. In addition, the long-term

sequential dependency is still overlooked.

Another category is using CNNs and recurrent neural networks

(RNNs) to model the spatial and temporal sequential dependencies,

respectively. Yao et al. proposed a deep multi-view spatial-temporal

network (DMVST-Net) by using a local CNN, an LSTM layer [9], and

a graph embedding technique named LINE [20] to model the spatial,

temporal, and semantic relationships, respectively, for taxi demand
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prediction [27]. By integrating a flow gating mechanism and a peri-

odically shifted attention mechanism, a spatial-temporal dynamic

network (STDN) was proposed to improve the traffic prediction

performance [26]. However, none of these studies considered the

semantic relationships (i.e., flow pattern similarities) among regions

while modeling the spatial and temporal dependencies. These mod-

els can merely utilize local features from adjacent regions, and the

potentially useful features from distant regions (e.g., distant regions

with similar patterns) are hard to learn. Even in [27], the extracted

graph embedding of the semantic graph is used as the external

features and thus the semantic relationships are still ignored in the

spatial-temporal modeling process.

Non-Euclidean data also exists in traffic prediction, especially

in the network-based predictions. Several studies have extended

the network structure from traditional convolutions and RNNs to

graph convolutions and RNNs by merely updating the convolu-

tions (e.g., DCRNN [14] and STGCN [29]). To consider multiple

region-wise relationships, Geng et al. proposed a spatiotemporal

multi-graph convolution network (ST-MGCN) for region-based taxi

demand prediction [4]. They collected additional data (i.e., POI and

road network data) to construct multiple graphs and proposed a

multi-graph convolution method to model these spatial relation-

ships. However, multi-graph convolutions increase the convolution

computation several times, and thus increase the model complex-

ity. Lu et al. built two relation graphs to consider both the spatial

neighbors and semantic neighbors, and utilized two proposed mod-

ules to model both the spatial relationships for road-based traffic

speed prediction, which also increases the model complexity [15].

In contrast to ST-MGCN, the proposed graph construction method

builds a relation graph to describe both the adjacent and semantic

relationships among different regions. This neither changes the

model complexity and nor requires any additional data. In addition,

we propose a different strategy to leverage the spatial context while

modeling the temporal dependency, which is proved to be more

effective than ST-MGCN in the following experiments.

In summary, the difference between the proposed model and

the related works is that we propose a graph construction method

to model both the adjacent and semantic relationships based on a

relation graph. To well utilize the spatial context while modeling the

temporal dependency, compared with ST-MGCN [4], we propose a

different temporal dependency modeling method named SC-LSTM

by concatenating the traffic flow and extracted spatial context of

each region as the input of the LSTM unit.

3 PRELIMINARIES
In this section, we first introduce several basic concepts, and then

we define the problem that we aim to address.

3.1 Basic Concepts
Definition 3.1 (Region). A city can be divided into an 𝐼×𝐽 grid

map based on longitudes and latitudes. Then, we define every grid

of the city as a region.

Definition 3.2 (Region-based Traffic FlowMatrix). For a given time

slice 𝑡 , we can obtain a traffic flow matrix 𝑋𝑡 ∈ R𝐼×𝐽 ×𝑝 to describe

the inflow and outflow of the entire city, where 𝐼×𝐽 is the size of
the grid map and 𝑝 is the number of features. As shown in Fig. 1, 𝑝

is equal to 2 because only the inflow and outflow are considered in

this study.
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Figure 1: Construction of the traffic flow matrix.

Definition 3.3 (Flow Sequences at Different Time Scales). As the
influence from historical flows exists across multiple time scales

(e.g., hours, days, and weeks) [31], we construct the traffic flow

matrix sequences of different time scales that are 𝑆ℎ𝑜𝑢𝑟
𝑡−1 , 𝑆

𝑑𝑎𝑦

𝑡−1 , and
𝑆𝑤𝑒𝑒𝑘
𝑡−1 as the model input. They are defined as follows.

𝑆ℎ𝑜𝑢𝑟𝑡−1 : 𝑋𝑡−𝑙ℎ , 𝑋𝑡−𝑙ℎ+1, · · · , 𝑋𝑡−1,

𝑆
𝑑𝑎𝑦

𝑡−1 : 𝑋𝑡−𝑙𝑑∗𝑇𝑑 , 𝑋𝑡−(𝑙𝑑−1)∗𝑇𝑑 , · · · , 𝑋𝑡−𝑇𝑑 ,

𝑆𝑤𝑒𝑒𝑘𝑡−1 : 𝑋𝑡−𝑙𝑤∗𝑇𝑤 , 𝑋𝑡−(𝑙𝑤−1)∗𝑇𝑤 , · · · , 𝑋𝑡−𝑇𝑤 ,

where 𝑇𝑑 and 𝑇𝑤 are the lengths of the daily and weekly trend

spans, respectively. And 𝑙ℎ , 𝑙𝑑 , and 𝑙𝑤 are the respective lengths of

the sequences.

