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ABSTRACT
In this paper we describe an approach to semi-automatically cre-
ate a labelled dataset for semantic segmentation of urban street-
level point clouds. We use data fusion techniques using public
data sources such as elevation data and large-scale topographical
maps to automatically label parts of the point cloud, after which
only limited human effort is needed to check the results and make
amendments where needed. This drastically limits the time needed
to create a labelled dataset that is extensive enough to train deep se-
mantic segmentation models. We apply our method to point clouds
of the Amsterdam region, and successfully train a RandLA-Net
semantic segmentation model on the labelled dataset. These results
demonstrate the potential of smart data fusion and semantic seg-
mentation for the future of smart city planning and management.
Our code is available on GitHub: https://github.com/Amsterdam-AI-
Team/Urban_PointCloud_Processing

1 INTRODUCTION
Semantic segmentation methods offer great potential for automatic
understanding of urban street scenes [2, 8] captured byMobile Laser
Scanning (MLS) 3D point clouds. Most state-of-the-art methods rely
on deep learning algorithms [15] and thus, similar to their 2D coun-
terparts in computer vision, require large amounts of labelled data
to train on. However, while computer vision can rely on massive
general-purpose training sets that are readily available [3, 5, 7],
such public datasets for 3D semantic segmentation are still mostly
lacking.

Some small scale public datasets are available for semantic seg-
mentation, most notably Paris-Lille-3D [10] and Toronto 3D [11],
covering a few streets or city blocks. However, there is a lot of
diversity in e.g. the building style and the physical appearance of
assets such as street lights between different countries or even cities.
Moreover, depending on the equipment used, the point density and
accuracy might differ significantly between datasets. These factors
make that it is not straightforward to use a model trained on one
dataset and apply it to a different one and therefore, custom labelled
datasets are still needed. Manually annotating point cloud data is a
time-consuming task however [1, 11], which for very large-scale
point clouds encompassing, e.g., an entire city, quickly becomes
infeasible in practice. Recent works have attempted to alleviate this
issue by using topographic maps to automatically label parts of the
point cloud [4, 13].

In this paper we build on and extend those works. To the best of
our knowledge, we present the first fully modular and open source
point cloud processing pipeline1 that uses smart data fusion with
different data sources to automatically label large parts of urban
street-level point clouds. We show that our pipeline can drastically

1https://github.com/Amsterdam-AI-Team/Urban_PointCloud_Processing

reduce the human time and effort needed to create a fully labelled
dataset that is extensive enough to train semantic segmentation
models.We highlight this potential by successfully training RandLA-
Net [6], a state-of-the-art deep semantic segmentation model, on
the dataset labelled by our method.

2 DATASETS
2.1 3D point cloud
Our data of interest is a street-level point cloud of the region of
Amsterdam in The Netherlands.2 The point cloud is recorded using
a panoramic image capturing device together with a Velodyne HDL-
32 LiDAR sensor, and thus contains both (𝑥,𝑦, 𝑧) coordinates as
well as RGB colour information and intensity values.

The point cloud has an average standard deviation of 10cm and
a relative precision of 2cm. The point density is dependent on the
speed of the mobile laser scanner and the distance to the sensor,
and ranges from 1,000 - 2,500 points/m2. The point cloud is split
into tiles of 50x50m, which depending on the specific scene can
each have up to 15 million points. An example tile is shown in
Figure 1, which was visualised using the open source software
CloudCompare3.

Figure 1: Example point cloud tile.

2.2 AHN elevation data
Elevation data can provide a rich source of information that can
be used for an accurate ground filter, but also to more precisely
label buildings, cars, and even pole-like objects as we will see later.
We use the AHN3 dataset4 (Actueel Hoogtebestand Nederland), the
publicly available elevation model of the Netherlands obtained
by aerial laser scanning. This data is available as GeoTIFF grid
data with a resolution of either 0.5m or 5m, or as a labelled point
2Point cloud data provided by Cyclomedia: https://www.cyclomedia.com/
3https://www.danielgm.net/cc/
4https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn3-
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Figure 2: Example AHN3 elevation data showing the
ground surface (in green/brown) and building height (in or-
ange/red).

cloud. We use the latter, as it allows us to extract surface grids
with a resolution of 0.1m, as well as height data for buildings. One
limitation is that gaps may appear in the elevation data which are
caused by, for example, vehicles on the road that obstruct the aerial
laser scanner. We include a pre-processing step in which small gaps
in the AHN3 data are filled using interpolation.

