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ABSTRACT

Methods providing the Estimated Time of Arrival (ETA) of a car
have wide applications in trip planning and time management.
Considering the complexity of a modern city, ETA prediction is a
challenging task that is performed nowadays by more and more
complex solutions such as Deep Learning (neural) techniques, often
with the claim of a substantial progress in ETA prediction quality.
Nevertheless, as in the area of other data mining tasks, indications
exist of certain reprodicibility problems in today’s research prac-
tice connected with the choice of state-of-the-art ETA prediction
methods. The purpose of our study is to shed light on the prob-
lems via an overview of studies proposing new ETA prediction
methods and the related reproducibility issues (including the avail-
ability of open source code and datasets, especially of GPS trajectory
data). Furthermore, motivated by the recent observations in the
field of recommender systems that the majority of existing neural
approaches can be outperformed by traditional simple methods,
we perform an experimental study that surprisingly shows that
a fine-tuned combination of simple regression-based ETA predic-
tion methods (we call it Strat-mETA) can indeed outperform more
complex solutions (including Deep Learning-based) by means of
a multi-component quality metric. We perform the study on a new
real-world car travel dataset of GPS trajectory data and make its
part public as a benchmark in order to encourage future research
and partly resolve the problem of reproducibility in the field.
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1 INTRODUCTION

Nowadays it is hard to imagine a city without cars. Despite the rise
of taxi and car sharing services a lot of people decide to purchase
their own vehicle [16]. With growing number of cars in urban areas
the problem of efficient routing and accurate traffic services become
more and more important. One of the most frequently used services
by drivers is routing that provides the best route from one place
in the city to another. One of the most important characteristic of
a route is the so-called Estimated Time of Arrival (ETA) that tells
how long the journey along the route will take, or when the trip
will end.

In days of the current pandemic, delivery services received a
huge boost [18, 20] which introduces the concept of ETA from
traffic area to a completely different, everyday life of many people.
Businesses related to delivery services are interested in providing
an accurate ETA prediction to their customers in order to increase
the quality of their service. This is also true outside of the scope
of food and goods delivery. Many Business-to-Business companies
are also interested in providing or receiving a correct ETA since
long waiting time can lead to substantial expenses.

Given that a modern city is a large and intricate system contain-
ing a large amount of simultaneously moving cars, ETA prediction
becomes a rather challenging task. Indeed, many factors greatly
affects the traffic situation in the city: weather, configuration of
the city streets themselves [40], actions and behavior patterns of
a driver and other participants of the traffic [6] and so on.

Despite the growing interest in urban science, there are no gen-
erally accepted universal methods in the field of forecasting urban
traffic flow or ETA prediction. The situation is worsened by that
the recent progress in the field achieved by industrial navigational
services, e.g. Google Maps, Baidu Maps or Yandex Maps, usually
stays unrevealed for scientific society due to commercial secrets.

Even if we consider only the studies presented publicly in papers
on the topic, indications exist of certain reprodicibility problems
in today’s research practice connected with the choice of state-of-
the-art ETA prediction methods. An example is the lack of public
datasets with transportation information (especially of a certain
type) that prevents objective comparison between different ap-
proaches for ETA prediction and possibly impedes the progress in
the field [2, 30]. Let us also mention that due to the complexity of
urban traffic and numerous factors affecting a trip it is expected
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than different methods may perform similarly to each other on
average according to the well-known No Free Lunch theorem [1].
The diversity of possible known and unknown factors emphasizes
the absence of a universal method for ETA prediction [11, 38].

Recently, problems of the above-mentioned kind have been re-
ported in the area of other data mining tasks, e.g. in recommender
system research [9, 10]. For example, the so-called state-of-the-art
recommender systems based on Deep Learning are analyzed and
compared with a set of simple ones in extensive experiments in
[9, 10]. Surprisingly, it turns out that the complex solutions are
often not reproducible in the sense that the corresponding source
codes, datasets and even experimental results stay publicly unavail-
able. Furthermore, even if reproducible, the majority of them can
be outperformed by the simple ones on open datasets thus making
the performance progress claimed questionable.