Definition 3.4 (Graph Convolution). Graph Laplacian is an es-

sential operator for spectral graph analysis [1]. As a representa-

tion of a graph, the normalized Laplacian matrix 𝐿 is denoted as

𝐿 = 𝐼𝑁 −𝐷− 1

2𝐴𝐷− 1

2 , where 𝐼𝑁 ,𝐴, and 𝐷 are the identity, adjacency,

and diagonal degree matrices, respectively, with 𝐷𝑖𝑖 =
∑
𝑗 𝐴𝑖 𝑗 . Be-

cause 𝐿 is a real symmetric matrix, 𝐿 can be further decomposed

as 𝐿 = 𝑈Λ𝑈𝑇 , where 𝑈 is the matrix of eigenvectors and Λ is

the diagonal matrix of eigenvalues of 𝐿. Graph convolutions [8]

are convolution operations over graphs and can be defined as the

multiplication of a signal 𝑥 on a graph G with a filter 𝑔𝜃 , as follows:

𝑔𝜃 ∗G 𝑥 = 𝑔𝜃 (𝐿)𝑥 = 𝑔𝜃 (𝑈Λ𝑈𝑇 )𝑥 = 𝑈𝑔𝜃 (Λ)𝑈𝑇 𝑥,

where ∗G denotes a graph convolution operation and 𝑔𝜃 (Λ) is a
diaginal matrix.

However, multiplication with 𝑈 is time-consuming as the time

complexity is 𝑂 (𝑛2). Furthermore, computing the eigendecomposi-

tion of 𝐿 is expensive, especially for large graphs. To localize the

filters in space and reduce the time complexity, the filter 𝑔𝜃 can be

approximated by Chebyshev polynomials 𝑇𝑘 (𝑥) up to 𝐾-th order.

Therefore, graph convolutions can be rewritten as follows [2]:

𝑔𝜃 ∗G 𝑥 =

𝐾∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (�̃�)𝑥,

where �̃� =
2

𝜆𝑚𝑎𝑥
𝐿 − 𝐼𝑁 and 𝜆𝑚𝑎𝑥 is the largest eigenvalue of

𝐿. The recursive definition of Chebyshev polynomials is 𝑇𝑘 (𝑥) =
2𝑥𝑇𝑘−1 (𝑥) −𝑇𝑘−2 (𝑥) with 𝑇0 (𝑥) = 1 and 𝑇1 (𝑥) = 𝑥 .
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if two regions are adjacent if two regions have similar flow patterns

Figure 2: Model framework of the proposed model.

In this study, we define a graph convolutional layer as follows:

𝑋𝑙+1 = 𝐺𝐶𝑁 (𝑋𝑙 ) = 𝑔𝜃 ∗G 𝑋𝑙 ,
where 𝑋𝑙 denotes the input features of the 𝑙-th layer.

3.2 Problem Definition
Given a set of historical traffic flow matrices of the city, the aim

of intra-urban region-based traffic flow prediction is to predict the

future inflow and outflow in each region of the city. The formulation

can be denoted as follows.

𝑆𝑤𝑒𝑒𝑘𝑡−1 , 𝑆
𝑑𝑎𝑦

𝑡−1 , 𝑆
ℎ𝑜𝑢𝑟
𝑡−1

𝑓 ( ·)
−→ 𝑋𝑡 ,

where 𝑓 (·) is the learned function.

4 METHODOLOGY
In this section, we describe the model architecture of the proposed

ST-GCN-SC. As shown in Fig. 2, the proposed model comprises

three parts: the temporal dependency modeling, spatial dependency

modeling, and fusion.

4.1 Spatial Dependency Modeling
4.1.1 Graph Construction. To better model the complicated rela-

tionships (e.g., Euclidean and non-Euclidean relationships) among

regions, we need to construct a relation graph for all the regions.

Therefore, we propose a relation graph construction method by

considering two types of relationships among regions: the adja-

cent and semantic relationships, which helps concurrently capture

traffic flow changes from the adjacent neighbors and the semantic

neighbors (i.e., regions with similar traffic flow patterns).

