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ABSTRACT

Providing efficient human mobility services and infrastructure is
one of the major concerns of most mid-sized to large cities around
the world. A proper understanding of the dynamics of commuting
flows is, therefore, a requisite to better plan urban areas. In this
context, an important task is to study hypothetical scenarios in
which possible future changes are evaluated. For instance, how the
increase in residential units or transportation modes in a neighbor-
hood will change the commuting flows to or from that region? In
this paper, we propose to leverage GMEL, a recently introduced
graph neural network model, to evaluate changes in commuting
flows taking into account different land use and infrastructure sce-
narios. We validate the usefulness of our methodology through
real-world case studies set in two large cities in Brazil.
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1 INTRODUCTION

Cities are complex environments that house the majority of the
world’s population; today, 55% of the world’s population lives in
urban areas, and this is expected to increase to 68% by 2050 [7]. For
this reason, an enormous problem faced by governments and urban
planners is how to plan for this new surge of people while solving
the already challenging scenarios of the present. One of the issues
present in nearly all mid-sized and large cities is human mobility.
In particular, every day millions of people commute from home to
work and limitations in the transportation infrastructure cause not
only people to waste their time, but also an increase in pollution
and health problems. A proper understanding of the dynamics of
commuting flows in a city is, therefore, a requisite to better plan
urban areas. Urban planners, transportation specialists, and city
agencies more often than not rely on precedent and data analyzed in
isolation to make decisions that can impact or transform a city. With
the growing availability of urban data and advances in machine
learning, there are new opportunities for data-driven solutions to
better support the exploration of possible alternate urban scenarios.
Such information can be used, for instance, by urban planners to
guide the development of new neighborhoods, or transportation
specialists to direct the deployment of new transportation modes.
In this context, the goal of this paper is to study the use of a graph
neural network-based commuting flow prediction model to assist
experts in the identification of the effects of infrastructure, land
use, and/or policy changes on commuting flows. Understanding the
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commuting flow can help answer many what-if questions in the
planning stage, such as “If a new high-rise building is planned for a
region, to what regions would people commute to work?”, and “How
to modify the transportation infrastructure to improve commuting
efficiency?” To enable data-driven scenario planning, we take the
first steps in leveraging the Geo-contextual Multitask Embedding
Learner (GMEL) model, previously proposed in Liu et al. [16], as our
base model for predicting commuting flows based on geographic
information (e.g., infrastructure, land use, transportation). Com-
muting flows are defined as flows between a workers’ residence
location and a workplace location. While major cities have the re-
sources to collect and process high-resolution land use data, other
cities do not have such capabilities, especially in countries in the
Global South. To test the effectiveness of our methods in cities in
developing countries, we focus our efforts on two cities in Brazil.
Using urban data from these cities, we train the GMEL model to
predict flows based on different infrastructure and land use scenar-
ios. Through a set of case studies, we show how scenario planning
methods based on graph neural networks can reveal important
information to transportation experts.

2 RELATED WORK

2.1 Commuting flow prediction

Classical trip distribution works follow a gravity model, first in-
troduced in the 1940s [32], and assumes that the trip volume is
proportional to the product of population of origin and destination
and is inversely proportional to the distance between origin and
destination. Modern extensions of the gravity model take into ac-
count several factors, such as demographics and land use, to more
accurately model attraction [9], but still fall short of properly mod-
eling complex nonlinearities, such as interactions between urban
utilities and human mobility. More recent approaches have used
the radiation model [24, 29], derived from a stochastic process con-
sidering intervening opportunities. Radiation models are limited by
data capacity, using only population distribution and ignoring the
growing availability of urban data [1]. Machine learning approaches
have also been proposed for trip distribution modeling, including
random forest [19, 20, 23]. These machine learning models make
use of rich urban data and can better model complex nonlinearities.
However, these models ignore the spatial correlations and consider
only the characteristics of origin and destination. In our previous
work [16], we proposed to use a graph neural network to learn geo-
contextual embeddings for commuting trip distribution modeling,
achieving better predictive performance when compared against
baseline models, such as gradient boosting regression tree, random
forest, gravity model, and node2vec.



