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ABSTRACT
Route planning is the key component of the industry navigating

engine system, which actually consists of two core parts—the plan-

ning algorithm based on graph theory and the statistical links’

travel time estimation. In recent years, the first part has attracted

more and more academic attention and many excellent algorithms

such as CH, CRP, CCH have emerged. However, the second part

is rarely studied, and there is no excellent solution so far. In this

article, we try to estimate the free flow speed of the road segment

from the raw GPS collections to solve the second problem. In prac-

tice, the types and status of links are complicated. For example,

for the links within the same road, some links have more turns,

while some are adjacent to the crossing of the road with traffic light.

These differences lead to the variance of the through capacity. In

the worst case, some links may have fewer historical GPS points

or some links are always congested so that we can’t study them

directly. In our paper, we propose a systematic solution, which

includes 3 main parts: 1. we will introduce a more efficient Map

Matching algorithm, comparing to the classical Hidden Markov

framework, showing greater than 8% improvement of accuracy; 2.

for road segments which have adequate history GPS points, we use

Bayesian Non-parametric Model(DPMM, Dirichlet Process Mixture

Model) with Markov Chain Monte Carlo (MCMC, Collapsed Gibbs

sampling) sampling to estimate the free flow speed; 3. for the rest

of links, we develop sophisticated machine learning algorithms for

fewer GPS trajectories coverage. The above methods have been

applied in our routing service and work well all the time.
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DNN, Map Matching, Free Flow Speed, DPMM, Semi-supervised

Regression
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1 INTRODUCTION
How to estimate the link’ travel time(or speed, length divides speed

can get the link’ travel time) of the real world road is an important

problem, it is the basics of most useful modern traffic techniques

such as estimating travel time of arrival(eta), traffic condition es-

timation, ranking(for paths), especially route planning. Routing

planning algorithm based on graph theory has developed rapidly

in the past 20 years. Many excellent algorithms such as CH[9],

CRP[6], CCH[7] can calculate the optimal route in milliseconds

even with large continental road networks. However, proper links’

weight(link travel time) are equally important with the planning

algorithms for once reasonable route planning request.

In our study, we collect 2 months of high quality of GPS trajec-

tories of DiDi Chuxing’s online car hailing orders in Beijing. We

develop a set of innovative and reliable solution from Map Match-

ing to statistical estimation and sophisticated machine learning

prediction of FFS (free flow speed). In Chapter 2, we will introduce

our more efficient DNN Map Matching Algorithm, comparing to

the classical Hidden Markov framework, showing greater than 8%

improvement of accuracy. In Chapter 3, for GPS data of adequate

collections, we present the estimation of FFS by DPMM(Dirichlet

Process Mixture Model) with collapsed Gibbs sampling. In Chapter

4, we will present the union of Supervised and Semi-supervised

machine learning algorithms for road with less GPS collections.

In Chapter 5, we will put the outstanding experiment results up.

Figure1 shows the flow diagram of our works. Table 1 summarizes

the terminologies used in this paper.

To sum up, the contributions of the paper are as follows:

• The first time using DNN incorporating spatial features in

mapmatching algorithm, which shows over 8% improvement

of accuracy when compared with HMM

• Systematical solution to get link’s proper free flow speed

with the Bayesian Non-parametric model, supervised model

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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and using semi-supervised algorithm to promote the regres-

sive effect.

• The proposed method has been deployed in a real system

and is shown to be effective.

Figure 1: Flow Diagram

Table 1: Terminologies used in this paper

Term definition notation

Road Network A directed, weighted

graph describing the

road relations in real

world

G(V, L)

Link An edge in the road

network, represent-

ing a road segment

𝐿𝑖

GPS Trajectory a sequence of time-

stamped points, each

of which contains

the information of

latitude, longitude

and instantaneous

speed

𝑝𝑛
𝑖

Free Flow Speed Operating speed on

a link in free-flow

state

FFS

Map Match Match recorded geo-

graphic coordinates

to a road of the real

world

MM

2 MAP MATCHING ALGORITHM
Map matching is the problem of how to match recorded geographic

coordinates to a road of the real world. As shown in Figure 2, the

dots are the GPS trajectory of the vehicle, and the blue curve is

the corresponding road. Early research on map matching can be

divided into three categories: geometric topology methods[3, 11],

statistical probability methods[12, 15, 17, 19, 26, 28], and other ad-

vanced techniques[10, 20, 29]. As early as 2009, Paul Newson and

John Krumm developed the well-known hidden Markov analysis

framework[19]. At the same time, an almost similar method ST-

MATCHING has also been developed by Yu Zheng[15], which uses

spatial analysis, temporal analysis and dynamic programming algo-

rithms to perform map matching. Later, many novel methods were

proposed, such as the IVMM algorithm[28] which is based on the

idea of interactive voting, and the method based on path predic-

tion proposed by Hu[26]. In recent years, many machine learning

algorithms have also been applied to map matching. Takayuki[20]

used inverse reinforcement learning to improve the accuracy of

transition probability. In addition, Kai Zhao proposed DeepMM[29],

which uses serialized modeling and uses the attention mechanism

to improve the effect of map matching.