Inspired by this troubling finding in the field of recommender sys-
tems, we intend to shed light on the analogous problems in the ETA
research, especially in the case of methods adapted for GPS trajec-
tory data. More precisely, in this work we review available datasets
and existing solutions for ETA prediction from different domains
to further highlight the above-mentioned problems of reproducibil-
ity and progress. Following the results in [9, 10] indicating that
fine-tuned simple methods can outperform more complex Deep
Learning solutions, we present Strat-mETA (a simple ETA predic-
tion method designed to overcome the impact of the No Free Lunch
theorem by stratifying the data and proper parameter tuning in sim-
ple regression-based ETA prediction methods) and compare it with
several more complex methods by means of a multi-component
quality metric and further discuss the surprising results obtained.
In short, in this study:

e we overview the recent studies proposing ETA prediction
methods found by us and determine the related troubling re-
producibility issues (including the availability of open source
code and datasets, especially of GPS trajectory data);

e we present and analyse a novel public dataset that includes
real-world transportation GPS trajectory data as well as the
traffic information at the corresponding moment in time;

e we propose Strat-mETA, a simple method based on fine-
tuned regression ETA baselines and adapted for GPS trajec-
tory data;

e we perform an experimental study where compare Strat-
mETA with several existing ETA prediction methods includ-
ing a Deep Learning-based one using the aforementioned
dataset and surprisingly observe that our simple method
outperforms them by means of a multi-component quality
metric.

Let us emphasize that the code, dataset, and experimental results
related to this study are publicly available on GitHub!.

The paper is organized as follows: in Section 2, the existing
methods for ETA prediction are reviewed as well as and the available
datasets for them; in Section 3, the new transportation dataset and
the motivation behind its preprocessing are presented; Section 4
contains the description of Strat-mETA and Section 5 presents the
results of the experimental study on the proposed transportation
dataset.

Uhttps://github.com/AlgoMathITMO/Strat-mETA/
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Table 1: Deep Learning-based ETA prediction methods
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2 AN OVERVIEW OF RELATED WORKS

2.1 ETA prediction methods

There exist a variety of ETA prediction methods based on different
technical ideas.

Historical speed-based methods [2, 30] use an approach to ETA
prediction in which the overall duration of a trip is calculated from
the speeds of each road segment constituting the route. The speeds
are computed as average speeds of all vehicles on the road segment
for a specific time window. Such approaches require a large amount
of historical data and completely ignore the geometry of a route
and real-time state of traffic. The latter may result in a rather poor
performance.

Regression methods are also used for ETA prediction when the
information about the trip is represented as a feature vector of the
fixed length. Most of the time regression methods such as Ran-
dom Forest Regressor [37], Support Vector Regressor [27, 36] or
Gradient Boosting Regressor [33] perform well on small datasets
and generally require less computational power to train in com-
parison to other approaches. As a drawback regression methods
may not capture some of the implicit relations of an urban traffic
environment.

Deep Neural Networks are frequently used for ETA prediction,
especially in the relatively recent works, see Table 1. Most of them
utilize LSTM (Long Short-Term Memory) layers to capture temporal
connection between segments constituting the route. Those meth-
ods require large amount of data (see the reported size of datasets
in Table 1) and take relatively long time to train. There also exist
methods based on Graph Neural Networks that aim at capturing the
geometry of a route [11]. This approach generally achieves good
performance, however, require sophisticated data pre-processing
and is rather difficult to reproduce due to its complexity.

As one probably expects, the methods based on Historical speed
and Regression are relatively simple, have tested in many experi-
mental studies and can be easily reproduced [2]. The situation with
the methods based on Deep Neural Networks seems to be different,
see Table 1. Indeed, it turns out that the corresponding source code
is not always available and thus the reproducibility or replication
process of them is hardly possible. What is more, some of the papers
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use private datasets and thus a direct approval of the experimental
results (that report a certain progress in ETA prediction quality) is
questionable. This greatly limits the possibility of evaluation of the
proposed methods and the objective comparison of them.