2.2 Graph representation learning

Graph representation learning aims at learning low-dimensional
features (i.e., embeddings) for each node in a graph, preserving
both the graph structure and node attributes. This approach allows
the embeddings to be used in a myriad of analytical tasks, such as
community detection [15], traffic prediction [27] and graph isomor-
phism [28]. Graph neural networks (GNN) provide powerful graph
embedding capabilities [28]. Different approaches include graph
convolution neural network (GCN), based on the notion of convo-
lution on graphs [3], a general inductive framework that leverages
node attributes to generate node embeddings in a message-passing
way [11], and graph attention networks that leverage self-attention
mechanisms to allow messages passed by neighbors to be aggre-
gated with different weights [25]. Successful applications include
traffic prediction [31], recommender system [30], and drug discov-
ery [12]. In this work, we use our previous work on graph attention
networks with a modified attention mechanism so that the model
can capture the spatial correlations and enable the construction of
alternate scenarios [16].

2.3 Scenario planning

The ability to plan for different scenarios and consider different out-
comes is important in several domains, including urban planning
and transportation. At its core, scenario planning allows planners
to analyze future outcomes based on present-day decisions [5]. Tra-
ditional approaches usually use regression analysis [4], travel fore-
casting models, or econometric models [2]. More recently, machine
learning approaches have been proposed to best guide stakeholders
on how to best plan for future growth, while taking into account en-
vironmental considerations [13], or how to best calculate land use
configuration given surround spatial contexts [26]. Simultaneously,
given that transparency, expert feedback and community partic-
ipation is an increasingly important topic in scenario planning,
different proposals have considered a human-in-the-loop approach
to foster the involvement of stakeholders [8, 10, 17, 18].

3 METHODOLOGY

In this work, we leverage our previously proposed graph neural net-
work model, called Geo-contextual Multitask Embedding Learner
(GMEL) [16]. Next, we briefly describe GMEL and also how we use
the model for scenario planning in two cities in Brazil.

3.1 GMEL

GMEL is a graph neural network model for commuting trip distri-
bution modeling. The model consists of two components: a geo-
contextual multitask embedding learner and a flow predictor. The
learner was designed to capture the spatial correlations from geo-
graphic neighborhoods. The model utilizes a graph attention net-
work (GAT) to encode the spatial dependencies into an embedding
space. To disentangle the origin and destination characteristics that
are hidden in the infrastructure and land use data, GMEL employs
two separate GATs to encode the geographic contextual informa-
tion into two different embedding spaces. GMEL employs multitask
learning framework which imposes stronger restrictions forcing
the embeddings to encapsulate effective representations for flow
prediction. The second component, the flow predictor, employs
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Figure 1: GMEL architecture [16].

a gradient boosting machine (GBM) as the regression model to
predict commuting flows. GBM iteratively evaluates the largest in-
formation gain of features, automatically selecting and combining
useful numerical features to fit the targets.

Figure 1 presents an overview of the GMEL architecture. The
model makes use of two datasets: 1) a set of origin-destination com-
muting trips, where each trip is composed of an origin, a destination,
and a number of commuters traveling from origin to destination.
Origin and destinations are aggregated at a census tract level, and
commuting flows are yearly static values, i.e., the number of peo-
ple that reports living in an origin census tract and working at a
destination census tract. 2) a geo-adjacency network, an undirected
weighted graph with the following properties: geographic units
(i.e., census tracts) as nodes, with an associated set of urban indica-
tors, and the weight of edges describe the strength of correlations
between units (i.e., travel distance, trip duration).

GMEL was originally proposed using an extensive land use
dataset from New York City, called Property Land Use Tax Lot
Output (PLUTO). The dataset describes, for each year between 2008
and 2021, the land use information of the city, at a lot level. This
enabled us to perform initial what-if scenario explorations. In one
specific case study, we showed how we could leverage a GMEL
model that was trained using the PLUTO data set for one specific
year (2013) and predict flows considering the modified land use of
a subsequent year (2015), highlighting how GMEL can guide urban
planners and policymakers to make informed decisions when it
comes to new urban development scenarios.

3.2 Scenario planning with GMEL

In this paper, we further explore the possibilities of using GMEL for
what-if scenario planning. We focus our efforts on two Brazilian
cities: Recife, the oldest capital city of Brazil, the 3rd most populous
city in the Northeast region of Brazil, and the 9th most populous
in the country; Curitiba is the most populous city in the South
region of Brazil, and the 8th most populous city in the country.
Curitiba in particular is known for its innovative urban planning
initiatives, targeted at improving public transportation accessibility
and promote housing development.

Recife and Curitiba are among the fastest-growing cities in
Brazil [6], creating the need to have the right methods in place
to allow stakeholders to better plan urban interventions. This need
was recently highlighted by a report from the city of Recife, that
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Table 1: Summary of urban indicators for Recife and Curitiba.