Figure 2: Map Matching Example

This paper proposes a new map matching method based on

deep learning. Different from the previous map matching methods,

we introduce road-attributes information in the road network and

point-related information collected by GPS into map matching

algorithm. Comparing to the classical HMM framework[19], we

make some improvements, not only including the simple spatial

information, we also introduce some road attributes to improve the

accuracy of the transit and observation probability, such as speed,

number of lanes, road speed limit, etc. In addition, when vehicles

pass the same road section, there will be similar driving patterns,

which contain a lot of useful information for map matching, such as

driving direction and observation deviation... We can obtain these

information through data mining techniques so that our model can

complete the map matching task more accurately.

Based on the above data, we designed a 7-layers feed-forward

neural network. Compared to the traditional models, the deep neu-

ral network has excellent feature interaction capabilities, and it can

well capture the hidden information between the GPS points and the

road. Finally, in order to prevent overfitting, batch normalization is

used between each layer. We update the parameters of the model

by performing gradient descent to minimize the cross-entropy loss

function. The model structure is shown in Figure 3.

Figure 3: DNN Map Matching Structure
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3 FFS ESTIMATION
Lacking of real-time road traffic flow information, it is difficult to

estimate the free flow speed (Abbreviated as FFS) of the road, based

on the original definition of free flow by using online car-hailing

trajectory data. To get the estimation of FFS with original GPS data

set, we makes the following assumption:

Assumption 3.1. The operating speed 𝑉𝑖 on the road 𝐿𝑖 is a ran-
dom variable on R+, which confirms to a certain probability distri-
bution 𝑓𝑖 ∈ F . In an ideal environment (no extreme weather , traffic
accidents), the distribution of𝑉𝑖 is only related to the traffic conditions
on the road (free flow, amble, congestion and extreme congestion). Un-
der a given traffic condition state 𝑧𝑘 ,𝑉𝑖 confirms to a fixed probability
distribution 𝑓𝑖,𝑧𝑘 . That is,

𝑉𝑖 ∼ 𝑓𝑖,𝑧𝑘 (𝑣), 𝑘 = 1, . . . , 𝑖𝐾

Based on the above assumption, we propose a set of algorithms to

estimate the FFS of all links in the road network usingGPS trajectory

data. At first, this study maps the raw historical trajectories to

the road network of the digital map through the map matching

algorithm introduced in Chapter 2. After certain data processing

and calculations, the historical operating speed distribution of each

road is obtained. Finally, the DPMM algorithm is used to separate

the speed distribution in the free flow state from the historical

distribution and then estimate the FFS of the road based on its

mean value.

Due to the sparsity of the historical trajectory of online car-

hailing, it is difficult to obtain the FFS estimation of all links in the

entire road network based on trajectory data alone. In this study,

we use machine learning methods to learn the relationship between

link features and FFS labels set produced by the statistic inference

algorithm.

The transit time of a road segment is researched for a long period

of time. With the rapid development of GPS technology, the method

of obtaining traffic data by using GPS based probe vehicle system

has attracted extensive attention in recent years, among which

estimating road transit time is one of the hot topics. Hunter[13]

used the traffic data collected by the test vehicle with GPS device to

estimate the transit time between adjacent intersections. Pan[21]

proposed an algorithm for estimating road transit time and inter-

section delay based on GPS data. Firstly, GPS points are matched

to the corresponding road section through a map matching algo-

rithm, and then the road transit time and intersection delay are

estimated by calculating the time difference between GPS points in

and out of the road section. Pu[24] confirmed that in the free flow

state, the road transit time distribution is approximately Gauss-

ian distribution, while in the case of congestion, the data presents

an obvious skew distribution, and the lognormal distribution is

closer to the real distribution of the data. With the increase of the

amount of data, the distribution of road transit time not only shows

skewness, but also has problems of multimodal and excess kurtosis.

The single probability distribution is not enough to describe the

heterogeneity of road transit time distribution. The research shows

that[4], compared with the single distribution model, the mixed

distribution model can better fit the road transit time distribution.

Park[23] proposed a multi state model based on Gaussian mixture

distribution to fit the transit time distribution of highway.

In this study, we use the Bayesian non-parametric model DPMM

(Dirichlet Process Mixture model) to model the historical speed

distribution. The method of pre-setting the number of fixed sub-

distributions is not applicable based on the parametric model, since

the proportions of different road conditions on different roads are

not consistent(for example, some remote roads rarely appear con-

gested or unblocked all the time). Compared with the traditional

finite mixture model (FMM), such as the Gaussian mixture model

(GMM) whose base distribution is the Gaussian distribution, DPMM

adaptively learns the number of sub-populations in the mixed dis-

tribution, and can better fit the true distribution of the data, which

is validated by the following experiments 4. A large number of

studies have shown that the road speed distribution confirms to

the normal distribution or the mixed normal distribution[8, 14, 22].

Therefore, we select the normal distribution as the base distribution

of the DPMM, and use the collapsed Gibbs sampling method to

infer the DPMM. In particular, we take the maximum mean of the

sub-populations in the result as the FFS.

