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ABSTRACT
In this paper, we have proposed STC-GEF, a novel Spatio-Temporal
Cross-platform Graph Embedding Fusion approach for the urban
traffic flow prediction. We have designed a spatial embedding mod-
ule based on graph convolutional networks (GCN) to extract the
complex spatial features within traffic flow data. Furthermore, to
capture the temporal dependencies between the traffic flow data
from various time intervals, we have designed a temporal embed-
ding module based on recurrent neural networks. Based on the
observations that different transportation platforms trip data (e.g.,
taxis, Uber, and Lyft) can be correlated, we have designed an effec-
tive fusion mechanism that combines the trip data from different
transportation platforms and further uses them for cross-platform
traffic flow prediction (e.g., integrating taxis and ride-sharing plat-
forms for taxi traffic flow prediction). We have conducted extensive
real-world experimental studies based on real-world trip data of
yellow taxis and ride-sharing (Lyft) from the New York City (NYC),
and validated the accuracy and effectiveness of STC-GEF in fusing
different transportation platform data and predicting traffic flows.
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1 INTRODUCTION
Urban traffic prediction for transportation platforms such as taxis,
ride-sharing, as well as other public/private vehicles has attracted
much attention recently due to the important social and business
values [1, 6, 17, 18]. With urban traffic prediction and emerging big
mobility data, various ubiquitous and urban computing applications
have been enabled or strengthened, including vehicle routing [15],
event monitoring [12], and autonomous driving. However, two
major technical challenges remain when deploying a large-scale
data-driven traffic prediction system:

• Dynamic and complexmobility activity/usage patterns
in different regions: To predict the traffic flow in a future
time interval, one may use historical data of the traffic flow
to calculate spatial and temporal features. However, there
exist various types of traffic patterns in the historical data
and designing a model to effectively capture the most criti-
cal and related ones based on different conditions is highly
challenging.

• Absence of cross-platform mobility data fusion: The
traffic flow is highly correlated by different transportation
platforms such as bike sharing or ride sharing systems (e.g.,
Lyft and Uber). Therefore, to have an accurate prediction
of the traffic flow, these correlation must be identified and
effectively taken into account, which is a challenging task.

To address the above challenges, we propose STC-GEF, the novel
Spatio-Temporal Cross-platform Graph Embedding Fusion ap-
proach for the urban taxi flow prediction. In this prototype study,
we have made the following three major contributions:

(1) Spatial and Temporal Graph Embedding Learning: To
extract the complex spatial features within traffic flow data,
we propose a spatial embedding module based on graph
convolutional networks (GCN). Additionally, to capture the
temporal dependencies between the traffic flow data from
various time intervals, we leverage a temporal embedding
module based on recurrent neural networks.

(2) Cross-platform Mobility Data Fusion: Based on our data
analysis, we have identified that different transportation
platforms trip data (e.g., taxis, Uber, and Lyft) may be highly
correlated. Therefore, we have proposed an effective fusion
mechanism that combines the trip data from different trans-
portation platforms and further uses them for cross-platform
traffic flow prediction. In particular, in the preliminary stud-
ies, we leverage historical taxi and Lyft trip data to predict
the future traffic flow of the taxis in NYC.

(3) Extensive Experimental Evaluations:Wehave performed
data analytics and experimental studies on two public real-
world datasets to evaluate the effectiveness of our STC-GEF.
Specifically, we have studied a total of 4,464,090 yellow taxi
and Lyft trip records provided by the NYC’s open data pro-
gram [4, 5] and shown that our proposed framework outper-
forms the baseline methods for traffic flow prediction.

The rest of our paper is organized as follows. We first review
some of the previous studies for traffic flow prediction in Sec. 2.
Then, we present an overview of our framework in Sec. 3 followed
by dataset details, problem formulation, and framework designs in
Sec. 4. We demonstrate our experimental results in Sec. 5.2, and
finally conclude our work in Sec. 6.

2 RELATEDWORKS
We briefly go through the related studies as follows. Various tra-
ditional time series forecasting methods have been explored for
traffic flow prediction. Chen et al. [7] leveraged the auto-regressive
integrated moving average for traffic prediction. On the other hand,
Kumar et al. [13] designed a Kalman Filter to forecast the traffic flow.
Dong et al. [9] used Gradient Boosting Decision Tree algorithm to
perform short-term traffic flow prediction.