Adjacent Relationship. According to Tobler’s First Law of Geog-

raphy [21], everything is related to everything else, but near things

are more related than distant things. It is natural to consider the

adjacent relationships among regions for the spatial dependency

modeling. Based on the adjacent relationship, a graph edge between

two regions is added when they are adjacent to each other. For ex-

ample, given a 3×3 grid map, the middle region has connecting

edges only with its eight surrounding regions. Thus, we can get the

responding adjacent matrix 𝐴𝑎𝑑 𝑗 for these regions.

Semantic Relationship. However, the traffic flow patterns of the

adjacent regions may be dissimilar. For example, we assume that

a region 𝑖 is with constant and zero traffic flow, and the adjacent

region 𝑗 is with changing and non-zero traffic flow. Although these

two regions are adjacent, their flow patterns are entirely dissimilar.

This situation has happened in the BikeNYC dataset, as shown in

Fig. 3. Keeping the graph edges between the adjacent but dissimilar

regions will transit false signals and may deteriorate performance.

From another perspective, the distant regions (e.g., distant regions

with similar flow patterns) may have close relations. Obviously,

adding graph edges between these similar regions (i.e., regions with

similar flow patterns), whether they are adjacent or not, can help

predict the traffic flow trends from a globally spatial perspective.

Therefore, designing a similarity algorithm to identify whether the

regions are similar is necessary.

To identify the similar regions, a histogram-based similarity

algorithm to compute the flow pattern similarity between two re-

gions is designed. First, the histograms of traffic flow sequences

are constructed, as shown in Algorithm 1. Subsequently, the cosine

similarities of the traffic inflow and outflow histograms between

two regions are computed and averaged, as shown in Algorithm 2.

Finally, the flow pattern similarity (i.e., cosine similarity of his-

tograms) between two regions is obtained. When the flow pattern

similarity between two regions is much higher, we can think that

the regions have very similar functionalities and strong correlations.

Thus, a edge between these two regions can be added.

In essence, from the semantic perspective, the edge between two

regions is defined as follows:

𝐴
𝑖, 𝑗

𝑠𝑒,𝜃
=

{
1, 𝑤𝑖, 𝑗 > 𝜃

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (1)

where 𝜃 denotes the threshold. An edge between region 𝑖 and region

𝑗 is added when the flow pattern similarity value𝑤𝑖, 𝑗 is higher than

the threshold 𝜃 .



Spatial-Temporal Graph Convolutional Network enhanced by Spatial Context UrbComp ’21, November 1, 2021, Beijing, China

(a) Region (5, 4) (b) Region (5, 5) (c) Region (5, 6)

(d) Region (6, 4) (e) Region (6, 5) (f) Region (6, 6)

(g) Region (7, 4) (h) Region (7, 5) (i) Region (7, 6)

Figure 3: The traffic inflow sequences on 2014/9/20 in the
BikeNYC dataset. Region (𝑖, 𝑗) means the region in 𝑖-th row
and 𝑗-th column of the grip map. And some regions have
zero flows.

Algorithm 1 Histogram Construction Algorithm

Input: The given time series 𝑥 and the expected number of bins

𝑁 for the returned histogram.

Output: The generated histogram ℎ𝑖𝑠𝑡 of 𝑥 .

1: function get_histogram(𝑥 , 𝑁 )

2: 𝑚𝑎𝑥_𝑛𝑢𝑚 =𝑚𝑎𝑥 (𝑥 )

3: 𝑤𝑖𝑑𝑡ℎ = 𝑐𝑒𝑖𝑙 (𝑚𝑎𝑥_𝑛𝑢𝑚 / 𝑁 )

4: ℎ𝑖𝑠𝑡 = 𝑛𝑒𝑤 𝑙𝑖𝑠𝑡 [𝑁 ] // a list of length 𝑁
5: for 𝑖 = 0 → 𝑁 − 1 do
6: ℎ𝑖𝑠𝑡 [𝑖] = 0

7: end for
8: if 𝑚𝑎𝑥_𝑛𝑢𝑚 ≥ 𝑁 then
9: for 𝑖 𝑖𝑛 𝑥 do
10: ℎ𝑖𝑠𝑡 [𝑖 | 𝑤𝑖𝑑𝑡ℎ] = ℎ𝑖𝑠𝑡 [𝑖 | 𝑤𝑖𝑑𝑡ℎ] + 1