DPMM’s inference methods can be roughly divided into two cate-

gories: the first is an algorithm based on Monte Carlo Markov chain

sampling, of which the most classic algorithm is an inference algo-

rithm based on Gibbs sampling[18]. This method is relatively intu-

itive, but its calculation is relatively slow facing large-scale data set;

the second one is the Variational Bayesian inference algorithm[1],

using a specific lower bound of the integral for approximation, is

more computationally efficient. However it is also easy to fall into

the local optimal trap. In this paper, we used an inference method

based on collapsed Gibbs sampling of MCMC(Markov Chain Monte

Carlo) to get the most accurate estimation of links’ FFS, which

refers to the Algorithm 6 in [27].

In the specific inference process, due to the poor computational

efficiency of the Gibbs sampling method facing large-scale data,

while the data volume of some links in the historical data can

reach the level of 100,000, the memory and time consumption are

relatively large when using complete data to infer. To solve this

problem, we tried different methods. The effective one is to perform

multiple random sampling on the original data set, and take the

average of multiple results as an estimate of the FFS in algorithm 1.

4 FFS PREDICTION
For some links with a small number of historical trajectories, the

estimation based on the historical speed distribution is not reliably

enough, not to mention that most links have almost no historical

trajectory coverage. Therefore, we firstly extract the FFS of “hot”

links as the true label. And then based on this part of the labeled

data set, we train the machine learning model to predict the FFS

of “unpopular” links. As the amount of historical trajectory data is

larger, the inference based on the mixed distribution model is more

accurate. Based on this fact, according to the amount of historical

trajectory data from more to less, we divide the data set into three

parts: labeled data set, weakly labeled data set and unlabeled data

set.

4.1 Supervised Learning
When there is not sufficient data to conduct an accurate estimation

of FFS, we switch to another perspective that treating the FFS
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Algo 1: FFS-DPMM

Data: all of 𝑙𝑖𝑛𝑘𝑖 GPS speed collection 𝑉𝑖 = {𝑣𝑘 }
𝑛𝑘
𝑘=0

Input: number of iteration n, number of sample size m,

confidence threshold 𝜏

Result: 𝐹𝑆𝑆𝑖
if 𝑛𝑘 ≥ 8000 then

for 𝑗 ← 1 to n do
𝑉𝑖 𝑗 = 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑉𝑖 ,𝑚)
model= Collapsed_DPMM.fit(𝑉𝑖 𝑗 )

// Collapsed_DPMM refers to the Algorithm 6 in [27]

𝜇 = model.means

w = model.weights

for 𝜇𝑙 ,𝑤𝑙 in 𝜇,𝑤 do
if 𝑤𝑙 < 𝜏 then

𝜇 = 𝜇.𝑑𝑒𝑙𝑒𝑡𝑒 (𝜇𝑙 )
end

end
𝐹𝐹𝑆𝑖 𝑗 = max(𝜇)

end

𝐹𝐹𝑆𝑖 =

∑𝑛
𝑗=1 𝐹𝐹𝑆𝑖 𝑗

𝑛

end

Table 2: Division of Data Set

Sample Size Data Set Percentage

>5000 Labeled Data Set 𝐷𝐿 10.75%

100-5000 Weakly Labeled Data Set 𝐷𝑊 25.04%

<100 Unlabeled Data Set𝑈 64.21%

estimation as a regression problem rather than a statistical inference

problem. We then select 54-dimension link features as the model

input, such as road width, speed limit, the number of lanes, etc.

Naturally, the label is the FFS produced byDPMM. Since the features

have a large proportion of categorical variables and some features

are relatively sparse, we select XGBoost[5] regression model as the

supervised model.

However, because the labeled data only accounts for a limited

number of links, and it can be seen from the Figure 6 that the sta-

tistical frequency distribution(not absolute quantity) of the labeled

data set is not consistent with the distribution of the overall data

set. Some of the link features have the problem of sparseness, so the

direct use of supervised learning to predict unlabeled data will lead

to larger deviations in the accuracy of the results. In the two-month

GPS trajectory data in Beijing, the proportion of links covered by

at least one historical trajectory in the entire Beijing road network

is 82.25%, and the proportion of links covered by more than 100

historical trajectories is only 35.79%. Since many inner roads of

some communities or companies are not allowed to be reached

by online car hailing, the trajectories sparsity is reasonable in the

case of online car hailing services. To make use of information of

unlabeled data, we attempt to combine the information in labeled

data and unlabeled data for learning to improve the overall perfor-

mance of the model and reduce the model deviation caused by the

distributions inconsistency.

4.2 Semi-supervised Learning
For supervised learning based only on labeled data, the model

prediction still has a large margin of error. Furthermore, due to

differences in distribution between labeled data sets and overall

data sets, the supervised model has poor generalization abilities in

unlabeled data sets. This section attempts to use the idea of semi-

supervised learning, combined with labeled data and unlabeled data

for model training to improve the performance of the model. In this

study, two classic semi-supervised learning methods were selected:

self-training and collaborative training.

Self-training[25] is one of the most common algorithms used

in semi-supervised learning. When the training set includes only

a small amount of labeled data and a large amount of unlabeled

data, the self-training paradigm iteratively trains model to augment

labeled training data: At each iteration, a supervised model (Such

as linear regression, XGBoost, etc.) is trained using labeled data set.

