
Neuroevolution for Transportation Applications
Toan V. Tran

fpy148@mocs.utc.edu
Center for Urban Informatics and Progress
University of Tennessee at Chattanooga

Chattanooga, TN, USA

Mina Sartipi
Mina-Sartipi@utc.edu

Center for Urban Informatics and Progress
University of Tennessee at Chattanooga

Chattanooga, TN, USA

ABSTRACT
This paper investigates training neural networks for transportation
applications by Neuroevolution (NE), which is a competitive alter-
native to Gradient Descent (GD). We conduct experiments for two
typical transportation tasks: traffic prediction (supervised learn-
ing) and traffic signal control (reinforcement learning). For traffic
prediction, our proposed NE framework outperforms GD in most
cases. To investigate the reason NE performs better than GD, we
apply a visualization technique to the loss function. The visualiza-
tion shows non-convex surfaces with many local minimums that
cause challenges to GD. Finally, we show that NE can also train
reinforcement learning agents for traffic signal control.

CCS CONCEPTS
•Applied computing→Transportation; •Computingmethod-
ologies→ Neural networks; • Mathematics of computing→
Mathematical optimization.

KEYWORDS
neuroevolution, training neural networks, transportation, traffic
prediction, traffic signal control
ACM Reference Format:
Toan V. Tran and Mina Sartipi. 2022. Neuroevolution for Transportation
Applications. In Proceedings of The 11th International Workshop on Urban
Computing (UrbComp ’22). ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Many transportation applications have benefited from the success
of neural networks and deep learning. In general, there are three
approaches: supervised learning, unsupervised learning, and re-
inforcement learning [15]: supervised learning solves prediction
tasks, unsupervised learning detects anomaly and represent fea-
tures, and reinforcement learning is the state-of-the-art method
used in control tasks such as traffic signal control and automated
driving. Due to the high demand of deep learning in transportation,
any small improvement in neural-network fundamentals, such as
the training process and network architecture, can bring a huge
impact to this field.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UrbComp ’22, August 15th, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Despite its importance, not many studies investigate the funda-
mental research for transportation related problems. For example,
neural networks in transportation problems are typically trained by
Gradient Descent (GD) and Back-propagation algorithms. However,
GD has challenges such as gradient vanishing and exploding [17].
Another problem of GD is related to local minimums, which fre-
quently appear in the loss surfaces of neural networks [19]. There
are several ways to handle these issues, such as changing activation
functions to ReLU, adjusting network architectures with skipping
connections to avoid vanishing, and momentum for optimizers
to escape local minimums. However, these solutions cannot fully
address the issues since the root cause of the problems, i.e., the
gradient descent strategy, remains unchanged.

This paper investigates an alternative to GD – Neuroevolution
(NE), also known as Deep Neuroevolution, to train neural networks
for transportation applications. Note that NE is sometimes known
as a Neural Architecture Search (NAS) [30] that automatically gen-
erates network architectures. The scope of this paper is to perform
NE/evolutionary algorithms for the training process. The main
contributions of our work are as follows:

• To the best of our knowledge, this is the first paper that in-
vestigates Neuroevolution for transportation problems. We
also conduct experiments for two common tasks: Supervised
learning (traffic prediction) and reinforcement learning (traf-
fic signal control).
• For traffic prediction, our proposed NE framework outper-
forms the traditional approach using GD. Moreover, we also
demonstrate that NE is able to train neural networks for the
traffic signal control task.
• We conduct extensive experiments to compare different NE
algorithms and figure out the effects of hyperparameters.
Further, we apply the state-of-the-art visualization technique
to understand more about why NE outperforms GD and vice
versa.

The rest of this paper is organized as follows: Section 2 and 3
present related works and the background of training neural net-
works, respectively. Section 4 describes the details of the Neuroevo-
lution framework and algorithms proposed in this paper. Experi-
ments and results are summarized in 5. Finally, Section 6 concludes
the paper and gives an outlook on future work.