11: end for
12: end if
13: return ℎ𝑖𝑠𝑡
14: end function

Combination of Two Types of Spatial Relationships. To model both

the adjacent and semantic relationships, the graph adjacent matrix

is finally defined as follows:

𝐴𝑐𝑜𝑚𝑏 = 𝐴𝑎𝑑 𝑗 ◦𝐴𝑠𝑒,𝜃1 + (1 −𝐴𝑎𝑑 𝑗 ) ◦𝐴𝑠𝑒,𝜃2 , (2)

where ◦ indicates the element-wise matrix multiplication. We use

different thresholds (i.e., 𝜃1 and 𝜃2) for different parts of Equation 2

due to the inconsistent effects with respect to the distances between

regions. When 𝜃1 is equal to 𝜃2, Equation 2 denotes a special case

Algorithm 2 Region Similarity Algorithm

Input: The inflow and outflow sequences of region 𝑖 are

𝑆𝑖𝑛
𝑖

and 𝑆𝑜𝑢𝑡
𝑖

, respectively, at a specific day: 𝑆𝑖𝑛
𝑖

=

{𝑋 𝑖,𝑖𝑛
1

, 𝑋
𝑖,𝑖𝑛
2

, · · · , 𝑋 𝑖,𝑖𝑛
𝑇𝑑

}, 𝑆𝑜𝑢𝑡
𝑖

= {𝑋 𝑖,𝑜𝑢𝑡
1

, 𝑋
𝑖,𝑜𝑢𝑡
2

, · · · , 𝑋 𝑖,𝑜𝑢𝑡
𝑇𝑑

};
the inflow and outflow sequences 𝑆𝑖𝑛

𝑗
and 𝑆𝑜𝑢𝑡

𝑗
of region 𝑗 ;

the expected number of bins 𝑁 for histograms.

Output: The similarity𝑤𝑖, 𝑗 between regions 𝑖 and 𝑗 .

1: function cal_similarity(𝑆𝑖𝑛
𝑖
, 𝑆𝑜𝑢𝑡
𝑖

, 𝑆𝑖𝑛
𝑗
, 𝑆𝑜𝑢𝑡
𝑗

)

2: // 𝑁 is the number of bins for histograms.

3: ℎ𝑖𝑠𝑡𝑖𝑛
𝑖

= get_histogram(𝑆𝑖𝑛
𝑖
, 𝑁 )

4: ℎ𝑖𝑠𝑡𝑜𝑢𝑡
𝑖

= get_histogram(𝑆𝑜𝑢𝑡
𝑖

, 𝑁 )
5: ℎ𝑖𝑠𝑡𝑖𝑛

𝑗
= get_histogram(𝑆𝑖𝑛

𝑗
, 𝑁 )

6: ℎ𝑖𝑠𝑡𝑜𝑢𝑡
𝑗

= get_histogram(𝑆𝑜𝑢𝑡
𝑗
, 𝑁 )

7: 𝑤𝑖, 𝑗 = 0.5 ∗ 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (ℎ𝑖𝑠𝑡𝑖𝑛
𝑖
, ℎ𝑖𝑠𝑡𝑖𝑛

𝑗
) + 0.5 ∗

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (ℎ𝑖𝑠𝑡𝑜𝑢𝑡
𝑖

, ℎ𝑖𝑠𝑡𝑜𝑢𝑡
𝑗

)
8: return𝑤𝑖, 𝑗
9: end function

of merely considering the semantic relationships among regions to

construct the relation graph.

By additionally considering the semantic relationships, the pro-

posed graph construction method has two main advantages. First,

removing the attention on the adjacent but dissimilar regions can

help eliminate the transmission of uncorrelated signals. Second,

considering the semantic relationships among distant regions can

help model the long-range spatial correlations and capture the

traffic flow patterns effectively from a globally spatial perspective

instead of merely from a locally spatial perspective.

4.1.2 Modeling Network. To learn the features from both the ad-

jacent and semantic neighbors on graphs, graph convolutions are

utilized. We design a spatial dependency modeling module that is

denoted as follows.

�̃�𝑡−1 = 𝑔(𝐻𝑡−1) ∈ R |𝑉 |×ℎ, (3)

where 𝐻𝑡−1 is the current feature representation of all regions, |𝑉 |
(|𝑉 | = 𝐼 × 𝐽 ) is the number of the regions in the city, and ℎ is the

dimension of the new representation. 𝑔 is the spatial dependency

modeling function, and it primarily consists of several graph con-

volutional layers. The rectified linear unit (ReLU) is applied to the

outputs of the inner layers.