Another important feature of the ETA prediction methods that
they are adapted for data of specific type. For example, some meth-
ods in Table 1 use data collected from road sensors and are not
adapted from GPS trajectory transportation data. This will be dis-
cussed in the following subsection in more detail.

2.2 Available data and reproducibility in the
field of ETA prediction

Despite the raise of the interest in urban sciences, there is a lack of
open datasets that are universally accepted benchmarks for ETA
prediction methods. Moreover, due to the possible sensitivity of
transportation data, some of the researches use only private data
and provide only limited statistics about the dataset.

In the works [3, 11, 31], authors provide basic statistics but the
data used are private which makes it impossible to reproduce the
described methods and objectively compare them. As an alterna-
tive to using private data or in absence of it some researchers use
traffic simulators in order to acquire a dataset of desirable size [39].
While such approach may improve reproducibility, existing traffic
simulators may not reflect the real-life traffic and often have major
drawbacks which could make the experiments rather complicated
[23, 29].

Unfortunately, many authors do not provide precise description
of the data used often stating only the area where the data was
collected. Table 2 shows the comparison between four datasets
which were likely used as a source of the data in several papers.
(We say likely because there are no formal references to the datasets
in the papers, but only the names of the region (mainly cities in
China) in which the data was collected. We found several datasets
that match the descriptions and names and present them in Table 2.)
The datasets describe traffic with a different quantities: average
speeds (avg. speeds) for the average speed of vehicles passed a road
during certain time interval, road sensor data (sensors) stands for the
average speeds of vehicles passed a road during certain time interval
acquired from sensors located in fixed locations and trajectories are
sequences of GPS points with timestamps and meta-information.

Average speed and vehicle representation contain the informa-
tion about the traffic at a certain moment of time but have the lack
the data about trips at the moment of time. In [35], authors say
that most of the modern studies in the ETA prediction area use
data from road sensors or cameras and operate with real speeds or
traffic flow. However, due to high cost of road sensors, such data is
not widely available in many areas. Additionally, this is a crucial
drawback of those representation types since the absence of real
vehicle transportation does not allow for direct ETA predicting.

Due to it, data represented as a trajectory is preferable since it
provides data on real trips along with possibility to acquire duration
of the trip from GPS timestamps. Moreover, frequently GPS meta-
information includes speed of the vehicles which may allow to
estimate state of the traffic at a certain moment of time.

In our study, we focus on the ETA prediction methods that use
this format of data.
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Table 2: Comparison of ETA prediction datasets

Domain Guangzhou! METR-LA? GuoF.[15] Shenzhen?
type avg. speeds sensors avg. speeds trajectory
size 1.8M ™ 3B 6M
open  Yes Yes No No

Note:  !https://github.com/sysuits/urban-traffic-speed-dataset-
Guangzhou
https://gitcode.net/mirrors/liyaguang/DCRNN/-/tree/master/
data/model/pretrained/ METR-LA
Shttps://github.com/cbdog94/STL/tree/master.

2.3 Parameter tuning for baseline methods

Since we will deal with a fine-tuned simple method as a competitor
to other ETA prediction methods (including Deep Learning-based),
we are interested in the review of methods for parameter tuning.

Parameter tuning could be extremely useful in case when the
available data is not large enough for model to properly optimize its
parameters for a specific task. In order to overcome it, the model’s
hyperparameters could also be optimized. The optimization of hy-
perparameters does not differ a lot from regular function optimiza-
tion. However, often number of parameters and internal complexity
of a model makes the task of finding the analytical representation
of a relation between hyperparameters and quality of the model vir-
tually impossible. Due to it, two main things should be considered:
optimization strategy and fitness functions.