According to certain standards, put the unlabeled samples with high

prediction confidence into the labeled data set, using its predicted

result as its “pseudo-label”. It loops until there is no confident

unlabeled data available. The disadvantage is that it relies heavily

on the accuracy of the initial model. Once the model predicts an

error, its error will gradually accumulate with the self-training

process. Therefore, when there are outliers in the data set or the

data is unevenly distributed, self-training algorithm tends to have

poor performance, or even worse than a purely supervised learning

model.

Self-training algorithms[16] are often applied for classification.

Usually based on Bayesian theory, self-training algorithms use the

posterior probability of the model to predict each category to de-

termine the model’s confidence in the prediction of unlabeled data,

and can be based on the proportion of each category in the training

set. Adjust the proportion of categories that add “pseudo-label” data

in each iteration to alleviate the problem of data imbalance. For

regression problems, since the output of the model is a continuous

variable, it is difficult to find a reliable method to determine the

confidence of the “pseudo-label”. Based on the manifold hypothesis

of semi-supervised learning, this study combined with the labels

of the nearest neighbors in the labeled data set, to provide a basis

for judging the confidence of the “pseudo-label” produced by the

model. The specific criterion for such a judgment is:

𝐿1 = (𝐾𝑁𝑁_𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (𝑥𝑢 ) − 𝑋𝐺𝐵_𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑠𝑜𝑟 (𝑥𝑢 ))2

In addition, considering that some of the features in the labeled data

set are very sparse, and their distribution is quite different from

that of the unlabeled data set, simply using the nearest neighbor

method for confidence judgment may cause the model to have large

prediction errors for such unlabeled data. In this case, this part of

the data set either failed to pass the confidence judgment, or the

KNN regressor and XGBoost had the same direction deviation and

were pseudo-labeled. Errors may continue to accumulate during

the iteration process of self-training, resulting in poor performance

of the model. Therefore, when judging the confidence levels, it is

necessary to minimize the error caused by this type of data. In this

study, due to the particularity of the data itself, some unlabeled

data have “weak label” with noise: the estimated value refered by

DPMMalgorithmwith insufficient data. This part of the information



Estimation and Prediction of Road Free Flow Speed with
More Efficient DNN Map Matching Results Conference’28, August 2022, Washington, DC, USA

can be used to make certain confidence judgments on the “pseudo-

labels” predicted by the model. Under the dual supervision of “weak

label” and nearest neighbor label data, the model’s judgment of

confidence is more reliable. For weak label data 𝑥𝑢 , the criterion

for using pseudo-labels to judge the confidence is:

𝐿2 = (𝑤𝑒𝑎𝑘_𝑙𝑎𝑏𝑒𝑙 (𝑥𝑢 ) − 𝐾𝑁𝑁_𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (𝑥𝑢 ))2

𝐿3 = (𝑤𝑒𝑎𝑘_𝑙𝑎𝑏𝑒𝑙 (𝑥𝑢 ) − 𝑋𝐺𝐵_𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑠𝑜𝑟 (𝑥𝑢 ))2

Based on the above analysis, this article sets the confidence

judgment method as: when any two of the three losses are less than

a certain threshold at the same time, add it into the training set with

its pseudo-label, which is themean of the three regressorsṕrediction,

and record this model as STT (self-tri-training) in algorithm 2.

Algo 2: Self-Tri-Training

Data: Dataset L : links’ features with FFS label

U = links’ features without FFS label

𝜏 : the confidence threshold

repeat
𝑀𝑜𝑑𝑒𝑙 ← 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 (𝐿)
for 𝑥 ⊂ 𝑈 do

if | |𝑀𝑜𝑑𝑒𝑙 (𝑥) − 𝐷𝑃𝑀𝑀 (𝑥) | | ≤ 𝜏 or
| |𝑀𝑜𝑑𝑒𝑙 (𝑥) − 𝐾𝑁𝑁 (𝑥) | | ≤ 𝜏 or
| |𝐾𝑁𝑁 (𝑥) − 𝐷𝑃𝑀𝑀 (𝑥) | | ≤ 𝜏 then

pseudo_label =
𝑀𝑜𝑑𝑒𝑙 (𝑥)+𝐾𝑁𝑁 (𝑥)+𝐷𝑃𝑀𝑀 (𝑥)

3

𝐿 ← 𝐿 ∪ (𝑥, 𝑝𝑠𝑒𝑢𝑑𝑜_𝑙𝑎𝑏𝑒𝑙);
𝑈 ← 𝑈 /{𝑥}

end
end

until No Updates For L;

Co-training[2] is a classic semi-supervised learning algorithm

based on divergence. Its core idea is to train two learners separately

based on two fully redundant views in the multi-view data. Co-

training greatly utilizes the information of unlabeled data through

the way of two learners labeling each other with “pseudo-labels”. Its

effect has also been theoretically proven with a strict data hypothe-

sis, that is, there are two fully redundant and mutually conditionally

independent views in the data set. Full redundancy means that a

sufficiently good learner can be trained based on any one of views.

And mutual conditional independence means that the two views

are independent of each other under the conditions of a given result.

In practical applications, it is often difficult to meet this hypothesis.

However, many studies have shown that collaborative training still

has a relatively good effect, even when the data does not meet the

strict hypothesis.

