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ABSTRACT
Uncertainty Quantification (UQ) of human driver car-following (CF)
behavior is crucial for reliable and robust prediction, given various
sources of uncertainty in driving behaviors. There is a growing
trend using the physics-informed deep learning (PIDL) for the UQ
problems. However, existing studies assume that the uncertainty
arises from noisy measurement of external environments, while
ignoring intrinsic randomness in the underlying physics. Thus, ex-
isting PIDL methods cannot be directly applied to the UQ of CF
behavior. To tackle this problem, we propose a novel PIDL model
called DoubleGAN, which encodes the stochastic physics into the
PIDL structure. We first construct a generative adversarial network
(GAN) that captures the uncertain from vehicle trajectory data.
Further, we introduce a stochastic CF model to inform the genera-
tor with prior physics information. An auxiliary discriminator is
used to measure the distributional discrepancy between the GAN
prediction and the physics prediction. We demonstrate the effec-
tiveness of our approach through both numerical experiments and
a real-world dataset, the Next Generation SIMulation (NGSIM) data.
Results demonstrate that the proposed DoubleGAN outperforms
the baseline models in terms of both data efficiency and estimation
accuracy. Also, the robustness of DoubleGAN has been evaluated
through abundant ablation studies.

KEYWORDS
Generative Adversarial Networks (GAN); Physics-informed Deep
Learning (PIDL); Uncertainty Quantification (UQ)

1 INTRODUCTION
Characterizing and understanding human car-following (CF) be-
havior is a fundamental research area that is involved in many
urban-computing tasks, such as trajectory prediction [20, 40], traf-
fic signal control [3, 29], and travel time prediction [15, 21]. The
existing CF models mainly bifurcate into two categories: physics-
based [7, 30] and data-driven models [11, 34, 35]. Physics-based
models approximate the CF behavior based on known physics laws
or empirical rules. Those models are easy to interpret, while they
may fail to learn complex human behavior due to ideal assumptions.
Data-driven models can learn underlying patterns directly from
data without prior knowledge or assumptions. However, this type
of model may not produce interpretable and physically-consistent
results, and is also data-hungry. To increase the interpretability and
data efficiency of the data-driven model, the physics-informed deep
learning (PIDL) model [18–20, 26, 27] previous two. It aims to train
∗This author is also affiliated with the Data Science Institute of Columbia University,
New York, USA.

a data-driven component that is consistent with the physics. The
physics-supervision ensures an improved prediction performance
for the data-driven component, especially when the data size is
small.

The main challenge for modeling the CF behavior lies in various
sources of uncertainty, including internal uncertainty like driver
heterogeneity and external uncertainty like measurement noise.
Uncertainty quantification (UQ) aims to characterize the CF be-
havior in a stochastic manner. The most widely used UQ methods
include Bayesian approximation [10, 25, 31–33], ensemble methods
[8, 14, 23], and generative models like the variational autoencoder
[2, 13] and generative adversarial networks (GAN) [22, 28]. There
is a growing trend in applying PIDL to UQ. One branch of studies
apply physics-informed GANs (PhysGAN) to approximate solu-
tions of partial differential equations (PDE) [4, 38, 39]. However,
all these methods assume that the randomness arises from initial
conditions or inputs while neglecting stochasticity in parameters
associated with inherent physics or behaviors. The other branch
of studies apply PhysGAN to solve stochastic differential equa-
tions [36, 37]. Although those studies assume that experimental
data is generated from stochastic differential equations, they still
use deterministic equations to calculate the physics discrepancy.
Moreover, they demonstrate the results using only numerical data,
and it remains a question whether those models can be applied to
real-world cases. To this end, existing PhysGAN models may fail
to capture the uncertainty arising from heterogeneity of drivers,
which we believe is a major source of randomness when it comes
to CF behavior prediction.

To bridge this research gap, we propose a novel PIDL model
called DoubleGAN to incorporate stochastic physics into GAN.
DoubleGAN contains two generator-discriminator pairs, one (pri-
mal GAN) to capture the data uncertainty, and the other (auxiliary
GAN) to encode the stochastic physics. In the auxiliary GAN, an
auxiliary discriminator is constructed to measure the distributional
discrepancy between the generator prediction and the physics pre-
diction. To speed up the convergence of DoubleGAN, we apply the
moment-matching technique, which compares the statistical differ-
ence between the generator prediction and the physics prediction.
This statistical difference provides additional information to the
generator as a regularization term to speed up the convergence.

We first evaluate DoubleGAN using numerical data, by which
the underlying physics is known and we can ablate the noise type
of human behavior. We then apply DoubleGAN to a real-world
dataset, the Next Generation SIMulation (NGSIM) dataset, where
the underlying physics is unknown. The results demonstrate that
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DoubleGAN outperforms other baselines in terms of both data effi-
ciency and estimation accuracy. Further, abundant ablation studies
are conducted to evaluate the robustness of DoubleGAN.

To the best of our knowledge, we are the first to apply PIDL to
the UQ of CF behavior. We are also the first to encode stochastic
physics into the PIDL structure. Specifically, the main contributions
of this paper include:

• We propose DoubleGAN that encodes stochastic physics
to inform the training of GAN.

• We propose to use the moment-matching to speed up the
convergence of DoubleGAN.

• We apply DoubleGAN to learn human car-following (CF)
behavior. The effectiveness of DoubleGAN is experimen-
tally evaluated using both numerical and real-world data
with abundant ablation studies.

2 RELATEDWORK AND BACKGROUND
In this section, we first introduce the physics-based CF models,
and then the related work and overview of two key concepts that
are related to our proposed DoubleGAN, i.e., GAN-based UQ and
physics-informed GAN.