4.2 Temporal Dependency Modeling
Spatial context is essential in the spatial-temporal dependency mod-

eling. To utilize the spatial context, as shown in Fig. 4, we propose a

network named SC-LSTM by incorporating the original traffic flow

and the spatial context for the temporal sequential dependency

modeling. With the use of a sequential modeling strategy (e.g.,

temporal-then-spatial) to model the spatial and temporal depen-

dencies, the spatiotemporal distribution may be changed when the

former temporal dependency modeling is completed. Thus, the fol-

lowing spatial dependency modeling module is facing the changed

spatial dependency that may be different from the correlations of

input features among regions, which makes modeling challeng-

ing. The proposed SC-LSTM ensures spatial perception of each



UrbComp ’21, November 1, 2021, Beijing, China G. Xi, L. Yin, and K. Liu

region while modeling the temporal dependency. Therefore, the

aforementioned issues can be mitigated.

GCN

LSTM Unit

…
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SC-LSTM

෠𝑋𝑡−1
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Figure 4: Overview of the SC-LSTM.

We can get a traffic flow matrix 𝑋𝑡−1 ∈ R |𝑉 |×𝑝
at time slice 𝑡 − 1,

where |𝑉 | is the number of the regions. The number of the features

𝑝 equals two since the inflow and outflow are considered.

First, two graph convolutional layers are designed to extract the

spatial context for each region at each time slice as follows.

𝑚𝑡−1 = 𝛿 (𝑓1 (𝑋𝑡−1)) ∈ R |𝑉 |×𝑘 , (4)

�̃�𝑡−1 = 𝑓2 (𝑚𝑡−1) ∈ R |𝑉 |×𝑝 , (5)

where both 𝑓1 and 𝑓2 are the graph convolutional layers and the

activation function 𝛿 is the ReLU. The feature dimension of the

inputs is increased to 𝑘 and then decreased into 𝑝 . Obviously, the

extracted contextual information can carry essential information

from their similar regions.

Secondly, the extracted spatial context is then concatenated with

the original traffic flow matrix.

𝑋𝑡−1 = [𝑋𝑡−1, �̃�𝑡−1] ∈ R |𝑉 |×2𝑝 , (6)

where the dimension of the features is doubled.

Finally, as shown in Equation 7, a shared LSTM layer is utilized

to model the temporal sequential dependency across all regions in

the city. For each region, the LSTM layer aims to learn a feature

representation of the input sequence that consists of the traffic flow

features and the extracted context features.

𝐻 𝑖𝑡−1 = 𝐿𝑆𝑇𝑀 (𝑋 𝑖𝑡−𝑇 , · · · , 𝑋
𝑖
𝑡−2, 𝑋

𝑖
𝑡−1), (7)

where 𝑖 ∈ {1, · · · , |𝑉 |} means the 𝑖-th region.

4.3 Fusion
4.3.1 Multi-time-scale Data Fusion. Traffic flow has periodic pat-

terns at different time scales (e.g., hours, days, and weeks). There-

fore, to enhance the prediction performance, we directly concate-

nate multiple traffic flow sequences of different time scales as the

input of the proposed model. The new traffic flow sequence is com-

posed of three parts: the hourly traffic flow sequence 𝑆ℎ𝑜𝑢𝑟
𝑡−1 , daily

traffic flow sequence 𝑆
𝑑𝑎𝑦

𝑡−1 , and weekly traffic flow sequence 𝑆𝑤𝑒𝑒𝑘
𝑡−1 .

4.3.2 External Data Fusion. To consider the environmental factors,

we follow the modeling method in [31]. For external features, one-

hot encoding is applied to the category features (e.g., if the day is a

weekend), and data normalization is performed to the continuous

features (e.g., wind speed). Subsequently, different feature vectors

are concentrated as an one-dimensional vector. A fully-connected

network consisting two fully-connected layers is designed to predict

the inflow and outflow for each region by only considering the one-

dimensional vector as the input. Finally, the respective prediction

results based on the historical traffic flow and external features are

added together as the final result of the prediction model, as shown

in Equation 8.

𝑋𝑡 = 𝑋𝑠𝑡 + 𝑋𝑒𝑥𝑡 , (8)

where 𝑋𝑠𝑡 is the prediction result of the spatial-temporal model

based on the historical traffic flow, and 𝑋𝑒𝑥𝑡 is the prediction result

of the fully-connected network based on the external features. 𝑋𝑡
is the final prediction result of the proposed model framework.