With the recent advances of big mobility data [20] and deep
learning, many recent studies have proposed various network archi-
tectures based on convolutional neural networks (CNN), long short-
term memory (LSTM) or residual neural networks (ResNet [11]) to
perform traffic flow prediction. Zhang et al. [22] proposed DeepST,
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Figure 1: Overall information flow of STC-GEF.

a network based on CNN and ResNet modules to predict the crowd
flow. Yang et al. [20] proposed a method based on graph neural net-
works and attentionmechanism to predict the crowd inflow/outflow
of different buildings. Zheng et al. [23] converted the road network
to a weighted graph and leverages graph neural networks with
attention mechanisms for traffic flow prediction. Likewise, Shi et
al. [16] proposed a graph neural network with a novel attention
mechanism that considers both long-term and short-term periodical
dependencies. Pan et al. [14] proposed a framework based on graph
neural networks, which is trained based on meta learning to predict
the traffic flow for multiple locations at the same time. Zhang et
al. [21] combined the external factors such as weather conditions to
better predict the traffic flow. Different from these prior studies, we
propose a novel graph embedding approach which fuse the different
transportation platforms to further enhance the prediction accu-
racy. We have designed a novel mobility data fusion approach and
validate the performance with real-world transportation platform
data.

3 CORE MODEL OVERVIEW
We present the overall workflow of our proposed framework in
Fig. 1, which consists of two main stages as follows:

(1) Data Preprocessing and Feature Extraction: In the pre-
processing stage, we first perform spatial discretization. Specifically,
we use the same taxi regions specified by the NYC open data pro-
gram [4], which are visualized in [3] to divide the target city into
multiple regions. Moreover, each region is a polygon with its coordi-
nates specified on the city map. Then, a unique number is assigned
to each region, which is used to specify the pickup and drop-off
location of the trips. Next, we perform temporal discretization by di-
viding each day into 𝑃 equal time intervals. Afterwards, we convert
the traffic data into multiple directed weighted graphs represented
by adjacencymatrices, in which the nodes represent the taxi regions
and the edges are the the traffic inflow/outflow between different
regions. Finally, for each node, we calculate the sum of the traffic
inflow and outflow from other regions and consider them as the
node features.

(2) Spatial and Temporal Learning: After the preprocessing
and feature extraction stage, we feed the extracted node features
and graph adjacency matrices to the spatial embedding module that
converts them into spatial embeddings. Then, the output of the
spatial embedding module is further processed by the temporal
embedding module to produce the final spatial and temporal em-
bedding of the input graphs, which is used to predict the traffic
inflow/outflow for the future time interval.

4 DATASETS & PROBLEM DEFINITION
4.1 Overview of Datasets
Our datasets used in this paper are presented as follows.

• Yellow Taxi Trip Data:We collected the yellow taxi trip data
from NYC’s open data program [4] from 2021/01/01 to 2021/01/31
time period, which includes 1,369,765 taxi trips with the pickup and
drop-off locations in a total of 265 taxi regions [3].

•Lyft Trip Data: Similarly we collected the Lyft trip data [5]
from the time period of 2021/01/01 to 2021/01/31, which includes
3,094,325 Lyft trips with the pickup and drop-off locations in the
same taxi regions [3].

4.2 Model Design Motivations
To support our motivations, we illustrate the pickup and drop-off
data of different transportation platforms (i.e., Taxi [4], Citi Bike [2],
Uber and Lyft [5]) of a week in January 2021, which are accumulated
for each day in Fig. 2. Additionally, we illustrate the pickup and
drop-off data of the same transportation platforms of single day in
January 2021, which are accumulated every 3 hours in Fig. 2. From
the figures, we can observe that different transportation platforms
have similar and correlated trends. Therefore, we are motivated
to combine different traffic flow data from various transportation
platforms to improve the our model’s prediction accuracy.
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Figure 2: Comparison of pickup and drop-off data of different
transportation platforms over a week that are accumulated
for each day.
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Figure 3: Comparison of pickup and drop-off data of dif-
ferent transportation platforms that are accumulated every
3-hours.

4.3 Problem Formulation
As stated earlier, we formulate the traffic flow data as graphs to
further use for future inflow/outflow predictions. Moreover, we
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consider each taxi region shown in [3] as a node and calculate the
number of the taxi/Lyft trips between them as the weight of their
edges and form the adjacency matrices. We denote the adjacency
matrices created for the taxi trips on the 𝑑-th day and the 𝑡-th time
interval by GTaxi

𝑑,𝑡
∈ R𝑀×𝑀 , where 𝑀 is the number of the taxi

regions (265 in this study). Similarly, we denote the Lyft trips on
the 𝑑-th day and the 𝑡-th time interval by GLyft

𝑑,𝑡
∈ R𝑀×𝑀 .