When collaborative trainingwas proposed, it was a semi-supervised

classification algorithm, but its ideas are also applicable to regres-

sion models. Zhou[30] proposed a collaborative regression algo-

rithm (COREG), which uses two regressors to generate pseudo-

labeled data for each other, and the confidence of the “pseudo-label”

is based on the mean square error reduction of its neighborhood in

the training set. The theoretical basis of this method is the manifold

hypothesis that the samples in the tiny neighborhood have simi-

lar properties or labels. COREG cleverly uses a different number

of nearest neighbors and different distance measures to construct

differences between learners. Analysis and experiments show that

COREG can effectively use unlabeled data sets to improve the per-

formance of the regressor.

In addition, we also tried a COREG model, using two different

KNN regressors to filter unlabeled data sets, and combining weak

labeled data sets to improve the confidence judgment for pseudo-

labels COREG_REV in algorithm 3. The original paper first uses a

KNN regressor to predict unlabeled data, and compares the mean

square error of the labeled data in the neighborhood before and after

adding the pseudo-label to determine the confidence level. When

there is a difference in distribution between the labeled data set and

the unlabeled data set, many unlabeled data have a small similarity

between the nearest neighbors in the labeled data. As a result, using

the predicted value of the KNN regressor directly used as its pseudo

label could reduce the performance of the final regression model.

Therefore, in practical applications, when the average distance

between the unlabeled data and its nearest neighbors is greater

than a certain threshold, the nearest neighbor selection range of the

KNN regressor is extended to the weak-labeled data pool (including

the currently predicted unlabeled data).

5 STUDY DATA AND EXPERIMENT
5.1 Dataset
The data set used in this article includes topological structure data

of the road network in Beijing, the corresponding link features, and

the GPS trajectory data of the car-hailing order from February 1 to

March 31, 2021.

Road network(𝐺 (𝑉 , 𝐿) ) is a form of transforming real-world

roads into a topological network structure. Based on certain stan-

dards, key points in a road will be mapped into a road network as

the node, and the directed road between adjacent nodes corresponds

to the link in the road network. In addition, the road network data

also includes the road attributes corresponding to each link and the

longitude and latitude information of the nodes contained in the

link.

The GPS trajectory data used includes the GPS trajectory stream

produced by the car-hailing GPS device. The sampling frequency

is 2 ∼ 4𝑠 . Each GPS data includes the latitude, longitude, instanta-

neous speed and other information of the GPS point at that point.

5.2 Trajectory data processing
After the map matching algorithm, we can obtain the location and

speed information corresponding to each GPS point. But in order to

obtain an accurate historical road speed distribution, we still need

to remove some noise data:

(1) Map matching GPS points with low confidence level. Due

to signal problems or subjective factors of the driver, there

are amounts of trajectory missing or GPS drafting points in

the trajectory data. In the process of data processing, it is

necessary to remove these GPS points with low confidence

level in map matching.

(2) GPS points where the vehicle stays abnormally. For the GPS

trajectory where the vehicle stays abnormally, a large num-

ber of GPS points with the same position information and

speed of 0 will be returned. If they were not removed, it will



Conference’28, August 2022, Washington, DC, USA
Shunlei Ning, Heng Liu, Songjian Zhang, Yuqin Jiang, Jingbo Han,

Shui Liu, Jun Fang, Naiqiang Tan, Hua Chai, and Bo Zhang

Algo 3: COREG_REV

Input: 𝐿 = {Links with FFS labels | (𝑋,𝑌 )},
𝐿𝑤 = {Links with weak FFS labels | (𝑋𝑤 , 𝑌𝑤)},
𝑈𝑢 = {Links without any FFS labels | 𝑋𝑢 },

𝑈 = {Links without FFS labels | 𝑋𝑤∪X𝑢 },
maximum number of learning iterations T,

num of nearest neighbors 𝑘1, 𝑘2,

sample size s,

distance metrics 𝐷1, 𝐷2.

Result: FFS of U
PROCESS:

𝐿1 ← 𝐿;𝐿2 ← 𝐿

𝑈𝑝 ← 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑈 , 𝑠) ;
ℎ1 ← 𝑘𝑁𝑁 (𝐿1, 𝑘1, 𝐷1);
ℎ2 ← 𝑘𝑁𝑁 (𝐿2, 𝑘2, 𝐷2);

repeat
for 𝑗 ∈ {1, 2} do

for each 𝑥𝑢 ∈ 𝑈𝑝 do
Ω𝑢 ← 𝑁𝑒𝑖𝑔ℎ𝑡𝑏𝑜𝑟𝑠 (𝑥𝑢 , 𝐿𝑗 , 𝑘 𝑗 , 𝐷 𝑗 )
// the revised part of COREG_REV

if 𝑚𝑒𝑎𝑛
(
𝐷 𝑗 (𝑥𝑢 ,Ω𝑢 )

)
> 𝜏 then

Ω𝑢 ← Neighbors

(
x𝑢 , 𝐿𝑗 ∪ 𝐿𝑤 , 𝑘 𝑗 , 𝐷 𝑗

)
end
// the other part refers to COREG[30]

𝑦𝑢 ← ℎ 𝑗 (𝑥𝑢 )
ℎ
′
𝑗
← 𝑘𝑁𝑁 (𝐿𝑗 ∪ {𝑥𝑢 , 𝑦𝑢 }, 𝑘 𝑗 , 𝐷 𝑗 )