2.1 Physics-based CF models
CF models describe a mapping from drivers’ states (e.g., spacing
headway, velocity difference, and velocity) to actions (e.g., accelera-
tion and target velocity). Denote S ⊆ 𝑅 |S | and A ⊆ 𝑅 as the state
and action spaces, respectively, where |S| stands for the cardinality
of S. A physics-based CF model 𝑓𝜆 learns the mapping from the
state 𝑠 to the action 𝑎, 𝑓 : 𝑠 → 𝑎, where 𝑠 ∈ S and 𝑎 ∈ A. Examples
of physics-based models include the intelligent driving model (IDM)
[30] and the Helly model [7]. The IDM model uses the acceleration
as its action, and its equation is depicted as:
𝑎(𝑡 + Δ𝑡)

= 𝑎𝑚𝑎𝑥

[
1 − (𝑣 (𝑡)/𝑣0)4 −

(
𝑠0 + 𝑣𝑇0 +

𝑣 (𝑡)Δ𝑣 (𝑡)
2
√
𝑎𝑚𝑎𝑥𝑏

)2
/Δ𝑥 (𝑡)2

]
= 𝑓𝜆 (𝑠 (𝑡)),

(1)

which have 5 parameters: 𝑣0 is the desired velocity,𝑇0 is the desired
time headway, 𝑠0 is the minimum spacing in congested traffic, 𝑎𝑚𝑎𝑥

is the maximum acceleration allowed, and 𝑏 is the comfortable
deceleration. The state 𝑠 is a vector [Δ𝑥,Δ𝑣, 𝑣]. Δ𝑥 , Δ𝑣 and 𝑣 are
spacing headway, velocity difference and velocity, respectively.

2.2 GAN based UQ
Suppose (𝑠, 𝑎) is an input-output pair, where 𝑎 follows a conditional
probability distribution 𝑝 (𝑎 |𝑠) given its input 𝑠 . The conditional
GAN [17] learns to generate fake outputs that resemble the real
ones. In a conditional GAN model, the generator 𝐺𝜃 learns the
mapping from the input 𝑠 and a random noise 𝑧 to the output 𝑎,
𝐺 : (𝑠, 𝑧) → 𝑎. The objective of the generator 𝐺𝜃 is to fool an
adversarially trained discriminator 𝐷𝜙 . The learning objective of
the conditional GAN can be depicted as a min-max game :

min
𝐺𝜃

max
𝐷𝜙

E𝑞 (𝑠)𝑝 (𝑧)
[
log𝐷𝜙 (𝑠,𝐺𝜃 (𝑠, 𝑧))

]
+E𝑞 (𝑠,𝑎)

[
log(1 − 𝐷𝜙 (𝑠, 𝑎))

]
,

(2)

where 𝜃 and 𝜙 are the parameters of the generator and the discrim-
inator, respectively. 𝑞(𝑠, 𝑎) is the joint distribution of inputs and
outputs, and 𝑞(𝑠) is the marginal distribution of inputs. 𝑝 (𝑧) is the
distribution for a random noise, which is a standard normal distri-
bution in the conditional GAN model. For simplicity, “conditional
GANs” are referred to as “GANs” in the remainder of this paper.

2.3 Physics-informed GAN
Let {(𝑠 (𝑖)𝑜 , 𝑎

(𝑖)
𝑜 )}𝑁𝑜

𝑖=1 be a labeled set of input-output pairs and {𝑠
( 𝑗)
𝑐 }𝑁𝑐

𝑗=1
be an unlabeled set, where 𝑁𝑜 and 𝑁𝑐 are their sizes. We aim to
train the generator 𝐺𝜃 to minimize Eq. 2 on the labeled set; we
also want 𝐺𝜃 ’s prediction 𝑎𝑐 to be close to the prediction of a (de-
terministic) physics-based model 𝑎𝑐 = 𝑓𝜆 (𝑠𝑐 ) on the unlabeled set.
The physics loss is defined as the discrepancy between the neural
network prediction 𝑎𝑐 and the physics-based model prediction 𝑎𝑐 .
Existing studies quantify the discrepancy between 𝑎𝑐 and 𝑎𝑐 using
the mean squared error (MSE):

L𝑐 (𝜃, 𝜆) =
1
𝑁𝑐

𝑁𝑐∑︁
𝑗=1

���𝑎 ( 𝑗)𝑐 − 𝑎 ( 𝑗)𝑐

���2 . (3)

Note that 𝑎𝑐 = 𝐺𝜃 (𝑠𝑐 , 𝑧) is a random variable conditioned on 𝑠𝑐 ,
while 𝑎𝑐 is deterministically determined by 𝑠𝑐 . Minimizing Eq. 3
makes the𝐺𝜃 ’s prediction distribution 𝑝𝜃 (𝑎𝑐 |𝑠𝑐 ) be centered around
𝑎𝑐 with the variance approaching zero, which is the so-called mode
collapse (proof in the appendix).

The loss function of the generator considering the physics loss
can then be depicted as:

L𝐺 (𝜃, 𝜆) = 𝛼 · L𝑜 (𝜃 ) + (1 − 𝛼) · L𝑐 (𝜃, 𝜆)

=
𝛼

𝑁𝑜

𝑁𝑜∑︁
𝑖=1

𝐷𝜙 (𝑠
(𝑖)
𝑜 ,𝐺𝜃 (𝑠

(𝑖)
𝑜 , 𝑧

(𝑖)
𝑜 )) + (1 − 𝛼)L𝑐 (𝜃, 𝜆),

(4)

where, 𝛼 ∈ [0, 1] is a hyper-parameter that balances the data loss
L𝑜 and physics loss. Note that the physics loss is calculated on the
unlabeled set, where the neural network prediction 𝑎𝑐 is compared
to the physics-based model prediction 𝑎𝑐 instead of the ground-
truth value.

In the remainder of this paper, we keep the above subscripts to
distinguish between inputs from different sets (e.g. 𝑠𝑜 for labeled
inputs and 𝑠𝑐 for unlabeled inputs). In addition, we use (̂) and (̃) to
represent predictions of the neural network and the physics-based
model, respectively.

3 METHODOLOGY
3.1 Problem statement
UQ of CF behavior is illustrated in Fig. 1. A red car is following
a blue car along the horizontal axis, and the vertical axis is time.
It is assumed that a driver obeys an underlying stochastic policy
𝜋 (𝑎 |𝑠) that maps from driving states 𝑠 ∈ S to a distribution over
actions 𝑎 ∈ A. A CF model learns a surrogate policy 𝜋𝜃 (𝑎 |𝑠) that
approximates the ground-truth policy 𝜋 (𝑎 |𝑠). At time step 𝑡 , the
red car samples its action 𝑎 given its current state 𝑠 , which leads to
the true position (solid red car) at time step 𝑡 + Δ𝑡 . Meanwhile, a
surrogate model 𝜋𝜃 predicts the action distribution and sample an
action 𝑎, which leads to the estimated position (transparent red car)
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at time step 𝑡 + Δ𝑡 . The key problem is to quantify the uncertainty
of prediction 𝑎 and its discrepancy with regards to the true action
𝑎.