2 RELATEDWORKS
2.1 Neural networks in transportation
As mentioned above, there are three main categories in machine
learning: supervised learning, unsupervised learning, and reinforce-
ment learning. Supervised learning is widely applied to three com-
mon tasks: traffic flow, demand prediction, and accident prediction

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

UrbComp ’22, August 15th, 2022, Washington, DC, USA Toan V. Tran and Mina Sartipi

[15]. To exploit the temporal dependency in these tasks, [6] utilized
LSTM and GRU, while [16] proposed a method with Meta-RNN.
Another approach takes advantage of the spatial dependency by
using CNN [11, 28]. The state-of-the-art prediction method exploits
both temporal and spatial features with RNN-based Graph Con-
volutional Networks (GCN) [5]. Unsupervised learning is mainly
applied for feature extraction using AutoEncoder networks [13].
Finally, Reinforcement Learning (RL) is the state-of-the-art method
for transportation control tasks such as traffic signal control [24]
and automated driving in the scenario of connected vehicles [26].
Furthermore, all neural networks applied in this field are trained
by gradient descent.

2.2 Neuroevolution
Neuroevolution (NE) is related to two problems: designing neural
network architectures and training the networks. Designing the
network architectures through NE, known as NAS, has achieved
many breakthroughs (e.g., reinforcement-learning-enabled NAS
[30] defeated humans in designing a computer-vision neural net-
work architecture on CIFAR-10). Moreover, NAS has helped to
create a compact but powerful architecture for edge devices [8].
In the context of transportation, [11] and [1] performed NAS to
automatically search the suitable neural architectures for traffic
flow and ridership prediction, respectively.

Neuroevolution has also demonstrated its effectiveness for the
training task. In [22], the authors have shown that Genetic Al-
gorithm is a competitive alternative for training reinforcement-
learning agents. Moreover, [20] proposed a highly-scalable evolu-
tionary strategy that rivaled the performance of standard RL (i.e.,
GD-based RL). The matrix-free evolution strategy proposed in [9]
outperforms GD on the FashionMNIST dataset – a classification
task. This is especially true with a library named EvoJax, which
provides parallel running across GPUs/TPUs to significantly reduce
the training time of NE approaches [23].

3 BACKGROUND
3.1 Modelling the training task
Training process, represented in Eq. (1), finds the values of trainable
parameters𝑊 that minimize the loss function on the whole training
data:

𝑊 = argmin
𝑊

(L(net(𝑊,𝑋), 𝑦)) , (1)

where L is the loss function, net is the forward of the neural net-
work, 𝑋 is the training data, 𝑦 is the training label.

3.2 Training by Gradient Descent (GD)
Gradient Descent is an optimization algorithm used to find mini-
mums of a given function. When training by GD, at every iteration,
each trainable parameter takes a step in the opposite direction of
its gradient. Eq. (2) illustrates an iteration of this training process.

𝑤 = 𝑤 − 𝜂 · 𝑔
(
𝜕L(net(𝑊,𝑋𝑏𝑎𝑡𝑐ℎ), 𝑦𝑏𝑎𝑡𝑐ℎ)

𝜕𝑤

)
, (2)

where
𝜕L
𝜕𝑤

is gradient and calculated by backpropagation;𝑤 denotes
trainable parameters; 𝜂 is the learning rate; and 𝑔 is the optimizer’s
policy. For example, Stochastic Gradient Descent (SGD) uses policy
𝑔 that is exactly equal to the value of the gradient. There are also
some improvement methods using momentum, such as Adam and
RMSprop [19]. In addition, some studies apply recurrent neural
networks to play a role as policy 𝑔 [2, 25].

3.3 Training by Neuroevolution (NE)
Instead of iterating an update strategy for a unique model like GD,
Neuroevolution conducts an evolutionary process for a population
of models. The following section describes this training in detail.

4 METHODS
4.1 Neuroevolution Framework
Figure 1 presents the flow chart of the training process using neu-
roevolution. The first step is Initialization which initializes a popu-
lation of models. After that, the evolutionary process is conducted
for the whole population. More specifically, this process iterates a
loop of 4 steps: Evaluation, Selection, Recombination, and Mutation.
Evaluation is to calculate value of the objective function obtained
by the current weights. For supervised-learning tasks, the objective
function is common loss functions such as maximum likelihood or
mean square error. Meanwhile, reinforcement-learning tasks evalu-
ate the current weights/biases by the cumulative reward obtained
after running an episode in the environment. The next step is Se-
lection, which selects the best models (i.e., models that achieve the
highest values of the objective function). These models are recom-
bined to form the next generation of the population. Sequentially,
the new generation is randomly mutated. This looping procedure
is iterated until the objective is fully optimized. Moreover, various
evolutionary algorithms have different ways to conduct these steps,
which are explained in the next section.