𝛿𝑥𝑢 ←
∑
𝑥𝑖 ∈Ω𝑢

((𝑦𝑖 − ℎ 𝑗 (𝑥𝑖 ))2 − (𝑦𝑖 − ℎ
′
𝑗
(𝑥𝑖 ))2)

end
if ∃𝛿𝑥𝑢 > 0 then

𝑋 𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑢 ⊂𝑈 ′𝛿𝑋𝑢
;𝑌𝑗 ← ℎ 𝑗 (𝑋 𝑗 )

𝜋 𝑗 ← {(𝑋 𝑗 , 𝑌𝑗 )};𝑈
′ ← 𝑈

′ − {𝑋 𝑗 }
end

end
𝐿1 ← 𝐿1 ∪ 𝜋2;𝐿2 ← 𝐿2 ∪ 𝜋1
𝜋1 ← 0 ; 𝜋2 ← 0

ℎ1 ← 𝑘𝑁𝑁 (𝐿1, 𝑘1, 𝐷1) ;
ℎ2 ← 𝑘𝑁𝑁 (𝐿2, 𝑘2, 𝐷2);
𝑈𝑝 ← 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑈 , 𝑠)
if neither 𝐿1 and 𝐿2 changes then

exit

end
until T Rounds;
𝑓1 ← 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 (𝐿1);
𝑓2 ← 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 (𝐿2)
return

1

2
(𝑓1 (𝑈 ) + 𝑓2 (𝑈 ))

have a greater impact on the historical speed distribution of

the road.

(3) GPS trajectories related to the start and end points of the

online car-hailing order. Due to its commercial nature, the

initial part of each order trajectory data cannot accurately

reflect the road operating speed distribution, so the 200m

trajectory points connected to the start and end of orders

are removed during data processing.

(4) GPS points with abnormal speeds due to GPS information

errors or subjective speeding by the driver. This article ran-

domly selects some samples with abnormal speeds. By an-

alyzing this part of the samples, GPS points with instanta-

neous speeds that exceeds the link speed limit 1.2 times is

screened out based on experience.

5.3 Map Matching Effect Comparison
The evaluation index is accuracy, and the specific definition is as

follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑃𝑠𝑚 ∩ 𝑃𝑠𝑔

𝑃𝑠𝑔

where 𝑃𝑠𝑚 is the result after the observation point is matched and

𝑃𝑠𝑔 is the ground truth (i.e. the “true” path of the vehicle) of the

observation point.

We compare the performance of ourmodel withHMM(considering

HMM as the baseline, not only it has been tested, but also it meets

the real-time performance of industrial applications). The perfor-

mance comparison results are shown in Table 3. Under our DiDi

Chuxing’s 10w+ map matching labeled dataset, compared with

HMM, the map matching algorithm based on deep learning pro-

posed in this paper improves the accuracy by 8.08%. The reason can

be concluded that with the help of a large amount of auxiliary in-

formation, the deep neural network can better capture the implicit

semantics between the observation point and the road. It is worth

mentioning that this method is used in Didi’s online environment.

Table 3: The performance of our model and baselines

Model HMM DNN_MM

Accuracy 0.8836 0.955
Improve 0% +8.08%

5.4 Calculation of Link Transit Speed
With map match results, we need to calculate the link transit speed

based on GPS trajectory. The specific calculation process is as fol-

lows: assuming a trajectory T = 𝑡𝑟𝑎 𝑗 (𝑙𝑖 , 𝑣𝑖 )𝑛𝑖=0, where 𝑙𝑖 is the road
network link matched by GPS points, 𝑣𝑖 Is the instantaneous speed

of the GPS point. Let the set of trajectory points matching 𝑙𝑖 be 𝐼 ,

the length of 𝑙𝑖 is 𝐿𝑖 , then the transit speed of the link is:

𝑣𝑖 =

∑
𝑘∈𝐼 𝑣𝑘
|𝐼 |

5.5 FFS Estimation By DPMM
According to the above process, we can get all the historical traffic

speeds of the trajectory passing through the link. In this study,

the Bayesian non-parametric model DPMM is used to model the

historical speed distribution. In particular, we select Gaussian as

the base distribution of DPMM.

In the specific inference process, considering calculation perfor-

mance, this article randomly sampled the original data set several

times, and took the average of the multiple sampling results as an

estimation of the FFS. As for the sample size setting of random sam-

pling, we randomly selected 100 links with a data volume greater
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than 20,000, and used the grid search method to find the optimal

sampling number. It was found that when the sample size was

greater than 5000, the final result was close to convergence. The

error between the results obtained from the original data does not

exceed 0.2m/s, and the estimated variance is also less than 0.5. On

the basis of comprehensive consideration of performance and error,

we set the final sampling size to 8000, the number of sampling times

to 5, and the inference result of links with a data volume greater

than 5000 as the true label of their FFS, as shown in Figure 4.