Optimization strategy includes a vast majority of numerical opti-
mization techniques which include but are not limited to simulation
annealing, particle swarm optimization, genetic algorithms and so
on [7, 25, 26]. Deterministic algorithms could be also used for hyper-
parameters optimization. They include linear search, taboo search,
grid search and gradient search algorithms [5, 26]. Deterministic
algorithms most of the time are rather simple to implement, how-
ever, due to sophisticated relation between input of the model and
its output may lead to large number of expensive computations
[4]. Since model’s hyperparameters could be discrete, genetic algo-
rithms are often used for hyperparameters optimization in Machine
Learning [17, 22]. The idea is to represent the hyperparameters as
an array of individual values of the parameter. The array is referred
to as individual, and each parameter as gene. A number of randomly
initialized individuals constitute the population. In order to evalu-
ate the individuals, a fitness function is defined. It takes individual
as its argument and outputs the individual’s fitness value which is
used during the algorithm.

3 DESCRIPTION OF OUR DATASETS

While designing a machine learning solution for the task, a variety
of questions arise: studying the available data, choosing the appro-
priate way to represent data, choosing the model and setting its
hyperparameters. Unfortunately, most of the time when working
on a new task, it may be difficult to predict how the selected con-
figuration would perform on a specific type of input data and in
which conditions the selected configuration is optimal.
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3.1 Data preprocessing

Considering the lack of public datasets and aforementioned con-
straints implied on the data required for ETA prediction, in this
study we use the transportation data provided by StarLine Ltd.. The
data received from StarLine Ltd. comes in a form of messages from
GPS devices located on vehicles. Each message includes the location
of the vehicle (latitude and longitude in WGS-84 projection), speed,
timestamp, and unique identifier of the vehicle.

The dataset consists of two parts. First one consists of 515,169
tracks collected during one week in November 2021 and grouped by
vehicle ID. Second part of the dataset is made public and consists of
298,089 tracks collected during one weekday grouped by vehicle ID.
This dataset contains tracks which are up to 2 kilometers long. The
real duration of a trip is acquired from timestamps of first and last
GPS points comprising the track. The statistics of both of datasets
is present in Table 3.

Raw GPS data generally requires some form of prepossessing,
most frequently map-matching, i.e., the process of finding the best
sequence of road segments which represents the sequence of raw
GPS points. For this purpose, a routing machine can be used. Rout-
ing machines (or routing engines) are special frameworks which
perform shortest path search on road graphs, i.e., graphs that repre-
sent the map of the area’s roads and streets. One of the most used
map data source used is the OpenStreetMap project [24]. The OSM
map data is fed into the routing engine in order to find a route
between two or more points or match raw GPS data to a routing
graph. In this work, the Valhalla [32] routing engine is used.

Due to the imprecision of GPS devices, the received points gen-
erally do not align with the routing graph. Therefore we first apply
the map-matching step, as described above. The data is aggregated
in tracks using the unique vehicle IDs and then fed into Valhalla
routing engine which matches the tracks to a road graph.

This expands the data set, adding to raw points the road segments
on which the vehicle was when the measurement was done. Those
GPS points may be grouped by the road segment they are assigned
to. This allows to calculate average vehicle speed on a segment,
based on vehicles which pass it during the last 10 minutes and
estimate the traffic on the available roads of the city. In many
works related to traffic and ETA prediction, authors use the term
congestion index r. The congestion index is calculated as a ratio
between the current speed of vehicles on the road segment and
the free speed vy, of the segment (when there is no congestion
and vehicles are freely passing through it), provided by StarLine

Table 3: Statistics of our datasets

Np Ny dp,m tp,s Lm 1,5

Private 63M 298,089 5.7 39 9,806 1,662
Public 27M 515,169 4.4 3.7 1,834 279

Note: Np is the number of GPS points in the dataset, Ny the number
of tracks, dj the average distance between two consequent GPS
points, t,, the average interval between two consequent GPS points’
timestamps, L the average distance of a trip, 7 the average duration
of a trip.
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Ltd. Historical data is used to estimate v¢,. as average speed of
vehicles on the road segment, generally late at night. Based on the
value of the congestion index, each road segment is classified as:

(1) jammed, if r € [0,0.25),
(2) slow, if r € [0.25,0.5),
(3) normal, if r € [0.5,0.75),
(4) free, if r € [0.75, ).