Figure 1: An illustration of UQ for CF behavior

3.2 Double-GAN for encoding stochastic physics
In the existence of stochastic underlying physics, the aforemen-
tioned physics model 𝑓𝜆 in Eq. 1 becomes a stochastic one. With-
out loss of generality, we represent this stochastic model by 𝑎𝑐 =

𝑓𝜆 (𝑠𝑐 , 𝑧), where the random noise 𝑧 represents either the parametric
(internal) noise in 𝜆 or the measurement (external) noise in 𝑎𝑐 . Thus,
the physics loss quantifies the discrepancy between two distribu-
tions 𝑝𝜃 (𝑎𝑐 |𝑠𝑐 ) and 𝑝𝜆 (𝑎𝑐 |𝑠𝑐 ). We propose to construct an auxiliary
discriminator to distinguish between those two distributions, which
is the main idea of the proposed DoubleGAN.

The structure of the DoubleGAN is illustrated in Fig. 2. It consists
of two parts: the left half (blue) contains the primal GAN and
relevant variables; the right half (red) contains the auxiliary GAN
and relevant variables. We will explain the left part first and then
the right part. The primal GAN consists of the generator 𝐺𝜃 and
the primal discriminator 𝐷𝜙 . Labeled states 𝑠𝑜 are fed into the
generator together with random noise 𝑧. The predicted state-action
pairs (𝑠𝑜 , 𝑎𝑜 ) and the labeled state-action pairs (𝑠𝑜 , 𝑎𝑜 ) are judged
by the primal discriminator 𝐷𝜙 , and the data loss is thus computed
as L𝑜 (𝜃 ) = 1

𝑁𝑜

∑𝑁𝑜

𝑖=1 𝐷𝜙 (𝑠
(𝑖)
𝑜 , 𝑎

(𝑖)
𝑜 ), which is the same as in Eq. 4.

The auxiliary GAN consists of the generator𝐺𝜃 and the auxiliary
discriminator 𝐷 ′𝜂 . On one hand, unlabeled states 𝑠𝑐 and random
noise 𝑧 are fed into the physics equation to generate physics pre-
dictions 𝑎𝑐 . On the other hand, 𝑠𝑐 and 𝑧 are fed into the generator
to get predictions 𝑎𝑐 . The auxiliary discriminator 𝐷 ′𝜂 is trained to
distinguish the generator-predicted state-action pairs (𝑠𝑐 , 𝑎𝑐 ) from
the physics-predicted state-action pairs (𝑠𝑐 , 𝑎𝑐 ), from which we can
revise the physics loss in Eq. 3 as

Figure 2: Structure of the DoubleGAN

L𝑐 (𝜃, 𝜆) =
1
𝑁𝑐

𝑁𝑐∑︁
𝑗=1

𝐷 ′𝜂 (𝑠
( 𝑗)
𝑐 , 𝑎

( 𝑗)
𝑐 ). (5)

For simplicity, the loss functions of the discriminators 𝐷𝜙 and
𝐷 ′𝜂 are not shown in Fig. 2. As physics is not incoporated into the
discrimimantors, the loss functions of 𝐷𝜙 and 𝐷 ′𝜂 keep the original
forms as in Eq. 2, i.e.,

LD (𝜙) = −
1
𝑁𝑜

𝑁𝑜∑︁
𝑖=1
[log𝐷𝜙 (𝑠

(𝑖)
𝑜 , 𝑎

(𝑖)
𝑜 ) + log(1 − 𝐷𝜙 (𝑠

(𝑖)
𝑜 , 𝑎

(𝑖)
𝑜 ))],

LD′ (𝜂) = −
1
𝑁𝑐

𝑁𝑐∑︁
𝑗=1
[log𝐷 ′𝜂 (𝑠

( 𝑗)
𝑐 , 𝑎

( 𝑗)
𝑐 ) + log(1 − 𝐷 ′𝜂 (𝑠

( 𝑗)
𝑐 , 𝑎

( 𝑗)
𝑐 ))] .

(6)

3.3 Moment-matching for faster convergence
Although Eq. 5 encodes the stochastic physics that better captures
the real-world noise, it incurs an additional adversarial loss, which
may hinder the model convergence. To tackle this problem, we
propose to use the moment-matching technique to speed up the
convergence of the DoubleGAN without incurring the model col-
lapse. The moment-matching loss is depicted as:
L𝑚 (𝜃, 𝜆) =

𝜌E𝑞 (𝑠𝑐 )

[
𝜇 (𝑎𝑐 ) − 𝜇 (𝑎𝑐 )
|𝜇 (𝑎𝑐 ) | + |𝜇 (𝑎𝑐 ) |

]2
+ (1 − 𝜌)E𝑞 (𝑠𝑐 )

[
𝜎 (𝑎𝑐 ) − 𝜎 (𝑎𝑐 )
|𝜎 (𝑎𝑐 ) | + |𝜎 (𝑎𝑐 ) |

]2
,

(7)
where the first and the second terms measure the discrepancies of
the mean and the standard deviation between the neural network
predictions and the physics predictions, respectively. 𝜇 is the opera-
tor for the mean, and 𝜎 is the operator for the standard deviation. To
mitigate the effect of the scale difference between the first and the
second moments, the sum of the absolute values of each moment
is added as a normalization term. 𝜌 ∈ [0, 1] is the ratio of each
constraint component. Details of calculating the moment-matching
loss are shown in Algorithm 1.