5 EXPERIMENTS
In this section, we first introduce two public datasets and the ex-

perimental settings. Then, we introduce the baseline methods and

evaluation metrics. Finally, the experiments are conducted to prove

the effectiveness of the proposed model.

5.1 Datesets
To evaluate the proposedmodel, we use two different public datasets

[31]: BikeNYC and TaxiBJ, as described in Table 1. These two

datasets are detailed as followed.

5.1.1 BikeNYC Dataset. This dataset is generated from the bike

trajectory data in New York City from April 1st, 2014, to September

30th, 2014. In addition, it includes several external features such as

the index of the day in a week, if this day is a weekday, and if this

day is a holiday. The studied city is divided into 16×8 grids and the

time interval is set as one hour. Thus, one day has 24 time intervals

and totally we can get 4,392 available time intervals. Among this

dataset, the last 10 days are chosen as the testing set and the rest

are used for training.

5.1.2 TaxiBJ Dataset. This dataset is collected from the taxi trajec-

tory data and meteorology data in Beijing City during 4 intervals:

(1) July 1st, 2013 - October 30th, 2013, (2) March 1st, 2014 - June

30th, 2014, (3) March 1st, 2015 - June 30th, 2015, and (4) November

1st, 2015 - April 10th, 2016. The studied city is divided into 32×32
grids and the time interval is set to 0.5 hour. Therefore, we can get

22,459 available time intervals. In this dataset, the last 28 days are

selected as the testing set and the rest are used for training.

5.2 Preprocessing and Experimental Settings
Min-max normalization is applied to scale the traffic flow data into

the range [-1, 1]. For external features, we apply one-hot encoding

to the categorical features and apply min-max normalization to

scale the continuous external features into the range [0, 1].

In the following experiments, following the setting of ST-Resnet

[31], the lengths of the hourly trend sequences, the daily trend

sequences, and the weekly trend sequences (i.e., 𝑙ℎ , 𝑙𝑑 , and 𝑙𝑤 ) are

set as 3, 4, and 4 for the BikeNYC dataset, respectively. Similarly,

for the TaxiBJ dataset, they are set as 3, 1, and 1, respectively.

In the proposed model, the number of LSTM layers is set to one

and the number of LSTM units is set to 32. The number of GCN

layers is set to two and the hidden units of all GCN layers are set

to 32 for both the temporal and spatial dependency modeling. The
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Table 1: Details of BikeNYC and TaxiBJ datasets.

Dataset BikeNYC TaxiBJ

Location New York Beijing

Date range 2014/4/1-2014/9/30

2013/7/1-2013/10/30

2014/3/1-2014/6/30

2015/3/1-2015/6/30

2015/11/1-2016/4/10

Time interval 1 hour 0.5 hour

Grid map size 16x8 32x32

# Time interval 4,392 22,459

# Holidays 20 41

Weather conditions - 16 types

Temperature/
◦𝐶 - −24.6∼41.0

Wind speed/mph - 0∼48.6

graph convolution degree 𝐾 equals one. For the graph construction,

𝜃1 and 𝜃2 are selected in the range [0.0,1.0] with an interval of 0.1.

We select 90% of the training set for training the models and

the remaining 10% as the validation set to early-stop our training

algorithm based on the best validation score. Then, we continue

to train the models on the entire training set for a fixed number

of epochs (e.g., 100). The learning rate and batch size are set to

0.0002 and 32, respectively. The proposed model is trained by Adam

optimizer [10] and implemented using PyTorch [17].

To be consistent with [6, 31], we evaluate the baseline models

and the proposed model by two popular regression metrics: root

mean square error (RMSE) and mean absolute error (MAE).

5.3 Baselines
We compare the proposed model with the following methods for

short-term region-based traffic flow prediction:

• Historical Average (HA): We predict the inflow and out-

flow by averaging all historical inflow and outflow of the

responding time intervals. For example, to predict the inflow

between 09:00 and 09:30 on this Friday, we averaged the

inflows between 09:00 and 09:30 of all historical Fridays.

• LASSO: LASSO takes historical data as the input features

for linear regression with L1 regularization. In this study, we

implement LASSO by using sklearn [18] and set the learning

rate to 0.01.

• GBDT [3]:We use the gradient-boosting-decision-tree-based

regression implemented by sklearn [18] for comparison. The

default parameters are selected: the number of trees is 100,

the maximum depth is 3, the learning rate is 0.1, etc.