Taking the taxi trips as an example, given the adjacency matrices
of the 𝑡-th time interval in the 𝑑-th day, we calculate the sum of the
inflow and outflow trips to each node (i.e., region) and consider them
as two node features. We denote the node features extracted from
the taxi trips at 𝑡-th time interval in the 𝑑-th day by NTaxi

𝑑,𝑡
∈ R2×𝑀 .

Similarly, we denote the features of the Lyft trips at the 𝑡-th time
interval in the 𝑑-th day by NLyft

𝑑,𝑡
∈ R2×𝑀 , which are similarly

calculated as mentioned above.
Given the historical adjacency matrices and node features of

the taxi trip data for the 𝑘 previous time intervals of the 𝑑-th day,
{GTaxi

𝑑,𝑇−𝑘 , . . . ,G
Taxi
𝑑,𝑇−1}, {N

Taxi
𝑑,𝑇−𝑘 , . . . ,N

Taxi
𝑑,𝑇−1}, and the historical Lyft

adjacency matrices and node features of the Lyft trip data for the
𝑇 -th time intervals of the (𝑑 − 1)-th day, GLyft

𝑑−1,𝑇 , N
Lyft
𝑑−1,𝑇 , the goal

of STC-GEF is to predict the traffic inflow and outflow of the taxi
regions for the the𝑇 -th time interval of the 𝑑-th day,NTaxi

𝑑,𝑇
. We note

that since our target is to predict for a future 𝑇 -th time interval of
the 𝑑-th day, it would be impractical to assume the availability of
the Lyft trip data for the exact same 𝑇 -th time interval. Therefore,
we consider the Lyft trip data of the same time period of a day
before the target date, (𝑑 − 1), as we observed two consecutive
days may exhibit correlations regarding their traffic inflow/outflow
patterns (Fig. 2).

We present the overall architecture of STC-GEF in Fig. 4. In par-
ticular, it first inputs the historical adjacency matrices and node
features of the taxi trip data from the time interval (𝑇 −𝑘) to (𝑇 −1)
of the 𝑑-th day to the graph convolutional network (GCN) to produce
the spatial node embeddings, {N̂Taxi

𝑑,𝑇−𝑘 , . . . , N̂
Taxi
𝑑,𝑇−1}. Similarly, the

historical adjacency matrices and node features of the Lyft trip data
in the 𝑇 -th time interval of the (𝑑 − 1)-th day are converted to
spatial embeddings, N̂Lyft

𝑑−1,𝑇 . Next, the output spatial embedding are
concatenated together and passed through the temporal embedding
module to produce the spatial and temporal embeddings, which
are finally processed by fully connected layers to generate the final
traffic inflow/outflow prediction, NTaxi

𝑑,𝑇
, for the 𝑇 -th time interval

of the 𝑑-th day.

4.4 Spatial and Temporal Embedding Modules
The role of this module is to process the traffic flow graph adjacency
matrices and node features and produce spatial embeddings. Specif-
ically, given adjacency matrix Gmode

𝑑,𝑡
, and node features Nmode

𝑑,𝑡
,

mode ∈ {Taxi, Lyft}, we process them by graph convolutional net-
work (GCN), followed by a Dropout layer [10] for regularization and
a fully connected layer (FC) to get the spatial node embeddings
N̂mode
𝑑,𝑡

∈ R2×𝑀 , i.e.,

N̂mode
𝑑,𝑡

= FC
(
Dropout

(
GCN(Gmode

𝑑,𝑡
, Nmode

𝑑,𝑡
)
))

. (1)
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Figure 4: Information flow overview of STC-GEF.

The role of this module is to process the output of the spatial
embedding module to produce spatial and temporal embeddings. In
particular, given spatial taxi node embeddings in time interval𝑇 −𝑘
to 𝑇 − 1, {N̂Taxi

𝑑,𝑇−𝑘 , . . . , N̂
Taxi
𝑑,𝑇−1} of the 𝑑-th day and the spatial Lyft

node embeddings in𝑇 -th time interval of the (𝑑−1)-th day, denoted
as N̂Lyft

𝑑−1,𝑇 , we process them by an long short-term memory (LSTM)
layer followed by three fully connected (FC) layers to produce the
final traffic inflow/outflow prediction for, i.e.,

NTaxi
𝑑,𝑇

= FC
(
FC

(
FC

(
LSTM

(
N̂Lyft
𝑑−1,𝑇 , {N̂

Taxi
𝑑,𝑇−𝑘 , . . . , N̂

Taxi
𝑑,𝑇−1}

))))
.

(2)

5 EXPERIMENTAL STUDIES
5.1 Experimental Settings
• Baselines: In this prototype study, we compare our proposed
method with the following deep learning-based baselines:
(1) GCN: We consider a model based on graph convolutional

neural network (GCN) as a baseline, which accepts the same
input as our proposed framework.