When this classification is done, for each 10-minute interval of
a day there is a list of road segments, each having a class assigned
to it. Knowing the road segments constituting the route, we define
how congested the route is by counting the road segments of each
class. These values are used as features which describe the trips in
the data set.

Additionally, the Valhalla routing service is used to calculate the
ETA of each track, based purely on internal constant weights of
the Valhalla’s routing algorithm. Such ETA are thus generally not
very accurate but can also provide valuable information for more
accurate ETA prediction. The resulting feature vector describing
each trip includes distance of a trip, Valhalla’s ETA, hour when the
trip is started and the number of road segments of each congestion
class. We partition the data into non-overlapping training and test
data, by the ratio of 8:2.

As it could be seen, the proposed dataset include both transporta-
tion data as well as the information about the traffic at the moment
of the trip in contrast to other available datasets (Table 2).

4 DESCRIPTION OF THE PROPOSED SIMPLE
METHOD

In this section we present Strat-mETA, a simple method stratifying
the data and using a parameter tuning approach for optimization of
the number of baseline regression-based ETA prediction methods
for each strata. A formal description of the method is given in
Figure 2 and Algorithm 1. Below we describe the main steps of the
method.

4.1 Grid-based stratification

As it was mentioned before, urban transportation depends on a vast
spectrum of factors and behaviours of other traffic’s participants.
Due to that fact, some studies propose to divide data in groups and
treat those independently. For example, in [11], authors separate
data regions with similar traffic and mention that they use the same
proposed method on each group separately.

Such approach allows to eliminate differences introduced by
rather generic factors such as local geographical features of a ter-
rain (e.g. changes of altitudes), city’s layout and overall drivers
behaviours. As an example, it should be safe to assume that traffic
in New Dehli differs greatly from the traffic in a small city in Aus-
tria. Considering the fact that all the data used during this research
was collected in one city, it is proposed to stratify the data by hour
of the day and distance of a trip.

The motivation behind splitting the trips by hour is clear since
during night it is rather relaxed compared to daytime and especially
to rush-hours. Considering the size of the dataset it is implausible
that explicit relation between daytime and ETA would be found.
By splitting the dataset by starting hour of and treating each group
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Figure 1: Dependency between trip’s duration, hour of the
trip and distance.

as a distinct task for a prediction it is expected to improve overall
quality of a prediction.

Short distance trips generally take less time to complete, have
less chances of facing unexpected traffic accidents and generally
spend less time in traffic jams and highly congested areas. On
the other hand, despite the fact that long trips may take more
time to complete, they also may be more optimal: by taking longer
route driver may evade highly congested regions of a city. Again,
considering the size of the available dataset, it seems reasonable to
split the data not only by hour but also by different routes’ distances.

The mean distance of a trip in each group is present in Figure 1.
As it can be seen, duration of a trip indeed grows larger with the
distance of the trip, and also becomes larger during the day hours.

4.2 Parameter tuning and multi-objective
optimization in grids

Since the data is stratified by two features, it is easy to represent it

as a 2D-grid. Each cell of the grid corresponds to a single group of

input data, and can be described by two indexes: starting hour and

number of a distance interval. Considering it, we propose to treat

each grid cell of the stratified dataset as a separate task.

As it could be seen from [2], different methods for ETA prediction
may result in similar overall results. However, they also may show
different results during different time of the day. Given the fact that
data is also classified by distance, it may be expected that using
dedicated method for each class of a trip would increase quality of
the overall prediction.

In order to pick best model for each grid cell, the following
approach is proposed: using genetic algorithm, we train several
models for each grid cell of data. Then, the best method for each
cell on the grid is picked based on the fitness function of optimized
model. The prediction is made based on the class the input trip is
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assigned to: the appropriate model is selected from the grid based
on the trip’s class.