Figure 4: Deviation of DPMM and Sampling Quantity (x-axis
represents the difference of sampling quantity and the y-axis
represents the deviation of DPMM inferring result)

In order to prevent a small amount of noise data from affect-

ing the estimation accuracy, only sub-distributions with a weight

greater than a certain threshold are selected in the actual estimation

process. For the selection of the weight threshold in the algorithm,

this paper sets it to 0.05 based on experience. In addition, the ini-

tial maximum number of clusters is set to 10, and the relevant

prior distribution of the parameters is set to: 𝛼 ∼ Γ(1, 1), 𝜇𝑘 ∼
𝑁 (𝜇, 1), 𝜎−2

𝑘
∼ Γ(1, 1), where 𝜇 is the mean value of the overall data

distribution, the maximum number of iterations of gibbs sampling

is 10000, and the first 5000 times are the burn-in stage.

This paper uses three evaluationmethods: KS test, KL divergence,

and JS divergence. Based on randomly selected 10,000 links, the

fitting effects of DPMM and GMM with different prior parameter

settings are compared. The results show that, in any evaluation

method, the fitting effect of DPMM on historical velocity data sets

is better than GMM. In the inference result of DPMM, the average

number of sub-distributions is 2.50, the maximum number of sub-

distributions is 5. The proportion of data with the numbers of 2 and

3 is 87.2%. The specific evaluation results are shown in the table 4.

According to the collapsed DPMM algorithm, we randomly se-

lected the historical speed distribution of some links, and analyzed

the mixed distribution under different time periods. As shown in the

result in the Figure 5, this figure shows the historical speed distri-

bution of the link in the section of Houchangcun Road in Beijing at

different times. In different times, the speed meets different mixed

distributions. During peak periods, The road conditions are more

congested, and themixed distributionwill include a sub-distribution

Table 4: Comparison of data fitting degree between DPMM
and GMM with different parameters

Model K-S test 𝑝𝑣𝑎𝑙𝑢𝑒 KL divergence JS divergence

DPMM 0.3476 0.3400 0.0701
GMM(K=2) 0.1127 0.4399 0.0909

GMM(K=3) 0.1622 0.4645 0.8594

GMM(K=4) 0.2194 0.4510 0.0845

GMM(K=5) 0.3387 0.4227 0.0817

GMM(K=6) 0.3373 0.4150 0.0809

(a) Speed Statistical Dis-

tribution of HouChangCun

Road 00:00-24:00

(b) Speed Statistical Dis-

tribution of HouChangCun

Road 01:00-02:00

(c) Speed Statistical Distri-

bution of HouChangCun

Road 03:00-04:00

(d) Speed Statistical Dis-

tribution of HouChangCun

Road 07:00-08:00

(e) Speed Statistical Dis-

tribution of HouChangCun

Road 10:00-11:00

(f) Speed Statistical Distri-

bution of HouChangCun

Road 13:00-14:00

(g) Speed Statistical Dis-

tribution of HouChangCun

Road 18:00-19:00

(h) Speed Statistical Dis-

tribution of HouChangCun

Road 21:00-22:00

(i) Speed Statistical Distri-

bution of HouChangCun

Road 23:00-24:00

Figure 5: Different Speed Statistical Distribution of
HouChangCun Road

with a lower mean speed, and during unblocked periods, the sub-

distribution with a higher mean speed has a higher weight. Except

for the two peak periods of 7 a.m. and 6 p.m., the FFS estimated by

DPMM under different time periods. This also verifies the correct-

ness of the hypothesis and the effectiveness of the algorithm for

free flow estimation from one angle. During the peak period, due to

the large traffic flow and the small proportion of the free flow state,

it is difficult to obtain the true estimated value through DPMM.

Therefore, the historical speed distribution of link throughout the

day is selected for inference in practical applications.

According to the above process, we have obtained the free flow

speed estimation value of some links and used it as the training

set for subsequent model training. However, the data set labeled in

this part only occupies 10.75% of the total number of links in the

road network, whereas close to the data of 90% is difficult to obtain

a reliable free circulation time estimate through DPMM.
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5.6 FFS Prediction

Figure 6: Comparison of road level frequency distribu-
tion(not absolute quantity) between labeled data and overall
data

5.6.1 Supervised Learning. We first use the supervised learning

model to predict the FFS of links with sparse historical trajectory.

Based on the four evaluation indicators of𝑚𝑎𝑝𝑒 , 𝑟2,𝑚𝑎𝑒 and 𝑟𝑚𝑠𝑒 ,

several commonly used regression models are compared. The re-

sults of table 5 show that under the same condition, XGBoost’s 𝑟2,

𝑚𝑎𝑒 and 𝑟𝑚𝑠𝑒 are better than other models, while the𝑚𝑎𝑝𝑒 of MLP

is slightly lower than XGBoost. In terms of the specific tuning of

the parameters, we use the grid search method based on 10-fold

cross-validation.

Table 5: Comparison of the performance of different super-
vised learning models

models mape r2 mae rmse

XGBoost 0.1888 0.6877 1.9059 2.5298
Linear Regression 0.2135 0.6064 2.1424 2.8404

Random Forest 0.1976 0.6497 2.0116 2.6794

MLP 0.1866 0.6799 1.9284 2.5614

We also tested the impact of data distribution differences and

some sparse features on the model. This paper first standardized the

labeled data. In the cross-validation process, the Kmeans method

was used to cluster the test set. The result found that the 𝑟𝑚𝑠𝑒

of the XGBoost model on minority classes was 3.5222, which was

higher than the average error of the test set by 39.23%. After the

experiment, the characteristics of these categories are randomly

evaluated manually, and it is found that most of them are roads

within buildings or roads near the station, and the DPMM estima-

tion is in line with expectations. In addition, this section uses the

trained XGBoost model to predict the weakly labeled data set. It is

found that the 𝑟𝑚𝑠𝑒 is 3.7228, which is 47.16% higher than the test

set, and𝑚𝑎𝑝𝑒 is 48.11%, which is 154.82% higher than the test set.