Recife

Curitiba

Category # Feat. Content

# Feat. Content

No. of different types of buildings (12), density of res. units
(4), no. of buildings per built year (11), no. of bike stations

Perimeter of bike lanes (1), no. of lots per zone (11)

Infrastructure 30 (1), perimeter of bike lanes (1), perimeter of bus lanes (1) 12
Land use 14 Land area ratio of retail/office (12), floor area ratio (2) 11 Land area ratio of zones (11)
Speciality 2 Whether or not the urban geographic unit contains land- 1 Number of lots contained in a historic area (1)

marks (1), no. of cultural routes (1)

states the “need to develop analytical tools that allow the creation of
scenarios to capture specific changes in certain areas of the city, and
to allow the assessment of scenarios related to the implementation of
new transportation infrastructure.” At the core of our proposal is
the ability to use a graph neural network (i.e., GMEL) to predict
changes in commuting flows, given changes in the land use and
built environment. We follow a set of steps that allow us to train
and validate a model, and then use this model to predict flows in a
different scenario. Our steps can be summarized as follows:
Model training: we initially train a GMEL model for each city,
considering land use and commuting flow data from Recife and Cu-
ritiba. The model is trained using stochastic gradient descent in an
end-to-end manner. With the embeddings from the trained GMEL,
a GBRT is trained as a flow predictor based on the concatenation of
origin-destination embeddings and travel distances to predict the
commuting flow. The model is then tested using a holdout set.
Scenario planning: after the model is trained and tested, we
change the urban indicators of the city, following plausible ur-
ban modification scenarios currently being proposed in the two
cities. We update the geo-adjacency network to follow these mod-
ifications and use the previously trained models to generate new
embeddings for the modified network. The flow prediction then
uses these embeddings to predict new commuting flows.

4 MODEL TRAINING AND RESULTS

This section describes the input generation process for the GMEL
model and the experimental results for both Recife and Curitiba.

4.1 Data description

To train and validate the models used for scenario planning, we
used open datasets from Recife and Curitiba. In both cases, we used
the cities’ 2020 census tracts as the geographic units. To measure
the travel distance between (the centroids of) the census tracts,
the Open Source Routing Machine (OSRM) was used, as described
n [16]. Next, we detail the datasets and their sources. The informa-
tion is also summarized in Table 1.

The first city studied in this paper is the city of Recife, capital
of the state of Pernambuco in the Northeast coast of Brazil. For
this analysis, we used the commuting flow dataset obtained from a
survey carried out by the city’s administration between 2018 and
2019. This survey captured data on typical commuting movements
performed by the population that resides, works, studies, or seeks
services in the metropolitan region of the city. As urban indicators,
we used information about individual lots, as well as indicators that
show the presence of special preservation buildings, cultural routes,

bicycle stations, bike lanes, and exclusive bus lanes, all available on
Recife’s open data portal [22]. After joining flow and the indicators
datasets, we ended up with 1,347 census tracts that cover more
than half of the city. The commuting flows were aggregated into
geographic unit level flows, resulting in 23,336 commuters and
15,945 pairs of origin-destination trips divided into train (60%), test
(20%), and validation (20%) datasets.

The second city considered is Curitiba, the capital of the state of
Parana in the South region of Brazil. The commuting flow dataset
used for the analysis was obtained from a survey carried out by
the city’s administration in 2017, mapping commuting patterns in
the metropolitan region of the city. As urban indicators, we used
individual lots aggregated by zone, according to the new zoning
legislation, established in 2020, as well as the distribution of bike
lanes in the city, data made available by Curitiba’s urban planning
and research institute [21]. After joining commuting flows and
indicators, we ended up with 2,200 census tracts, covering the
vast majority of the city. The commuting data resulted in 45,365
commuters and 32,988 pairs of origin-destination trips, divided in
the same way as previously described.

In our case studies, we modify the previously mentioned ur-
ban indicators to effectively predict new flows when considering
alternate scenario plans.

4.2 Performance analysis

We evaluated the performance of the GMEL model in both Recife
and Curitiba. To measure the prediction performance, we adopted
three evaluation metrics: Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Common Part of Commuters (CPC). For
each pair i, j of nodes, and predicted flow value f} j and groundtruth

1 «
flow value T; j, we have RMSE = | lm 2ij(Tij — T;j)%, MAE =

1 22j min(T;j, Tij)
IT| iiTij+ 2Ty

RMSE and MAE are widely used as evaluation metrics for re-
gression problems. CPC is widely used in trip distribution model-
ing [14, 23], and it measures the agreement between the predicted
value and target value; CPC is 0 when no agreement is found, and
it is 1 when the two are identical.