4.3 Strata clusterization

The design proposed ensures that the final model is the best, given
the described stratification of the input trips and considered meth-
ods. However, the drawback of this approach is that depending on
the stratification, the number of cell grids might be large and thus
would require a lot of resources in practical use for ETA prediction.
In order to reduce number of the methods in the grid, we propose
to cluster the strata (grid cell) meta-information about the selected
methods as features for it. Such clusterization of the initial grid
cells would allow to find similar grid cells of the data and decrease
the overall number of methods used for the prediction. Of course,
this procedure may decrease the overall quality of the proposed
method. However, since clustering of grid cells is performed based
on similarity between performance of estimators for each grid cell
it is expected that the drop in prediction quality is relatively small.
As a payback, the reduced number of estimators for the whole
grid would decrease the amount of resources required for training
and prediction. Moreover, the acquired clusters could be used as a
baseline for a novel data stratification strategy: instead of classifying
data by hour and distance a new classifier could be designed to
stratify data based on the similarities between the clusters found.

4.4 Complexity analysis

The analysis is straightforward. The complexity of Algorithm 1
implementing the above-described method Strat-mETA linearly
depends on the number of cells in the grid. At the same time, com-
plexity of each cell is the sum of complexities of the candidate
methods, optimization strategy and optimized hyperparameters.
So, overall complexity of the whole algorithm is the sum of com-
plexities of all cells in the grid and complexity of the clustering
algorithm.

Considering that, in order to lower the complexity of the pro-
posed algorithm the size of the grid may be reduced. However,
according to the No Free Lunch theorem it would result in lower
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Algorithm 1: Strat-mETA

Data: dataset, methods, hour_labels, dist_labels, weights
grid(][l;
candidates|];
dataset = stratify(dataset);
for h in hour_labels do
for d in dist_labels do
for method in methods do
train, test = dataset[h,d].split();
opt_model =

optimize(method, train, test, weights);
candidates.put(opt_model);
best_method = select_best(candidates);
candidates.clear();
grid[h][d] = best_method,;
end

end

end
clustered_grid = cluster(grid);

Table 4: Optimized hyperparameters in the methods used

Method Hyperparameters

RFR # estimators: [1, 100],
criterion: {squared_error, absolute_error, pois-
son},

min_sample_split: [0.001, 1.0],

max_features: {auto, sqrt, log2}
GBR loss: huber, quantile,

learning_rate: [0.001, 2.0],

n_estimators: [10, 100],

criterion: fiedman_mse, mse, mae
SVR kernel: rbf, sigmoid,

gamma: auto, scale,

tol: [0.001, 1.0],

C: [0.1, 3]

performance. As it was mentioned before, to overcome this draw-
back, we propose to use clusterization to lower complexity of the
proposed solution while minimizing the performance loss.

5 EXPERIMENTS
5.1 Construction of Strat-mETA

Taking into account the conclusion in the comparative study in [2]
about the quality of simple ETA prediction methods, we select the
following baseline methods to be used in Strat-mETA:

e Random Forest Regression (RFR);
e Gradient Boosting Regression (GBR);
e Support Vector Regression (SVR).
In order to optimize hyperparameters of the methods, a genetic
algorithm is used. The parameters for tuning are present in Table 4.
The simple evolution strategy is characterized by the number of
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Figure 3: Acquired fitness function values for each set of
weights a.

individuals in the experiments, the number of generations and
the mutation rate. The configuration for the experiments are 10
individuals, 20 generations and 0.5 mutation rate. Deap module
[14] was used in order to perform the optimization. The fitness
function F used for evaluation is parametric, to control the impact
of multiple chosen criteria on the optimization results:

3
F = a1 MAPE* + asMAE"* + asT5, Z =1, age€l0,1]. 1)
k=1

In (1), MAPE* and MAE" are the metric values collected during
evaluation of an individual route, and T; is the time spent on one
prediction. The symbol * signifies the MinMax normalization, and
the maximum and minimum values of the variables are estimated
using the sample of the dataset. Impact of the k-th metric could be
tuned using aj weight parameter.

The goal of the genetic algorithm is to minimize the fitness
function and consequently the MAPE, MAE and prediction time
of the model. In order to define appropriate weights oy in (1), the
algorithm was executed 3 times with different weights.
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Figure 4: Selected method and best values of fitness function
for each grid cell.