4.2 Neuroevolution Algorithms
• GA – Genetic Algorithm [14]

GA is inspired by the natural evolution and mimics biological
operators such as selection, mutation, and crossover.
• OpenES – OpenAI Evolution Strategies [20]

OpenES is presented in Algorithm 1. For each iteration, the
population is mutated by adding a random noise into the current
weight values and then updated based on the average fitness value.

Algorithm 1 OpenES algorithm
Input: learning rate 𝜂, noise standard deviation 𝜎 , initial weight
𝑊0, population size 𝑃
for 𝑡 in 1 to #iters do

Sample 𝜖1, ..., 𝜖𝑃 ∼ N(0, 𝐼),
𝑓𝑖 ← Evaluate(𝑊𝑡 + 𝜎𝜖𝑖) for 𝑖 = 1, ..., 𝑃 ⊲ Evaluation

𝑊𝑡+1 ←𝑊𝑡 + 𝜂
1

𝜎 · 𝑃
∑𝑃

𝑗=1 𝑓𝑗𝜖 𝑗 ⊲ Update

end for

• ARS – Augmented Random Search

Neuroevolution for Transportation Applications UrbComp ’22, August 15th, 2022, Washington, DC, USA

Initialization
Initialize a population

of models

Evaluation Selection

RecombinationMutation

Trained model

Evolutionary
Process

Figure 1: Flow chart of training neural network by NE

ARS is presented in Algorithm 2 and is considered as an im-
provement of OpenES. First, it considers both directions of samples
instead of only one like OpenES. Second, ARS conducts Selection,
while OpenES only calculates the average of all solutions. Because
the goal is to maximize the collected fitness values, removing some
bad solutions can be a judicious strategy. [12]

Algorithm 2 ARS algorithm
Input: learning rate 𝜂, noise standard deviation 𝜎 , initial weight
𝑊0, population size 𝑃 , number of top-performing solutions to
use 𝑏
for 𝑡 in 1 to #iters do

Sample 𝜖1, ..., 𝜖𝑃with i.i.d. standard normal entries
𝑓 ±
𝑖
← Evaluate(𝑊𝑡 ± 𝜎𝜖𝑖) for 𝑖 = 1, ..., 𝑃 ⊲ Evaluation

Sort solutions by max
(
𝑓 +
𝑖
, 𝑓 −
𝑖

)
Select 𝑏 top solutions 𝜖1..𝑏 ⊲ Selection

𝑊𝑡+1 ←𝑊𝑡 + 𝜂
1

𝜎 · 𝑏
∑𝑏

𝑗=1 𝜖 𝑗
[
𝑓 +
𝑗
− 𝑓 −

𝑗

]
⊲ Update

end for

• CMA-ES– Covariance Matrix Adaptation Evolution Strategy [7]
While OpenES and ARS sample from a static distribution, CMA-

ES changes the distribution parameters during searching. Moreover,
CMA-ES is introduced as a stochastic method for non-linear, non-
convex, black-box optimization problems in continuous domains.
Algorithm 3 simplifies the operation of CMA-ES. The key idea of
CMA-ES is the maximum-likelihood principle. At every generation,
the distribution is updated to maximize the likelihood of previously
successful candidates.

Algorithm 3 CMA-ES algorithm
Input: population size 𝑃
Initialize: distribution parameters: 𝐶 = I, 𝜇, 𝜎
for 𝑡 in 1 to #iters do

for 𝑖 in 1 to 𝑃 do
𝑊 𝑖 ∼ N(𝜇, 𝜎2𝐶), ⊲ Multivariate normal distribution
𝑓𝑖 ← Evaluate(𝑊𝑖)

end for
𝑊 {1...𝑃 } ←𝑊 𝑠 (1) ...𝑠 (𝑃) ⊲ Sort solutions based on 𝑓𝑖
𝜇 ← Update_mean (𝑊1, ...𝑊𝑃)
𝐶 ← Update covariance matrix
𝜎 ← Update standard deviation

end for

• PGPE – Policy Gradients with Parameter-based Exploration [21]
Algorithm 4 illustrates PGPE. More specifically, PGPE estimates

a likelihood gradient by sampling directly in the parameter space.
The parameters of the distribution are updated during searching,
which is similar to CMA-ES.