Figure 2 shows an example of the AHN3 elevation data cor-
responding to the point cloud tile in Figure 1. One downside of
the AHN datasets is their low update frequency; at the moment
of writing the AHN3 data for our area of interest is 6 years old.5
This is of particular importance when considering areas that have
been recently developed, as buildings might be missing and ground
elevation data might have become outdated.

2.3 BGT topographical map
A second source of rich information is the BGT dataset6 (Basisregis-
tratie Grootschalige Topografie), a digital map of large topographical
objects which is updated frequently. This map includes building
footprint polygons, road part polygons, and (𝑥,𝑦) coordinates of
pole-like objects such as trees and lamp posts. We further enrich
this using data from the NDW7 (the National Road Traffic Data
Portal), in particular we use their dataset of traffic signs (verkeers-
borden). Figure 3 shows the extracted data sources for our example
point cloud tile.

3 METHOD
We present a modular pipeline that can be used to label certain
objects in the point cloud using data fusionwith the various datasets
described previously. Each module processes a specific type of
information. The modules can be divided into two groups: data
fusion modules use public data sources to label particular objects
in the point cloud, and region growing modules further refine the
(partially) labelled objects.
5https://www.ahn.nl/historie
6https://www.pdok.nl/introductie/-/article/basisregistratie-grootschalige-
topografie-bgt-
7https://opendata.ndw.nu/

Figure 3: Example BGT data for one point cloud tile.

Note that the aim of ourmethod is not to correctly label the entire
point cloud; instead we only wish to obtain an accurately labelled
dataset that can be used to train machine learning models. This
means that precision is more important than recall, since we want
our training data to be labelled as accurately as possible. Therefore,
it is not a big problem if we miss a few objects, as long as the ones
that are labelled, are correct.

3.1 Data fusion
We use data fusion to label ground, buildings, and cars, and three
classes of pole-like objects: trees, lamp posts, and traffic signs.

Ground. Many urban point clouds consist for a large part of
ground, which is why a first pre-processing step in many point
cloud classification approaches is to filter out (or label) these ground
points in order to simplify further operations [2]. The typical way of
extracting ground points is by identifying horizontal planar surfaces
and labelling these as ground [14]. The disadvantage is that such
methods are computationally expensive, and tend to work less well
when the ground surface is not flat, or consists of multiple levels.
In order to overcome these limitations we use the AHN3 elevation
data as a target surface, and match this with the point cloud. Points
in the point cloud which are within a certain margin of the AHN
surface (e.g. +/- 25 cm) are labelled as ground.

Buildings. In order to label buildings we use a combination of
BGT footprint polygons and AHN elevation data. The reason to
use both data sources simultaneously is that they complement each
other: the BGT provides accurate and up-to-date 2D information,
while the AHN adds a 3D aspect allowing us to take the building
height into account as well.

We mark points that are inside each building polygon (in terms
of their (𝑥,𝑦) coordinates) as potential building points. Since both
the BGT and the point cloud have a certain margin of error, we
inflate the building footprint by 50cm to increase the number of
points that are included. It can happen that there are points within
the footprint that in fact do not belong to the building. A typical
example are trees that partially overlap with the footprint where
their branches overhang the building’s roof. To prevent such errors,
we use the building height data from AHN, if available, and use

https://www.ahn.nl/historie
https://www.pdok.nl/introductie/-/article/basisregistratie-grootschalige-topografie-bgt-
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https://opendata.ndw.nu/


Automatic labelling of urban point clouds using data fusion

this as a cut-off (with a 25cm margin of error) in the 𝑧 coordinates.
Thus, we end up labelling all points that fall within the footprint in
terms of (𝑥,𝑦), and are below the building’s roof in terms of 𝑧.

Cars. Cars are relatively easy to detect once the ground has been
filtered out, since they have very regular shapes. Using road part
polygons from the BGT data (Figure 3), it is possible to search in
a specific location. Using typical car dimensions8, we search for
clusters whose minimum bounding rectangle and height match the
expected shape and are located above a road part or parking bay.