3.4 Posterior Estimator
Posterior estimators are employed to mitigate the mode collapse
of GANs [16]. The basic idea is to use a posterior estimator 𝑄 (𝑠, 𝑎),
which is an additional neural network, to learn the mapping from
the generated state-action pair to the posterior probability of the
latent variable 𝑧 : (𝑠, 𝑎) ↦→ 𝑝 (𝑧 |𝑠, 𝑎). A reconstruction error is defined
as the expectation of the negative log-likelihood, which is depicted
as below:

L𝑟 (𝜃 ) = −E𝑞 (𝑠𝑜 )𝑝 (𝑧) [log𝑄𝜉 (𝑠𝑜 , 𝑎𝑜 )] − E𝑞 (𝑠𝑐 )𝑝 (𝑧) [log𝑄
′
𝜓
(𝑠𝑐 , 𝑎𝑐 )],

(8)
where, 𝑄𝜉 and 𝑄 ′

𝜓
are two posterior estimators for the labeled and

unlabeled sets, respectively. 𝜉 and𝜓 are their parameters.

3.5 Joint Estimation
The physics model is jointly trained along with other networks by
minimizing the physics loss L𝑐 (𝜃, 𝜆) in Eq. 5 with regard to both
generator parameters 𝜃 and physics parameters 𝜆 on the unlabeled

3
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Algorithm 1 Calculation of the moment-matching loss of Double-
GAN.
Require: generator 𝐺𝜃 ; physics model 𝑓𝜆
Initialization: the number of samples for Monte Carlo
approximation 𝑛𝑠 = 50; hyperparameter 𝜌
Input: unlabeled set {𝑠 ( 𝑗)𝑐 }𝑁𝑐

𝑗=1
Output: moment-matching loss L𝑚 (𝜃, 𝜆)
1: for 𝑗 = 1 : 𝑁𝑐 do
2: for 𝑘 = 1 : 𝑛𝑠 do
3: sample 𝑧 ∼ N(0, 1), 𝑎 ( 𝑗,𝑘) = 𝐺𝜃 (𝑠

( 𝑗)
𝑐 , 𝑧)

4: sample 𝑧 ∼ N(0, 1), 𝑎 ( 𝑗,𝑘) = 𝑓𝜆 (𝑠
( 𝑗)
𝑐 , 𝑧)

5: end for
6: 𝜇 (𝑎) ( 𝑗) = 1

𝑛𝑠

∑𝑛𝑠
𝑘=1 𝑎

( 𝑗,𝑘)

7: 𝜇 (𝑎) ( 𝑗) = 1
𝑛𝑠

∑𝑛𝑠
𝑘=1 𝑎

( 𝑗,𝑘)

8: 𝜎 (𝑎) ( 𝑗) =
√︃

1
𝑛𝑠−1

∑𝑛𝑠
𝑘=1

(
𝑎 ( 𝑗,𝑘) − 𝜇 (𝑎 ( 𝑗) )

)2
9: 𝜎 (𝑎) ( 𝑗) =

√︃
1

𝑛𝑠−1
∑𝑛𝑠
𝑘=1

(
𝑎 ( 𝑗,𝑘) − 𝜇 (𝑎 ( 𝑗) )

)2
10: end for
11: L𝑚 (𝜃, 𝜆) = 𝜌 1

𝑁𝑐

∑𝑁𝑐

𝑗=1

[
𝜇 (𝑎̃) ( 𝑗 )−𝜇 (𝑎) ( 𝑗 )
|𝜇 (𝑎̃) ( 𝑗 ) |+ |𝜇 (𝑎) ( 𝑗 ) |

]2
+ (1 −

𝜌) 1
𝑁𝑐

∑𝑁𝑐

𝑗=1

[
𝜎 (𝑎̃) ( 𝑗 )−𝜎 (𝑎) ( 𝑗 )
|𝜎 (𝑎̃) ( 𝑗 ) |+ |𝜎 (𝑎) ( 𝑗 ) |

]2
data. We illustrate the joint estimation in Fig. 3. The line colors
are associated with different types of data: the blue for the labeled
data and the red for the unlabeled data. The solid lines indicate
how generator 𝐺𝜃 and physics 𝑓𝜆 are trained: the generator 𝐺𝜃 is
trained by both the labeled data and the samples of the physics 𝑓𝜆 ,
and the physics 𝑓𝜆 is trained by the samples of the generator 𝐺𝜃 .
The dashed line indicates that the physics could be pre-trained by
the labeled data prior to the joint estimation.

Figure 3: Joint estimation: training the physics model and
the generator simutaneously.

3.6 Training algorithm
The loss of the generator 𝐺𝜃 is :
L𝐺 (𝜃, 𝜆) = 𝛼 · L𝑜 (𝜃 ) + (1 − 𝛼) · L𝑐 (𝜃, 𝜆) + 𝛽 · L𝑚 (𝜃, 𝜆) + 𝛾 · L𝑟 (𝜃 ),

(9)
where 𝛽,𝛾 ∈ [0, +∞) are hyperparameters that control the weights
of the moment-matching and reconstruction losses, respectively.
The Adam optimizer [12] is used for training, and the details of the
training process is summarized in Algorithm 2.

4 EXPERIMENT RESULTS
In this section, we will first introduce the experiment setting, in-
cluding the dataset, baselines, evaluation metrics, hyperparameters,

Algorithm 2 Training process of DoubleGAN.
Require: generator 𝐺𝜃 ; primal discriminator 𝐷𝜙 ; auxiliary
discriminator 𝐷 ′𝜂 ; posterior estimators𝑄𝜉 and𝑄 ′𝜓 ; Adam optimizer
Initialization: Pre-trained physics parameters 𝜆0; Initialized
networks parameters 𝜃0, 𝜙0, 𝜂0, 𝜉0, and𝜓0; Epochs 𝑒𝑝𝑜𝑐ℎ𝑠 ; Batch
size𝑚; Learning rate 𝑙𝑟 ; Clipping parameter 𝑐; Weights of loss
functions 𝛼 , 𝛽 , and 𝛾
Input: labeled set {(𝑠 (𝑖)𝑜 , 𝑎

(𝑖)
𝑜 )}𝑁𝑜

𝑖=1 and unlabeled set {𝑠 ( 𝑗)𝑐 }𝑁𝑐

𝑗=1.
1: for 𝑖𝑡𝑒𝑟 ∈ {1, ..., 𝑒𝑝𝑜𝑐ℎ𝑠} do
2: Sample batches {(𝑠 (𝑖)𝑜 , 𝑎

(𝑖)
𝑜 )}𝑚𝑖=1 and {𝑠 ( 𝑗)𝑐 }𝑚𝑗=1 from the la-

beled and unlabeled sets, respectively
3: Sample noises {𝑧 (𝑖) }𝑚

𝑖=1 and {𝑧
( 𝑗) }𝑚

𝑗=1 from a standard nor-
mal distribution
// update the primal and auxiliary discriminators