Although the labels of the weakly labeled data set are not reliably

enough, the high prediction bias of the model on the weakly labeled

data shows to a certain extent that inductive learning cannot be

directly used to predict the unlabeled data set.

5.6.2 Semi-supervised Learning. In this study, we select two classic

semi-supervised learning methods: self-training and collaborative

training, and improves the model based on the particularity of the

data.

In specific experiments, this paper uses cross-validation to set

specific thresholds for confidence judgment. In the use of unlabeled

data set, first use weakly labeled data with a historical data volume

greater than 1000 for the first stage of semi-supervised learning,

then perform semi-supervised learning on the remaining weakly

labeled data, and finally use the unlabeled data set. This hierarchi-

cal structure is mainly to prevent the “pseudo-labels” that are first

added to the labeled data set from causing large inductive biases

on the model. This section conducts self-training models that use

different confidence standards. Comparative experiments include

the 𝑆𝑇1, 𝑆𝑇2, 𝑆𝑇3 model and the 𝑆𝑇𝑇 model that use the most confi-

dence standards of 𝐿1, 𝐿2, 𝐿3, and the specific experimental results

are shown in Table 6.

The experimental results show that compared with the super-

vised learning model, the 𝑆𝑇𝑇 model has a slight improvement in

the test set effect. 𝑟𝑚𝑠𝑒 is reduced from 2.5298 to 2.4674, and𝑚𝑎𝑝𝑒

is reduced from 0.1888 to 0.1794, the highest in the minority class in

the test set 𝑟𝑚𝑠𝑒 dropped from 3.5222 to 3.1202, and its performance

on the weakly labeled data set has improved significantly. 𝑟𝑚𝑠𝑒 has

dropped from 3.7228 to 3.0247, and𝑚𝑎𝑝𝑒 has dropped from 0.4811

to 0.3454. The effects of other self-training models are worse than

the 𝑆𝑇𝑇 model, and the performance of the 𝑆𝑇2 model on the test

set is even worse than that of the pure supervised learning model.

Table 6: Semi-supervised regression model comparison ex-
periment

Modes rmse mape 𝑟𝑚𝑠𝑒𝑀 𝑟𝑚𝑠𝑒𝑊𝐿 𝑚𝑎𝑝𝑒𝑊𝐿

𝑆𝑇𝑇 2.4674 0.1794 3.1202 3.0247 0.3454

𝑆𝑇1 2.5285 0.1853 3.1748 3.2321 0.3627

𝑆𝑇2 2.5396 0.1904 3.3617 3.4867 0.4254

𝑆𝑇3 2.5215 0.1861 3.1255 3.5352 0.4312

COREG 2.3355 0.1779 3.0056 3.0431 0.3329

COREG_REV 2.2475 0.1670 2.8997 2.9263 0.3154

The COREG_REV model is compared with the original COREG

model. The experimental results are shown in Table 6. In terms of

specific parameter settings, this paper selects two KNN regressors

to filter the weakly labeled and unlabeled data sets, the number

of nearest neighbors is set to 3, and the distances are respectively

selected by Minkowski distance with 𝑝 = 2 and 𝑝 = 5. The data

volume of the unlabeled data pool in each iteration is set to 10000,

and the final regression adopts the XGBoost regression model with

fine tuning parameters.

The experimental results show that the COREG_REV model is

better than the self-training model and the vanilla COREG model in

the prediction error of the test set. Compared with the supervised

learning model, 𝑟𝑚𝑠𝑒 is reduced from 2.5298 to 2.2475, and𝑚𝑎𝑝𝑒

is reduced from 0.1888 to 0.1670, the highest 𝑟𝑚𝑠𝑒 in the minority
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category in the test set dropped from 3.5222 to 2.8997. The per-

formance on the weakly-labeled data set was slightly better than

the self-trained model, 𝑟𝑚𝑠𝑒 dropped from 3.7228 to 2.9263,𝑚𝑎𝑝𝑒

decreased from 0.4811 to 0.3154.

6 CONCLUSION AND FUTUREWORK
In this paper, we develop a set of solution for road free flow speed

mining. In stage 1, comparing to traditional Hidden Markov frame-

work, the novel algorithm of DNN map matching has a more than

8% improvement of accuracy. In stage 2, for road segments which

has adequate GPS collections, we use Bayesian Nonparametric

Model DPMM with Collapse Gibbs sampling to infer every link’s

speed statistical distribution. In stage 3, with the stage 2’s free flow

speed labels, we develop a sophisticated statistical machine learning

algorithm union for the road segments of less GPS conditions. The

above methods have been applied in our routing service and work

well all the time.

The later two interesting and potential topics one is the mining

work of more accurate through cost of different road corners with

lights or not, another is the statistical relations between the level of

congestions and road speed distributions, we will do more research

in our future work.
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