The model’s performance for the two cities was quite similar
(Table 2), with the RMSE being the metric with the most significant
difference, although still small. This can be attributed to the differ-
ence in the number of commuting flows and census tracts used in
Curitiba and Recife. Given that this number was greater in Curitiba,
a lower RMSE was expected.

¥ |Tij = T;jl, and CPC =



Table 2: Performance on test set.
City RMSE MAE CPC*
Recife 1.43 0.73 0.73

Curitiba 1.08 070  0.73
* Higher is better

5 CASE STUDIES

Following our methodology, we now present two initial alternate
scenario plans for the city of Recife. Both of the case studies high-
light the importance of developing tools and frameworks that allow
the creation of scenarios to assess the impact of land use changes.

5.1 New bike lanes in Recife

In recent years, there has been a growing movement in which
citizens organize themselves to think about alternatives that go
beyond motor vehicles. Bicycles are means of transport for small
and medium distances that bring benefits to health and the envi-
ronment. In some cities around the world, bicycles are already a
widely used mode of transportation for a significant portion of the
population, while in Recife it is mostly used by a small portion of
the population. While there has been an increasing demand for new
cycle paths around the city, an important question that should be
answered before actually creating these new paths is whether this
infrastructure will effectively generate an increase in the flow of
cyclists in the region. To show how to apply our methodology in
this scenario, we chose four major avenues that connect important
points in Recife. These avenues have a high rate of daily vehicle
flow, however, currently they do not have any type of cycling in-
frastructure, posing a risk to cyclists who need to travel around
them to reach their destination. We distributed 24 km of cycle paths
between these four avenues, mapped to the zones where the av-
enues are located (Figure 2(a)). To analyze the changes caused by
these modifications we looked at the flows among units whose
geographical centers are up to 2 km away from the centers of units
that received the new cycle paths. For each flow, we computed the
relative change as a way to assess the amount of flow change in
these areas. The results show an average increase of 13% (and 0.59
std. deviation) of flows among those units (Figure 2(b,c)). While
our model did not use any data on the modality of transportation,
we hypothesize that these changes could represent an increase in
biking in these areas.

5.2 New high-rise buildings in Recife

Building large projects in a city is an activity that is always ac-
companied by a series of impacts, whether on the landscape, on
the region’s economy, and/or on the flow of people moving from
one point to another. It is therefore of great importance to urban
planners to first estimate these impacts on the city’s infrastructure
in order to anticipate actions to fulfill new needs or solve possible
upcoming problems. As a way to estimate the impact on the flow
of people due to a large construction in downtown Recife, we used
the real-world case of the construction of 13 towers, with sizes
ranging from 13 to 44 floors, on the former historical site of the José
Estelita Pier (Figure 3(a)). We incorporated the new buildings into
the model, adding information related to the number of different
types of buildings, density, built year, land/area ratio, and floor/area
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Figure 2: Alternate land-use scenario considering new bike
lanes: (a) census tracts new bike lanes (dark blue), and tracts
with centroids within 2 km of distance (light blue); (b) com-
muting flow differences, considering the new scenario; (c)
histogram with commuting flow differences.
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Figure 3: Alternate land-use scenario considering new build-
ings: (a) census tracts with new buildings (dark blue); (b)
commuting flow differences, considering the new scenario;
(c) histogram with commuting flow differences.

ratio. Similar to Section 5.1, we analyzed the relative changes in
commuting flows that were caused by the modification of the urban
indicators. The results show an average increase of 12,5% (0.605 std.
deviation) of flows among those units (Figure 3(b,c)). Notice that
the model predicts relative changes thought the city. However, the
most significant changes happen in units close to the new project,
or in high-density units that already have large commuting flow
volumes. These flows are predicted to increase by at least 25%.

6 CONCLUSIONS

Our goal in this paper was to analyze the behavior of flows on
proposed what-if scenarios using the GMEL model, evaluating the
model’s performance with available urban data from two different
cities in Brazil. Our initial results show that the model could be used
as a tool to assist urban planners and transportation researchers in
the decision-making process, with good performance even when
considering cities in developing countries. There are, however, chal-
lenges regarding data quality that need to be addressed. Similar to
the majority of data-driven approaches, GMEL is heavily depen-
dent on the quality of the datasets used. It is then important to
have an effective involvement of public administration in providing
accurate information to be used in the model. In future work, we
plan to further evaluate our model and extend it to take into ac-
count multimodal commuting flows, which will allow us to answer
more specific questions regarding people’s movement in the city
considering different modes of transportation.
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