Pole-like objects. For the classes trees, lamp posts, and traffic signs
we perform a targeted search based on the available BGT data. For
each object in the BGT, we extract a small square area surrounding
the object’s expected (𝑥,𝑦) location (+/-1.5m) from the point cloud.
We bin the search area into a 2D grid, and compute statistics for
each cell regarding the minimum, maximum, and mean 𝑧 value
within that cell. This allows us to search for pole-like objects.

If we find a match within a maximum distance from the expected
location, we additionally compute the radius (thickness) of the
object. If the radius falls within an expected range (<0.2m for lamp
posts and traffic signs, and <0.5m for trees) we label all points within
a cylinder of that radius and at that location as the corresponding
object. These points will be used as initial seed points for further
refinement of the labelling, as described in the following section.

3.2 Region growing
Buildings. Certain protruding elements such as balconies, bay

windows, and canopies are not contained in the building footprint
polygons. In order to include these elements, we use a region grow-
ing technique. One option is point-based region growing [9], in
which for each point features are computed in order to determine
whether that point should be included or not. This method is very
precise, but also computationally expensive.

Since we have a very large number of point cloud tiles to pro-
cess, we opt for the more efficient approach of cluster-based region
growing, similar to octree-based approaches [12]. This method does
not make a decision for each individual point, but instead it first
clusters the point cloud using CloudCompare’s octree-based La-
bel Connected Components method which is accessible through a
Python wrapper.9 We then label an entire cluster as building if the
fraction of that cluster that was already labelled previously exceeds
a threshold, e.g. 0.5. To improve the accuracy of this approach, we
use different settings for this threshold, as well as for the octree
level in the connected component search, for different parts of the
building facade: a more cautious approach near the ground level
where there is more clutter; and a coarser approach near the roof,
where the point density is lower.

Pole-like objects. We similarly apply cluster-based region grow-
ing to the pole-like objects using the initial seed points that were
extracted previously. Again we use different settings for the lower
and upper parts of the object; especially the lower part can be clut-
tered since it is quite common to find bicycles parked against such
objects in Dutch cities.

8See e.g. https://www.automobiledimension.com/
9https://github.com/tmontaigu/CloudCompare-PythonPlugin

Settings for these region growing modules are elaborate and
should be tuned carefully for the dataset at hand. Details about
these as well as the data fusion modules can be found in the Jupyter
notebooks10 accompanying our GitHub repository.

4 RESULTS
We now present our results. First, we show that our proposed
data fusion pipeline can successfully label point cloud tiles, and we
discuss situations in which the labelling fails. Then, we demonstrate
the potential of ourmethod by training RandLA-Net, a deep learning
semantic segmentation model, on the labelled training set.

4.1 Automatic labelling example
Figure 4 shows the result of running the full pipeline on the example
point cloud. Ground, buildings, and cars are labelled correctly. Some
of the pole-like objects are missing, which can be attributed to
various factors: the small tree left of the centre was not detected
because of its slanted angle; the tree branches in the bottom corner
belong to a tree outside the tile area; and the location of the lamp
post in the centre was off by more than 1.5m in the BGT data. Each
of these issues can be likely be corrected by more careful tuning
and tweaking of our data fusion modules. However, for the purpose
of creating an accurate training set this is not necessary per se:
since unlabelled points are ignored during training, these missing
objects can potentially be detected and labelled by the semantic
segmentation model afterwards.

Figure 4: Automatically labelled point cloud tile with
ground (brown), buildings (blue), cars (grey), trees (green),
lamp posts (yellow), and traffic signs (red).

4.2 Creating a fully labelled dataset
In order to further demonstrate the potential of the proposed ap-
proach, we use our pipeline to automatically label a dataset of 109
tiles. We then manually check and correct issues, and compare
the relative effort of this endeavour compared to annotating from
scratch. For manual labelling, we use CloudCompare.11

For our dataset, we selected tiles representing different urban
scenes: old town, roads, new development, industrial areas, resi-
dential, and high rise. Our manual inspection of the results leads to
10https://github.com/Amsterdam-AI-Team/Urban_PointCloud_Processing/tree/
main/notebooks
11For a demo, see https://youtu.be/Y27QzOul8WU
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Table 1: Class statistics of the labelled dataset.