• ST-Resnet [31]: ST-Resnet uses multiple CNNmodules with

residual connections to model temporal influences of three

different time scales (i.e., hours, days, and weeks). In addition,

it uses a fully connected network to model the influence from

external features. For each CNN module, 4 and 12 residual

units are used for the BikeNYC and TaxiBJ datasets, respec-

tively.

• ST-3DNet [6]: ST-3DNet uses 3D convolutions to extract

features from both the spatial and temporal dimensions.

This model considers two temporal properties of traffic data:

hourly and weekly properties.

• STGCN [29]: STGCN utilizes a fully convolutional network

structure for traffic speed prediction. In this model, traffic

flow information of past six time intervals are used.

• ST-MGCN [4]: ST-MGCN considers constructing multiple

graphs based on different relationships between regions,

namely neighborhood, functional similarity, and transporta-

tion connectivity. Then, the model uses (1) the proposed

CGRNN to model the temporal relations and (2) multi-graph

convolutions to model the spatial dependency. Without ad-

ditionally data sources, we use the single-graph (i.e., the

neighborhood graph) version of the model for comparison.

For ST-Resnet and ST-3DNet, the experimental results are av-

eraged based on five runs of the official implementations
12

as the

seeds are not set. For STGCN and ST-MGCN, the external features

are modeled by using the same network architecture of ST-Resnet

[31]. These two models are re-implemented by using Pytorch [17].

5.4 Experimental Results
5.4.1 Method Comparison. We evaluate the proposed model with

several baseline models on the BikeNYC and TaxiBJ datasets. The

results are shown in Table 2. The HA has the worst prediction met-

rics across all the baseline methods because it directly computes

the average of the historical features as a result for each region. Al-

though machine learning methods (e.g., LASSO and GBDT) merely

consider the historical features of a region, they still perform bet-

ter than the Historical Average. This is because machine learning

methods can model the non-linear dependency from the given data.

Table 2: Performance comparison of different methods on
the BikeNYC and TaxiBJ datasets.

Method

BikeNYC TaxiBJ

RMSE MAE RMSE MAE

HA 8.14 3.53 41.08 22.22

LASSO 7.83 3.51 21.65 12.54

GBDT 6.95 3.28 20.81 11.95

ST-Resnet 6.28 2.97 16.92 9.52

ST-3DNet 6.14 2.90 17.50 9.88

STGCN 6.01 3.01 18.79 10.41

ST-MGCN 6.18 3.23 18.24 10.77

ST-GCN-SC (using 𝐴𝑎𝑑 𝑗 ) 5.77 2.75 16.30 9.21

ST-GCN-SC (using 𝐴𝑐𝑜𝑚𝑏 ) 5.72 2.77 15.95 9.13

By introducing deep learning to learn the spatial-temporal fea-

tures, ST-Resnet experiences a significant improvement in evalu-

ation metrics (i.e., RMSE and MAE) on both the dataset, further

reducing RMSE from 6.95 to 6.28 and from 20.81 to 16.92 on the

BikeNYC and TaxiBJ datasets, respectively. ST-3DNet yields lower

evaluation metrics on the BikeNYC dataset, whereas it achieves

worse prediction performance on the TaxiBJ dataset, compared with

ST-Resnet. We find that this conclusion is different from that of

1
https://github.com/lucktroy/DeepST.

2
https://github.com/guoshnBJTU/ST3DNet.
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the original study. STGCN that is designed for traffic speed predic-

tion achieves worse prediction performance than ST-Resnet on the

TaxiBJ dataset. This is understandable since the spatial-temporal

properties of traffic speed data and region-based traffic flow data are

not the same, and the modeling strategy for traffic speed prediction

may not be suitable for region-based traffic flow prediction. It is

the same for ST-MGCN that is designed for taxi demand prediction.

As described in Table 2, the proposed ST-GCN-SC performs well

on both the BikeNYC and TaxiBJ datasets and significantly improves

the evaluation metrics compared with the other state-of-the-art

models. By additionally considering the semantic relationships (i.e.,

flow pattern similarities), the proposed ST-GCN-SC using 𝐴𝑐𝑜𝑚𝑏
further reduces the prediction error. On the BikeNYC dataset, the

proposed model using 𝐴𝑐𝑜𝑚𝑏 improves RMSE; however, it yields a

slightly worse MAE. This is because the proposed model seems to

reduce errors by avoiding relatively large differences between the

true and prediction values in the regions. On the TaxiBJ dataset, the

proposed model reduces RMSE from 16.30 to 15.95 and MAE from

9.21 to 9.13. This proves that the semantic relationships among

regions are significant, and modeling the semantic relationships

helps improve performance.