4: Calculate L𝐷 and L𝐷′ by Eq. 6
5: 𝜙 ← 𝜙 − 𝑙𝑟 · Adam(𝜙,∇𝜙L𝐷 )
6: 𝜂 ← 𝜂 − 𝑙𝑟 · Adam(𝜂,∇𝜂L𝐷′)

// update the physics

7: Calculate L𝑐 by Eq. 5
8: 𝜆 ← 𝜆 − 𝑙𝑟 · Adam(𝜆, 𝑐𝑙𝑖𝑝 (∇𝜆L𝑐 ,−𝑐, 𝑐))

// update the generator and posterior estimators

9: Calculate L𝑚 by Algorithm 1
10: Calculate L𝐺 by Eq. 9
11: 𝜃 ← 𝜃 − 𝑙𝑟 · Adam(𝜃,∇𝜃L𝐺 )
12: 𝜉 ← 𝜉 − 𝑙𝑟 · Adam(𝜉,∇𝜉L𝐺 )
13: 𝜓 ← 𝜓 − 𝑙𝑟 · Adam(𝜓,∇𝜓L𝐺 )
14: end for

and the computation platform. Then we will show the experiment
results and discussions.

Dataset. DoubleGAN is evaluated using both numerical and
real-world CF data. Numerical data is used because its underly-
ing physics parameters are known and controllable. This helps to
ablate the noise types and also to evaluate whether DoubleGAN
can discover the underlying physics while training, which cannot
be done using the real-world dataset. We will then apply Double-
GAN to a real-world dataset to demonstrate its performance for
the real-world scenario where the underlying physics is unknown.

The numerical data is generated from a known IDM equation
as Eq. 1. To simulate the internal and external uncertainties, we
artificially add Gaussian noise to the ground-truth model param-
eters along with the model outputs. We also add the log-normal
noise to the model outputs as an alternative. The distributions for
parameters and model outputs are depicted as:

𝑠 ∼ Uniform(𝑙, 𝑢); 𝜆 ∼ N(𝜇𝜆, Σ𝜆),
𝑎 ∼ N(𝑓𝜆 (𝑠 |𝜆), 𝜎2𝑎),
or
𝑎 ∼ Lognormal(𝑓𝜆 (𝑠 |𝜆), 𝜎2𝑎),

(10)

where 𝑙 and 𝑢 are the lower bound and upper bound of the state
𝑠 = [Δ𝑥,Δ𝑣, 𝑣]. 𝜆 = [𝑣0,𝑇0, 𝑠0, 𝑎𝑚𝑎𝑥 , 𝑏] is the parameter vector
of the IDM model 𝑓𝜆 , which follows a Gaussian distribution. Σ𝜆
is a diagonal matrix as we assume no correlation for different
parameters for simplicity. We set 𝑙 = [10𝑚,−8𝑚/𝑠, 2𝑚/𝑠] and
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𝑢 = [50𝑚, 8𝑚/𝑠, 10𝑚/𝑠] to cover different traffic regimes, such
as decelerating, cruising and accelerating. The mean values and
covariance of parameters are set to be 𝜇𝜆 = [10, 1, 1, 1, 1] and
Σ𝜆 = 𝑑𝑖𝑎𝑔(1, 0.01, 0.01, 0.01, 0.01). The standard deviation for the
model output is 𝜎𝑎 = 0.05. Accelerations smaller than −2𝑚/𝑠2 are
clipped to avoid unrealistic braking.

The real-world data is from the Next Generation SIMulation
(NGSIM) dataset[24], which is an open dataset that collects vehicle
trajectories every 0.1 second. We focus on the US Highway 101.

Baselines. We compare the proposed PhysGANs with 3 base-
lines: a GAN model, a PhysGAN using a deterministic physics loss
as Eq. 3, and a deterministic physics-informed neural network with
a Monte Carlo (MC)-Dropout [14], which is denoted as PINN-Drop.

Evaluation metrics. We use two metrics to measure the de-
viation of every test point from the mean of our model predic-
tion: Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). In addition, we use two metrics to evaluate the difference
between the prediction distribution and the sample distribution:
Kullback–Leibler (KL) divergence and Negative Log Predictive Den-
sity (NLPD) computed using the Parzen window. To mitigate the
randomness in both training and test procedures, all models are
trained for 3 rounds, and each trained model is evaluated 10 times
with new test data. The mean of each metric is recorded.

Hyperparameters and platforms. The generator, discrimina-
tor, and posterior estimator share the same network complexity,
which consists of 4 layers with 20 neurons in each layer. The He
uniform initializer [6] is used. All models are trained using an Adam
optimizer with a learning rate of 0.001 and other hyperparameters
as default. Each model is trained for 5000 epochs, and the batch size
is 128. The clipping parameter 𝑐 = 1. Sizes of the labeled (𝑁𝑜 ) and
unlabeled (𝑁𝑓 ) data are 500 and 1000, respectively. We randomly
generate another 200 labeled data as test data. Experiments were
conducted on a local workstation with 16 Intel Xeon W-2145 CPUs
and an NVIDIA Titan RTX GPU with 24 GB memory in Ubuntu
18.04.3.

4.1 Numerical Data
4.1.1 Performance comparison. The results of DoubleGAN and
baselines when the training size 𝑁𝑜 = 500 are summarized in
Table. 1. The first column is the name of the proposed model and
baselines. “Moment-only” means the DoubleGAN with only the
moment-matching loss, i.e.,𝛼 = 1 and 𝛽 > 0 in Eq. 9; “DoubleGAN−”
means the DoubleGAN without using the moment-matching loss,
i.e., 𝑎 < 1 and 𝛽 = 0 in Eq. 9. Other columns record the mean of each
metric. The best and the worst scores are bolded and underscored,
respectively. We interpret these results from the following two
perspectives.