Total number of points: 498,333,348
Ground 51.14% Tree 4.65%
Building 24.33% Lamp post 0.17%
Car 3.74% Traffic sign 0.07%
Unlabelled 14.34% Noise 1.53%

several observations. 1) Ground and buildings are mostly labelled
correctly, with the exception of recently developed areas where the
elevation data is outdated. The accurate labelling of ground points
also makes it easy to quickly discard reflection noise below ground
level. 2) Despite the relatively simple rules, the car labelling module
works surprisingly well. Due to our approach, cars that are parked
outside official roads and parking bays are not labelled. In addition,
some containers placed in parking bays are incorrectly labelled as
car. 3) Trees are represented quite accurately in the BGT dataset for
our area of interest, and as a result these are also largely labelled
correctly. The exception here are trees that are slanted, or trees on
private or unmanaged property which are not included in the BGT.
4) Lamp posts and traffic signs are less accurately represented in
the BGT dataset. As we opted for precision over recall, objects for
which the location error in the BGT is too large are ignored by our
approach. In addition, temporary traffic signs around construction
areas are missing as these are not included in the BGT. Finally,
our approach has difficulty correctly labelling lamp posts or traffic
signs that are partially obscured by tree branches or are located
very close to buildings or other objects.

Many of these issues can be quickly corrected upon manual
inspection, with only a fraction of the effort required to label a full
point cloud tile from scratch. In our experience, manually labelling
a tile with 10 million points takes roughly 1.5 hours. The main
difficulty is labelling the ground, once that is done the remaining
points can more easily be clustered. Using our pipeline, we can
automatically label the same tile in roughly 20 seconds on a 2020
Intel I7 based laptop. After that, it takes on average 5 minutes
to manually inspect the result and correct small mistakes. This
substantial reduction in time and effort makes it feasible to create
a fully labelled dataset in a matter of hours.

Some statistics of our dataset are presented in Table 1. Despite
including only six classes in our pipeline, just 14% of the points in
our dataset remain unlabelled.

4.3 Semantic segmentation using RandLA-Net
We split the labelled dataset into training and validation sets of 99
and 10 tiles respectively. We use the training set to train a RandLA-
Net semantic segmentation model [6], and evaluate its performance
on the validation set.12 As input features we use the (𝑥,𝑦, 𝑧) coordi-
nates, and RGB and intensity values normalised to [0, 1]. Points that
are unlabelled or noise are ignored during training and evaluation.

Table 2 shows the performance of the best model found after 100
epochs. The model achieves excellent results on detecting ground,
buildings, cars, and trees. Performance on lamp posts and traffic
signs is notably lagging behind. This is likely due to the relatively
12See https://github.com/QingyongHu/RandLA-Net. We use default values for all
parameters, and modify the S3DIS dataloader for our dataset.

Table 2: RandLA-Net evaluation results: mean IoU (Intersec-
tion over Union [11]) and per class IoU on the validation set.

mIoU Ground Building Car Tree Lamp Sign
88.43 97.09 96.97 92.85 97.63 82.13 63.93

Figure 5: Example tile, not included in the dataset, labelled
by the trained RandLA-Net model.

low number of example points of these classes in the training set
(Table 1), which is a common problem13 that can potentially be
solved by labelling more data.

Finally, Figure 5 shows an example tile, whichwas not included in
the dataset, that was labelled by the trained RandLA-Netmodel. This
figure confirms the quality of the model; some traffic signs attached
to lamp posts are confused, but overall the labels are accurate. Note
that objects such as fences and small bollards were not included in
the training set, and thus the model cannot distinguish these.

5 CONCLUSION & OUTLOOK
We have demonstrated the potential of using smart data fusion
to efficiently label a large dataset that can be used to train deep
semantic segmentation models. Our open source modular pipeline
is particularly suited for large scale point cloud data with hundreds
of millions of points, where full manual annotation is unrealistic
and impractical. Evaluation using RandLA-Net highlights the fea-
sibility of our approach, and shows that it is possible to achieve
satisfying results while keeping the amount of manual annotation
work needed at a manageable level.

Our pipeline can be extended with further modules that label
more types of objects of interest, such as bicycle stands, traffic
lights, low vegetation, etc. In addition, our method can be used
for automatic correction of topographical data sources by finding
discrepancies between objects’ expected locations and their appear-
ance in the point cloud. In conclusion, these results demonstrate
the potential of semantic segmentation combined with smart data
fusion for the automatic understanding and cataloguing of urban
street-level point clouds.

13See e.g. the leaderboard at https://npm3d.fr/paris-lille-3d.
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