Table 5: Results of experiments for different weights a;. The
best result in each row is shown bold.

Metric  (0.33,0.33,0.34)  (0.50,0.00,0.50)  (0.80,0.00,0.20)

F 0.27 0.24 0.30
MAPE 36.81 34.78 32.93
Tp, ms 0.39 2.41 0.81

Figure 3 shows the fitness function values of each grid cell for
three different sets of weights a. It can be seen that choosing dif-
ferent sets of weights results in noticeable differences between
acquired grid: fully omitting MAE metric from fitness functions
(e = (0.50,0.00,0.50)) seemingly provides best overall results based
on fitness function values.

The numerical results of the experiment is presented in Ta-
ble 5. Different weights clearly influence the overall performance
of the proposed approach. During further experiments weights
(0.50,0.00, 0.50) will be used due to the lowest fitness function and
second best MAPE.

Figure 4 shows best picked methods for each grid cell as well as
the fitness values of the said methods for each class.

Each cell in Figure 4 signifies a distinct method with hyperparam-
eters optimized specifically for one trip class, so 168 distinct models
should be trained. Hence, to reduce the overall number of used mod-
els, we propose to use clusterization. In order to capture the relation
between quality of the method and class of the trip it is assigned to
we propose to use DBSCAN algorithm [19] with Euclidean metric
using fitness function F and prediction time T}, as feature. This way
methods which shown similar performance would end up in the
same cluster without great increase of prediction time.
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Figure 5: MAPE for each trip class using the found 5 clusters
(1-5) for prediction.
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Figure 6: Difference in MAPE for grid cells after clustering,
each cluster shown with distinct hatching.

Figure 5 shows results of the clusterization by presenting the
MAPE values for each grid cell and displaying found clusters by
different hatching types. Overall 4 clusters with similar fitness
function and prediction time were found. Inside each cluster the
best method was chosen and assigned to the said cluster. For the
further experiment, those methods and their hyperparameters were
used for training and prediction for all the trips constituting the
corresponding cluster.

In Figure 6, one can see the difference between MAPE for each
trip class achieved using the initial proposed method (MAPE) and
with trip classes acquired at the clusterization step (MAPE):

A = MAPE,; — MAPE. )

As it can be seen, the clusterization improved the MAPE error for
most of the initial classes. However, from Figure 6 it can be clearly
seen that during night time and rush-ours (approximately from 2
to 6 hours) the performance of the proposed method on average or
long trips is significantly worse. It could be explained with the fact
that during the night hours there are less trips present in the dataset,
and during rush-ours the city is very congested and unpredictable.

Thus we have constructed the following two versions of our
simple ETA prediction method on our datasets: Strat-mETA without
and with the clusterization step.

5.2 Choice of the competitors

Now let us discuss the choice of Deep Learning-based ETA pre-
diction methods as competitors in our comparison experiments.
The ones in Table 1 with an open source code provided are ConST-
GAT [13], ST-METANet [28], DCRNN [21] and DeepTTE [34]. Never-
theless, only DeepTTE [34] is adapted for GPS trajectory data as in
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our dataset and thus only this method can be a representative of
Deep Learning ones in our case.

We also use the well-known HAS [2] and RT-ETA [11] as com-
petitors that may be thought to be a more complex ETA prediction
method than Strat-mETA but less complex than DeepTTE [34].

Summarizing, we perform experiments on our datasets using
the following suitable methods for ETA prediction:

e PM that is an abbreviation for Strat-mETA without the clus-
terization step;

e PM,; that is an abbreviation for Strat-mETA with the clus-
terization step;

e HAS [2] that stands for Historical Average Speeds approach
where ETA is computed based on speeds of vehicles collected
before the actual time of the trip [2]; average speed values is
computed for each 15 minutes using the whole dataset;

e RT-ETA [11] that stands for Real-time Travel Times is similar
to HAS but real-time speeds of vehicles are used for ETA
prediction; for each 10-minute interval in the dataset average
speed values are computed using the data from the previous
10 minutes;

o DeepTTE [34] that is a Deep Neural Network processing trip
data as sequences of GPS points; its hyperparameters are set
to the default ones proposed by its authors.