Overall, compared with other baselines, the proposed model ST-

GCN-SC with 𝐴𝑐𝑜𝑚𝑏 achieves an RMSE reduction of 4.8% and 5.7%

on the BikeNYC and TaxiBJ datasets, respectively, validating that

the proposed model is more efficient than the other state-of-the-art

methods for short-term region-based traffic flow prediction.

5.4.2 Ablation Analysis. To prove the effectiveness of our spatial-

context integration strategy, we evaluate SC-LSTM (compared with

LSTM) for time series prediction and the ST-GCN for spatial-temporal

prediction. Details of these variants are as followed.

• LSTM: This model only considers the temporal sequential

dependency. A fully-connected layer is applied to the output

of the last LSTM unit for time series prediction.

• SC-LSTM: This variant replaces the spatial dependencymod-

eling module of ST-GCN-SC with a fully-connected layer

and thus models the temporal sequential dependency only.

Compared with LSTM, this variant additionally utilizes the

spatial context.

• ST-GCN: Based on ST-GCN-SC, this variant removes the

spatial context by replacing the SC-LSTM with the LSTM

layer in the temporal dependency modeling module.

All these variants that utilize graph convolutions simply con-

struct the relation graph structure based on the adjacent relation-

ships.

As shown in Table 3, the LSTM model achieves RMSE of 6.76

and 19.85 on the BikeNYC and TaxiBJ datasets, respectively. By

combining the LSTM and GCN models to model the temporal and

spatial dependencies sequentially, ST-GCN outperforms the LSTM

model, proving that the spatial information is significant for spatial-

temporal prediction and the sequential modeling strategy is feasible

to extract the spatial and temporal sequential features. SC-LSTM is

proposed to utilize both the sequential information and the spatial

context while modeling the temporal dependency. As shown in

Table 3, the independently used SC-LSTM for time series predic-

tion still outperforms the LSTM model, proving the significant role

of the spatial context in the temporal dependency modeling. By

Table 3: Performance comparison among several variants of
the proposed model on the BikeNYC and TaxiBJ datasets.

Method

BikeNYC TaxiBJ

RMSE MAE RMSE MAE

LSTM 6.76 3.22 19.85 11.71

ST-GCN 6.03 2.93 16.99 9.37

SC-LSTM 5.94 2.87 17.06 9.51

ST-GCN-SC 5.77 2.75 16.30 9.21

further learning the extracted temporal features (i.e., results of SC-

LSTM) in the spatial dimension, the proposed ST-GCN-SC using

𝐴𝑎𝑑 𝑗 achieves RMSE reductions on both the BikeNYC and Tax-

iBJ datasets when compared with SC-LSTM. This implies that the

spatial dependency modeling is still indispensable for short-term

region-based traffic flow prediction. In addition, the spatial context

is proved to be effective again when we compare the prediction

performance of ST-GCN-SC with that of ST-GCN.

6 CONCLUSION
In this study, we propose a deep learning model named ST-GCN-SC

to learn the spatial and temporal sequential features for short-

term region-based traffic flow prediction. In the proposed model,

a sequential modeling strategy is utilized to model the spatial and

temporal dependencies. To well-utilize the spatial context while

modeling the temporal dependency, the SC-LSTM is proposed. A

histogram-based similarity algorithm is designed to compute the

flow pattern similarities among regions in order to identify the

similar regions (i.e., model the semantic relationships). Therefore,

a graph construction method is proposed to construct a relation

graph for modeling both the adjacent and semantic relationships

among regions, which does not increase the model complexity.

The experiments with two public datasets show that the proposed

model ST-GCN-SC outperforms other baseline methods with RMSE

reductions of 4.8% and 5.7% on the BikeNYC and TaxiBJ datasets,

respectively, validating the effectiveness of the proposed spatial-

temporal prediction model.

Dynamic Time Warping (DTW) algorithm is commonly used to

calculate the similarity between two time series. However, in this

study, based on some experiments, we find that the DTW algorithm

does not perform well when applied to the ST-GCN-SC. In the

future, we will continue to evaluate other similarity algorithms for

the graph construction and consider to automatically construct the

relation graph. In addition, we plan to apply the proposed model to

other domains (e.g., infectious disease prediction).
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