Algorithm 4 PGPE algorithm
Input: population size 𝑃
Initialize: distribution parameters: 𝜇, 𝜎
for 𝑡 in 1 to #iters do

for 𝑖 in 1 to 𝑃 do
Sample𝑊 𝑖 ∼ N(𝜇, 𝜎2I)
𝑓𝑖 ← Evaluate(𝑊 𝑖)

end for
T = [𝑡𝑖 𝑗]𝑖 𝑗 with 𝑡𝑖 𝑗 :=

(
𝑊

𝑗
𝑖
− 𝜇𝑖

)
S = [𝑠𝑖 𝑗]𝑖 𝑗 with 𝑠𝑖 𝑗 :=

𝑡2
𝑖 𝑗
− 𝜎2

𝑖

𝜎𝑖
r = [(𝑓1 − 𝑏), ..., (𝑓𝑃 − 𝑏)]T
Update 𝜇 = 𝜇 + 𝜂Tr
Update 𝜎 = 𝜎 + 𝜂Sr
Update baseline b accordingly

end for

5 EXPERIMENTS AND RESULTS
General setting

Computing and Software: Our experiments are conducted by a
machine with the Intel Xeon Gold 6140 CPU and four Nvidia Tesla
32GB V100s. The gradient-descent approach is developed by Keras
and the neuroevolution is implemented by EvoJax [23], which is
a Jax-based [3] hardware-accelerated toolkit for parallel running
across multiple TPU/GPUs. Our source code is publicly accessible
at https://github.com/toan-tv/NE-for-Transportation.

5.1 Supervised learning – Traffic Prediction
Dataset: In our experiments, we use the PeMS dataset which has

been collected from 11,160 detectors in major metropolitan areas of
California [4]. Due to the heavy computing demand, we randomly
chose 50 sensors and picked data over the course of four weeks
for our traffic prediction experiments. We use data from the first

https://github.com/toan-tv/NE-for-Transportation

UrbComp ’22, August 15th, 2022, Washington, DC, USA Toan V. Tran and Mina Sartipi

three weeks for training and data from the last week for testing. In
addition, we aggregate the original 30-second data into 5-minute
flows by calculating average values.

Baseline: For a fair comparison, we implement the same neural
network architecture proposed in [6], for both the neuroevolution
and gradient-based approaches. The network consists of a LSTM
layer with 32 hidden units and a fully connected layer with 32 units.
In total, the model has 6,081 trainable parameters. The activation
function is ReLU and the optimizer is RMSprop with the default
learning rate of 0.001. The training and testing data are the same,
the only difference being the training process, i.e., gradient descent
and neuroevolution. Since patterns in time-series data of various
sensors are different, we train a separate model for each sensor.
Each model is trained with 500 epochs and the best model is saved
during training.
• Algorithm effects. In this experiment, we implement various

evolutionary algorithms for training LSTM networks to measure
the influence of algorithms. To fairly compare, we use identical
hyperparameters.

Figure 2 presents the average MSE over iterations. The baseline
is the best model found by GD. In general, all NE methods except
GA outperform GD on the training loss. Among NE algorithms,
ARS and PGPE converge fastest after 40K iterations and also reach
the lowest training loss. Table 1 enumerates the number of time
series where the methods achieve the best performance. PGPE is
the best method, with 18 time series getting the lowest testing MSE.
Meanwhile, GD outperforms NE methods on only 1 time series
(i.e., 2% of the total dataset). Although the average training loss
of ARS is better than CMA-ES, CMA-ES obtains the best testing
MSE for 16 time series, compared to 8 time series by ARS. That
means ARS is not good at generalization and gets overfitted results.
Figure 3 shows detailed MSEs on the testing dataset of the selected
time series. Moreover, Figures 4 illustrates the testing loss curves of
Sensors 2 and 11. While CMA-ES achives the best result for Sensor
2, PGPE and ARS outperform other methods in case of Sensor 11.
Furthermore, Table 2 presents the average training time for each
timeseries of all methods. Generally, GD’s training time is shorter
than all NE’s.