(2) – (4) LSTM, GRU, and RNN: We implement neural networks
based on recurrent long short-term memory (LSTM), gated
recurrent unit (GRU) and simple recurrent neural network
(RNN) modules to compare with our framework, which con-
sists of one recurrent layer followed by fully connected (FC)
layers. We input the nodes features to these baselines to
predict the inflow/outflow of the target time interval 𝑇 .

(5) GAT: We implement a neural network based on graph con-
volutional layers with attention mechanism [19] to generate
the graph embeddings, which is followed by fully connected
layers to generate the final inflow/outflow of the target time
interval 𝑇 .

(6) CGCN: We implement a network based on Chebyshev con-
volutional layer [8] to produce the graph embeddings, which
is similarly followed by fully connected layers to generate
the final output.

• Parameter Settings:We set 𝑃 = 8 and divide each day into
8 equal 3-hour time intervals. Also, we set 𝑘 = 3 and predict the
inflow/outflow of each region for the time interval 𝑇 using the
historical data of the last three time intervals. We use 70% of our
dataset for training and the rest for evaluation. Also, we use the
Adam optimizer [10] with a learning rate of 0.001 to train our
framework and the baselines. Moreover, we use 32 and 16 neurons
for the GCN and the fully connected layers of the graph embedding
module. Additionally, we use an LSTM layer with 32 neurons for
the temporal embedding module with a linear activation function.
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Figure 5: Overall performance (MAE and MSE) of STC-GEF
and the baselines for traffic flow prediction.
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Figure 6: Illustration of inflow prediction compared with the
ground-truth values by STC-GEF.

Furthermore, all our STC-GEF and the baselines all consist of three
fully connected layers consisting of 32, 128, and 2 × 265 neurons
to generate the output with the appropriate shape. For baselines
(2)–(4), we use 32 neurons for the recurrent components. Finally,
for baselines (5) and (6), we use 32 neurons for the graph neural
layers to generate the node embeddings.

• PerformanceMetrics:We use the mean absolute error (MAE)
and mean squared error (MSE) as metrics to measure the differ-
ence between predictions and ground-truths of traffic inflows and
outflows.

5.2 Experimental Results
We present our experimental results as follows.

• Overall Performance: We feed the historical the taxi and
Lyft trip data to our STC-GEF and the baselines for performance
evaluation and present the overall results in Fig. 5. We can observe
that our STC-GEF outperforms the other baselines in terms of MSE
and MAE errors. Furthermore, the figure implies that models based
on graph neural networks perform better than the methods based
on recurrent neural networks. However, the combination of both
graph and recurrent neural layers are required for more effective
traffic flow prediction.

• Ablation Studies: To show the importance and role of each
component in our framework, we perform ablation studies on dif-
ferent variations of our framework. In particular, we consider the
following variations: (1) the complete model, (2) without the graph
embedding module, (3) without the temporal embedding module,
and (4) without fusing other transportation platform data (Lyft trip
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Figure 7: Model ablation studies.
data in our studies). We illustrate the results in Fig. 7, from which
we can see that the highest performance drop is caused by removing
the temporal embedding module (variation 3). Furthermore, we can
observe that removing the spatial embedding module (variation
2) also reduced the model’s performance, and thus showing the
effectiveness of this module. Finally, we can see that by removing
the Lyft trip data, the model’s error is increased, which implies that
the fusion of different transportation data is necessary for higher
traffic flow prediction accuracy.

• Visualization: We illustrate the predictions of our model
compared to the ground truth traffic inflow values for the test
data in Fig. 6, in which the warm colors indicate high inflow/out
flow rate between the corresponding regions while cooler colors
represent otherwise. We can observe that our model’s prediction
is significantly close to the ground truth values. Additionally, by
calculating the difference of the ground truth and the predicted
values, we realized only 5% of the regions had an error higher than
the average error reported in Table. 5, which further shows the
effectiveness of our model.

6 CONCLUSION
We have proposed STC-GEF, a novel traffic prediction architecture
based on graph convolutional and recurrent neural networks that
extracts spatial and temporal information from the traffic flow data
across different transportation platforms. We have designed a novel
spatio-temporal graph embedding approach to fuse the traffic flow
data from taxis and ride-sharing platforms. We have performed
experimental studies to show the effectiveness of STC-GEF, and our
results have demonstrated that our model has outperformed the
baselinemodels in traffic flow prediction. In our futurework, wewill
further conduct extensive data analytics for more comprehensive
model studies, including comparison with more state-of-the-art
approaches.
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