Comparing our methods to baselines. All of our methods
outperform baselines in terms of all metrics in general (except for
some specific metrics, which will be discussed later). Although the
PhysGAN achieves a compelling KL for the normal noise data, it
achieves the worst KL among all methods for the log-normal noise
data. In comparison, the superior performance of our methods is
consistent for both noise types of data.

Comparison among our methods. Among our methods, Dou-
bleGAN achieves the best performance for both noise types of data.

Table 1: The CF behavior prediction results of learning nu-
merical data generated from a known IDM model.

Normal Noise

Model RMSE MAE KL NLPD
PINN-Drop 0.207 0.1220 1.171 −0.044
GAN 0.237 0.156 2.203 −0.042
PhysGAN 0.137 0.077 0.607 −0.549
Moment-only (ours) 0.138 0.081 0.640 −0.551
DoubleGAN− (ours) 0.121 0.078 0.580 −0.836
DoubleGAN (ours) 0.117 0.075 0.543 −0.832

Log-normal Noise

Model RMSE MAE KL NLPD
PINN-Drop 0.228 0.159 1.171 −0.032
GAN 0.205 0.145 1.173 −0.186
PhysGAN 0.117 0.090 1.373 −0.714
Moment-only (ours) 0.114 0.089 0.896 −0.718
DoubleGAN− (ours) 0.134 0.094 1.103 −0.733
DoubleGAN (ours) 0.109 0.084 0.758 −0.729

Although the NLPD of the DoubleGAN− is slightly better than
the DoubleGAN, this difference is very small. Neither Moment-
only nor DoubleGAN− can outperform baselines in terms of all
metrics and noise types. For the normal noise data, Moment-only
achieves a similar RMSE as PhysGAN does. For the log-normal data,
DoubleGAN− achieves a similar KL as GAN and PINN-Drop do. In
contrast, DoubleGAN outperforms other methods for both noise
types of data, which demonstrates the robustness of DoubleGAN
against noise types.

4.1.2 Ablation of training size and moment-matching. To demon-
strate the generalizability of the proposed DoubleGAN in the spar-
sity of labeled data, Fig. 4 shows the RMSE (left) and KL (right) of all
GAN-based methods. We can see that the performance of Double-
GAN degrades the least compared to others as we reduce the train-
ing size. This is because DoubleGAN is imposed with physics infor-
mation from both the auxiliary GAN and the moment-matching,
thus better exploiting physics information from unlabeled data. We
also notice that mode collapse happens for the PhysGAN. Its RMSE
is lower than the GAN’s across all training sizes, while its KL is
generally much higher than the GAN. A low RMSE with a high
KL is an indication that PhysGAN weighs more on learning the
mean of the sample distribution despite the shape of the sample
distribution.

To evaluate the effectiveness of the moment-matching technique,
we present the prediction results of the DoubleGAN− and Double-
GAN during the training process in Fig. 5, which corresponds to the
normal noise data case with the training size 𝑁𝑜 = 500. The x-axis
is the index of the training data points, which is sorted by the value
of the acceleration. The y-axis is the acceleration. The blue and
green lines are the mean of the ground-truth and the prediction,
respectively; the yellow band is the two-standard (2-𝜎 band) of the
ground-truth. We can see that, imposed with the moment-matching,
DoubleGAN converges much faster than DoubleGAN−. The reason
is that, the discriminators are not well-trained at the early-training
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Figure 4: Effect of training size on learning numerical data
generated from a known IDM model

(a) Predictions of DoubleGAN− during training

(b) Predictions of DoubleGAN during training

Figure 5: Predictions of DoubleGAN− (top row) and Double-
GAN (bottom row) during the training process. The compari-
son between the model prediction and the ground-truth is
presented at training epochs 0, 500, and 1000

stage and thus cannot supervise the generator very well. In compar-
ison, moment-matching directly computes the moment discrepancy
between the generator and the physics, which can assist with the
training of the generator throughout the training process.

4.1.3 Joint discovery of physics parameters. The jointly estimated
physics parameters of DoubleGAN are shown in Table. 2. The first
column is the number of labeled data, and the other columns are
the relative errors for each IDM parameter. When the training
size increases, the model parameters converge to 𝑎𝑚𝑎𝑥 = 0.964,
𝑣0 = 10.270, 𝑏 = 1.036, 𝑇0 = 0.935, and 𝑠0 = 1.069, which are
close to the ground-truth values. These results show the ability of
DoubleGAN for addressing both UQ of CF behavior and parameter
discovery simultaneously.

4.1.4 Visualization. We compare the prediction distribution of
DoubleGAN to the sample distribution of normal noise data (𝑁𝑜 =

Table 2: Results of the mean of the jointly estimated physics
parameters by learning numerical data generated from a
known IDM model.

𝑁𝑜 𝑎𝑚𝑎𝑥 (%) 𝑣0 (%) 𝑏 (%) 𝑇0 (%) 𝑠0(%)
50 4.10 4.71 15.45 37.60 32.10
250 3.86 2.89 9.67 13.30 21.75
500 3.63 2.70 3.60 6.65 6.90
The relative errors are computed by comparing to the ground-
truth mean parameters 𝑎𝑚𝑎𝑥 = 1, 𝑣0 = 10, 𝑏 = 1, 𝑇0 = 1, and
𝑠0 = 1.

Figure 6: Visualization of predictions of DoubleGAN for
learning numerical data generated from a known IDMmodel

500) at 4 randomly sampled data points in Fig. 6. The blue and
red colors represent the ground-truth and the prediction, respec-
tively. We can see that most parts of the predicted and ground-truth
distributions overlap with each other, which demonstrates that
DoubleGAN can capture the CF uncertainty of the numerical data
well.

4.2 NGSIM Data
Because the underlying physics of the NGSIM dataset is unknown,
we need to determine the physics equation to guide our DoubleGAN.
We use two CF physics equations, the aforementioned stochastic
IDM model in Eq. 10 and a Helly model, for ablation studies. A
stochastic version of the Helly model can be depicted as:{

𝜇𝑎 = 𝜆𝑣Δ𝑣 + 𝜆𝑥 (Δ𝑥 − 𝐷),
𝑎 ∼ N(𝜇𝑎, 𝜎2𝑎),

(11)

where 𝜆𝑣 , 𝜆𝑥 , and 𝐷 are parameters of the Helly model that follows
Gaussian distributions. The reason to choose the Helly model is
that, despite its simple form, it can achieve good performance for
the NGSIM dataset. We introduce the comparison of various CF
equations and calibration detail in the appendix.