Let us mention that the methods HAS and RT-ETA provide the
ETA estimation based on fully pre-computed data and therefore
prediction time for the methods is not considered.

5.3 Results

The overall experimental results are presented in Table 6. It is clearly
seen that the proposed method with and without the clusterization
step (PM,; and PM, correspondingly) outperforms the other meth-
ods both on our private and public datasets. Furthermore, PM is
just slightly better in MAPE and MAE than PM,;, while the for-
mer is worse than the latter by means of computational time (as
expected by construction). Particularly, with the MAPE increase of
only 3.15 p.p. on the public dataset, PM,; contains only 5 estimators
in comparison to 168 in PM. Note that, as in the case of PM,; and
PM, RT-ETA and HAS show rather similar performance on both
datasets outperforming DeepTTE. Surprisingly, DeepTTE achieves
the worst results by means of MAPE, MAE and computational time.
Let us mention that all the methods show degradation in perfor-
mance on the public dataset in comparison to that on the private
one. It can be explained by the fact that all routes in the private
dataset are shorter than 2 km. The degradation is most noticeable
in the case of DeepTTE and this probably because Deep Learning
methods are rather sensitive to the size and diversity of datasets.

6 CONCLUSION AND FUTURE WORK

During this work we compared several modern approaches for ETA
prediction along with open transportation datasets in the sense
of reproducibility. As it can be seen from Table 1, only a part of
modern solutions provide code and data allowing for a reproducible
comparison and evaluation. Moreover, the widely used road sensors
datasets limits the area of applicability of the methods since such
infrastructure is not presented in many cities.

Rami Al-Naim, Petr Chunaev, and Klavdiya Bochenina

Table 6: Results of the comparison experiments. The best
result in each row is shown bold.

Dataset  Metric PM  PM, HAS RT-ETA DeepTTE
MAPE 34.81 38.03 53.19 44.17 47.12
private MAE, s 483 504 893 735 947
Tp,ms 241 183  — - 78.12
MAPE 36.12 39.27 55.83 51.40 84.23
public MAE,s 513 536 953 782 1143
Tp, ms 132 114 - - 56.65

Furthermore, during this work we proposed Strat-mETA, a simple
method of ETA prediction that takes stratified data as the input,
optimizes a number of simple regression models for each strata
and performs clustering to reduce the overall number of distinct
models. For evaluation of the proposed solution, a novel car travel
dataset containing GPS trajectory data was introduced and made
public in order to encourage the reproducible research in the field
of ETA prediction. The dataset was also used for comparing the
proposed method and the existing approaches for ETA prediction.

Moreover, our experimental study particularly on the public
dataset showed that Strat-mETA with and without the clusteriza-
tion step surprisingly outperforms the other considered solutions
(including the Deep Learning-based one) in a significant way. What
is more, in accordance to the No Free Lunch theorem, Strat-mETA
without the clusterization step showed better MAPE and MAE val-
ues than than that with the clusterization step. Moreover, the latter
one contained only 5 estimators in comparison to 168 in the former
at the cost of only 3.15 p.p. of MAPE and 23 s of MAE (on the public
dataset). This resulted in that Strat-mETA with the clusterization
step turned out to be faster than that without the step. Let us also
mention that our method was the fastest in overall experiments
(much faster than the Deep Learning-based one).

Summarizing, we confirmed the present of reproducibility and
progress issues in the field of ETA prediction similar to those re-
ported for recommender systems [9, 10]. In particular, it turned
out that many existing methods are not reproducible in the sense
that their source codes and datasets and that simple ETA prediction
methods can still outperform more complex ones.

As a continuation of this work we plan to consider new strategies
of the initial dataset stratification and clusterization methods in
order to find more implicit relations in the data. This possibly
could allow us to improve performance of Strat-mETA method and
more efficiently utilize limited traffic data. Furthermore, we are
interested in performing more comparison experiments with other
ETA methods adapted for GPS trajectory data as in our case.
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