4.2.1 Performance comparison. The results of DoubleGAN and
baselines on the NGSIM dataset (training size 𝑁𝑜=500) are shown in
Table. 3. The columnmeaning is the same as Table. 1.We can see that
our proposed methods outperform the baselines in terms of all met-
rics. Among our proposed methods, Moment-only and DoubleGAN-
IDM− perform equally worse compared to DoubleGAN-IDM and
DoubleGAM-Helly, which demonstrate that moment-matching or
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auxiliary GAN alone may not learn real-world uncertainty well.
Despite that IDM performs better than the Helly model (see appen-
dix), DoubleGAN-Helly outperforms DoubleGAN-IDM in terms
of all metrics. One possible explanation is that the complexity of
IDM may hinder the training process when it is jointly trained with
neural networks.

Table 3: The CF behavior prediction results of DoubleGAN
and baselines on NGSIM data.

Model RMSE MAE KL NLPD
PINN-Drop 1.287 0.989 0.782 1.454
GAN 0.844 0.627 1.487 0.752
PhysGAN 0.793 0.584 1.455 0.752
Moment-only (ours) 0.788 0.589 0.619 0.794
DoubleGAN-IDM− (ours) 0.786 0.596 0.804 0.796
DoubleGAN-IDM (ours) 0.771 0.583 0.507 0.723
DoubleGAN-Helly (ours) 0.764 0.574 0.409 0.709

4.2.2 Ablation of training sizes and physics types. The results under
varying training sizes (𝑁𝑜 =50, 100, 250,300, 450, and 500) are shown
in Fig. 7, which share the same axes and line specification as Fig. 4.
From the left figure, we can see that all models achieve similar RM-
SEs. While in the right figure, DoubleGAN has a significantly lower
KL divergence than other models across all training sizes, which
demonstrates that DoubleGAN can better capture the stochastic
pattern of the real-world CF data. We notice that when data is
sparse (𝑁𝑜 = 50), PhysGAN achieves a similar KL as the GAN does,
which indicates PhysGAN’s deterministic way of encoding physics
fails to help the generator to capture the uncertain patterns. We
also notice that Moment-only achieves lower KLs than DoubleGAN-
IDM− when 𝑁𝑜 = 50 and 𝑁𝑜 = 100. This can be explained by that
the auxiliary discriminator of DoubleGAN-IDM− requires more
data to train compared to the moment-matching of Moment-only.
When imposed with both moment-matching and auxiliary GAN,
DoubleGAN-IDM and DoubleGAN-Helly achieve the lowest KLs
compared to other methods, especially when the training size is
small. These results demonstrate the superiority of DoubleGAN in
terms of both estimation accuracy and data efficiency for real-world
CF data.

Comparing DoubleGAN-IDM to DoubleGAN-Helly, we can see
that DoubleGAN-Helly outperforms DoubleGAN-IDM across all
training sizes, except for 𝑁𝑜 = 300 that might be an outlier, which
indicates that the Helly model can better assist the generator as the
physics component. Same as in the previous subsection, this can be
explained by that the complexity of the IDM may hinder the train-
ing process when it is jointly trained with neural networks. This
comparison shows that the most suitable physics model for Dou-
bleGAN may not necessarily be the one with the best performance.
The simplicity of physics is also a consideration.

4.2.3 Visualization. We compare the prediction distribution of
DoubleGAN with sample distribution at 4 randomly samples data
points in Fig. 8 (𝑁𝑜 = 500), which share the same axes and line
specification as Fig. 6. Most parts of the predicted and ground-truth
distributions overlap with each other, which demonstrates that

Figure 7: Effect of training size on learning from NGSIM data

Figure 8: Visualization of predictions of DoubleGAN for the
NGSIM data

DoubleGAN can capture the CF uncertainty of the real-world data
well.

5 CONCLUSION
In this paper, we propose a novel method called DoubleGAN that
quantifies the uncertainty in human driver car-following (CF) be-
havior. The model encodes the stochastic physics information into
the physics-informed generative adversarial network (PhysGAN)
without incurring mode collapse. Using numerical data, we evaluate
the performance of DoubleGAN under different noise types and
training sizes. We further investigate the performance of Double-
GAN on a real-world dataset, the NGSIM dataset, and demonstrate
that it outperforms baseline methods under different training sizes.
Through ablation studies, we confirm that the moment-matching
technique can speed up themodel convergence and thus achieve bet-
ter performance. By comparing DoubleGAN-IDM to DoubleGAN-
Helly, we show that themost suitable physicsmodel for DoubleGAN
may not necessarily be the one with the best performance. The
simplicity of physics is also a consideration.

This work can be further improved in two directions. First, apart
from the weighted sum, other approaches to integrating the data
loss, moment-matching loss, and reconstruction loss can be pro-
posed. Second, this work can be extended to quantify the uncer-
tainty in sequential behavior, e.g., uncertainty quantification of
human driving trajectory prediction.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

ACKNOWLEDGEMENTS
This work is partially sponsored by NSF CPS-2038984.

A MODE COLLAPSE OF PHYSGAN
A.1 Proof of Mode Collapse of PhysGAN
Recall that {(𝑠 (𝑖)𝑜 , 𝑎

(𝑖)
𝑜 )}𝑁𝑜

𝑖=1 is a labeled set and {(𝑠 ( 𝑗)𝑐 , 𝑎
( 𝑗)
𝑐 )}𝑁𝑐

𝑗=1 is
an unlabeled set, where 𝑁𝑜 and 𝑁𝑐 are their sizes. Predictions
of the generator and the physics are denoted as 𝑎 = 𝐺𝜃 (𝑠, 𝑧) and
𝑎 = 𝑓𝜆 (𝑠, 𝑧), respectively. The loss function of PhysGAN’s generator
is shown as :

L𝐺 (𝜃, 𝜆) = 𝛼E𝑞 (𝑠𝑜 )𝑝 (𝑧)
[
𝐷𝜙 (𝑠𝑜 , 𝑎𝑜 )

]
+ (1 − 𝛼)L𝑐 (𝜃, 𝜆), (12)

where the physics loss L𝑐 carries the form as Eq. 3. We can re-write
this physics loss function L𝑐 (𝜃, 𝜆) as:

L𝑐 (𝜃, 𝜆) = E𝑞 (𝑠𝑐 )𝑝 (𝑧)
[
|𝑎𝑐 − 𝑎𝑐 |2

]
= E𝑞 (𝑠𝑐 )𝑝 (𝑧)

[
𝑎2𝑐 − 2𝑎𝑐𝑎𝑐 + 𝑎2𝑐

]
= E𝑞 (𝑠𝑐 )

{
E𝑝 (𝑧)

[
𝑎2𝑐
]
− 2E𝑝 (𝑧) [𝑎𝑐𝑎𝑐 ] + E𝑝 (𝑧)

[
𝑎2𝑐
] }

= E𝑞 (𝑠𝑐 )
{
E𝑝 (𝑧)

[
𝑎2𝑐
]
− 2E𝑝 (𝑧) [𝑎𝑐 ] E𝑝 (𝑧) [𝑎𝑐 ] + E𝑝 (𝑧)

[
𝑎2𝑐
]

− 2𝐶𝑜𝑣𝑝 (𝑧) (𝑎𝑐 , 𝑎𝑐 )
}
,

(13)

where 𝐶𝑜𝑣𝑝 (𝑧) stands for the covariance with regards to the latent
variable 𝑧. As the generator and the physics are two different mod-
els without sharing parameters, we assumed their predictions 𝑎
and 𝑎 are independent. Thus, 𝐶𝑜𝑣𝑝 (𝑧) (𝑎𝑐 , 𝑎𝑐 ) = 0 and we have the
following:

E𝑝 (𝑧)
[
𝑎2𝑐
]
− 2E𝑝 (𝑧) [𝑎𝑐 ] E𝑝 (𝑧) [𝑎𝑐 ] + E𝑝 (𝑧)

[
𝑎2𝑐
]

=

(
E𝑝 (𝑧)

[
𝑎2𝑐
]
− |E𝑝 (𝑧)𝑎𝑐 |2

)
+(

|E𝑝 (𝑧)𝑎𝑐 |2 − 2E𝑝 (𝑧) [𝑎𝑐 ] E𝑝 (𝑧) [𝑎𝑐 ] + |E𝑝 (𝑧)𝑎𝑐 |2
)
+(

−|E𝑝 (𝑧)𝑎𝑐 |2 + E𝑝 (𝑧)
[
𝑎2𝑐
] )

= 𝑉𝑎𝑟𝑝 (𝑧) (𝑎𝑐 ) +
���E𝑝 (𝑧) [𝑎𝑐 ] − E𝑝 (𝑧) [𝑎𝑐 ]���2 + 𝑉𝑎𝑟𝑝 (𝑧) (𝑎𝑐 )︸         ︷︷         ︸

𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜 𝑓 𝜃

,

(14)
where 𝑉𝑎𝑟𝑝 (𝑧) stands for the variance with regard to the latent
variable 𝑧. The final form of Eq. 14 has three terms. The first term
is the variance of 𝑎𝑐 . The second term is the difference between
expectations of 𝑎𝑐 and 𝑎𝑐 . The third term is the variance of 𝑎𝑐 ,
which is independent of the generator’s parameter 𝜃 and thus can
be dropped. Substituting Eq. 14 into Eq. 13, we have the following:

L𝑐 (𝜃, 𝜆) = E𝑞 (𝑠𝑐 )
[
𝑉𝑎𝑟𝑝 (𝑧) (𝑎𝑐 )︸         ︷︷         ︸
𝑓 𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚

+
���E𝑝 (𝑧) [𝑎𝑐 ] − E𝑝 (𝑧) [𝑎𝑐 ]���2︸                          ︷︷                          ︸

𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚

]
.

(15)

A.1.1 Remark. There are two terms in the physics loss function of
PhysGAN, as shown in Eq. 15. The first term is the variance of the
generator’s prediction. The second term is the difference between
the expectation of the prediction of the generator and that of the
physics. By minimizing L𝑚 with regard to 𝜃 , the first term aims to
make the variance of the generator’s prediction as small as possible,

which may lead to mode collapse; the second term aims to make
the expectations of the generator’s prediction as close to that of the
physics as possible.

A.2 Mitigating mode collapse with
moment-matching

We replace the first term of Eq. 15 with a square distance between
the standard deviation of the generator’s prediction and that of
the physics. The resulting equation is the moment-matching loss
function:

L𝑚 (𝜃, 𝜆)

= E𝑞 (𝑠𝑐 )
[ ���𝜎𝑝 (𝑧) (𝑎𝑐 ) − 𝜎𝑝 (𝑧) (𝑎𝑐 )���2︸                         ︷︷                         ︸

𝑓 𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚

+
���E𝑝 (𝑧) [𝑎𝑐 ] − E𝑝 (𝑧) [𝑎𝑐 ]���2︸                          ︷︷                          ︸

𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚

]
,

(16)
where 𝜎𝑝 (𝑧) stands for the standard deviation with regard to the
latent variable 𝑧. We can see that minimizing the first term of L𝑚
does not require minimizing the variance of 𝑎𝑐 . Thus, L𝑚 does not
incur mode collapse. Note that in Eq. 7, we omit 𝑝 (𝑧) for simplicity
and normalize the moments.

B COMPARISON AMONG DIFFERENT CF
MODELS

There are various CF physics equations, like IDM model, Helly
model, Optimal Velocity model (OVM) [1], Full Velocity Difference
model (FVDM) [9], and Gazis-Herman-Rothery (GHR) model [5].
We compare the performance of all aforementioned CF equations
for the NGSIM data with a 500 training size. The results are shown
in Table. 4. The IDMmodel achieves the best performance, followed
by the Helly model. Although the advantage of the Helly model
over the FVDM and GHR models is not significant, the Helly model
is much simpler. Thus, we choose the IDM and the Helly models as
our physics equations.

Table 4: Comparison of different CF models.

IDM Helly OVM FVDM GHR

RMSE 0.587 0.695 0.758 0.706 0.696
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