0 20000 40000 60000 80000 100000
Iteration

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Tr
ai

ni
ng

 lo
ss

 (M
SE

) GD
GA
PGPE

OpenES
ARS
CMA-ES

Figure 2: Average MSE of 50 time series during training

Method GD GA PGPE OpenES ARS CMA-ES
#TimeSeries 1 5 18 2 8 16

Table 1: Number of time series that methods achieve the best
performance on the testing data

0 10 20 30 40 50
Sensor ID

0.0

2.5

5.0

7.5

10.0

12.5

M
SE

GD
GA
PGPE
OpenES
ARS
CMA-ES

Figure 3: MSE on the testing data of 50 selected time series

Method Total training One-iteration
time (s) training time (ms)

GD 89.24 1.89
GA 332.08 3.32
PGPE 228.47 2.28
OpenES 272.75 2.73
ARS 265.16 2.65

CMA-ES 244.76 2.45
Table 2: Average training time for each time series

• Population size effects. In this experiment, we train models
with different settings for the population size. All other hyperpa-
rameters are identical. We only investigate PGPE, which obtains
the best results among those NE algorithms.

Figure 5 presents the performance of PGPE while varying the
population size from 64 to 2048. All settings with different popula-
tion sizes outperform GD. Surprisingly, the population setting of
512 is better than the bigger populations of 1024 and 2048. The best
setting, i.e., 512, reduces the training by around 50%. Moreover, our
population sizes are considered quite small for this search space of
R6081. For example, a population size of 200 is used for the search
space of R3 in [18]. Normally, a larger population provides a better
global ability to avoid local minimums. However, a huge population
is challenging to the current computing capacity.
•Learning rate effects. In this experiment, we vary the learning

rate while keeping other hyperparameters identical.
Figure 6 illustrates the PGPE’s performance in different settings

of the learning rate. Generally, a lower learning rate provides better
results for both the loss value and convergence time. Furthermore,
the learning rate of 0.1 obtains an unstable result and can not
outperform GD. Meanwhile, the learning rates of 0.01 and 0.001
have better performance than the baseline. Notably, the setting
with the learning rate of 0.001 outperforms the baseline by around
35% on the training loss.

Neuroevolution for Transportation Applications UrbComp ’22, August 15th, 2022, Washington, DC, USA

0 20000 40000 60000 80000 100000
Iteration

0

2

4

6

8

10
Te

st
in

g
lo

ss
 (M

SE
) GD

GA
PGPE

OpenES
ARS
CMA-ES

0 20000 40000 60000 80000 100000
Iteration

0

2

4

6

8

10

Te
st

in
g

lo
ss

 (M
SE

) GD
GA
PGPE

OpenES
ARS
CMA-ES

Figure 4: Testing loss curves of Sensor 2 and 11 over iterations

0 20000 40000 60000 80000 100000
Iteration

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Tr
ai

ni
ng

 lo
ss

 (M
SE

) Baseline
64
128
256

512
1024
2048

Figure 5: PGPE’s performance with various population sizes

0 20000 40000 60000 80000 100000
Iteration

0

5

10

15

20

Tr
ai

ni
ng

 lo
ss

 (M
SE

) Baseline
0.001
0.01
0.1

Figure 6: PGPE’s performance with various learning rates

• An interesting visualization. We use filter-wise normal-
ization, proposed in [10], to visualize loss surfaces of the LSTM
networks for traffic prediction. Note that existing state-of-the-art
neural-network-surface visualizations can only express a part of the
characteristics of the comprehensive surface because the loss func-
tion is extremely complicated with thousand variables/trainable

parameters. Although a comprehensive visualization for all pa-
rameters is still a gap in research, existing visualizations can help
us make comparisons across disparate network architectures and
training data. In the context of this paper, we focus on comparing
loss surfaces of the same network architecture but for different
time series. Figures 7 and 8 present the loss surfaces of the time
series of Sensors 04 and 39, respectively. As shown in Figure 3, NE
outperforms GD on Sensor 04. On the other hand, GD is better than
NE for Sensor 39. Moreover, Figures 9 and 10 present the contour
lines when the loss value is less than 50. Generally, the loss function
of Sensor 04 is non-convex with many local minimums, while the
one of Sensor 39 is quite convex. Because GD can not guarantee a
global-optimal convergence [19], such a loss function with multiple
local minimums is challenging for GD. In contrast, NE is flexible to
escape local minimums. Moreover, in the convex case, i.e., Sensor
39, GD is better than NE because GD can easily reach the global
minimum.

Our visualization shows that despite the same problem, i.e., traffic
prediction, various time series have different patterns. Therefore,
loss surfaces for these time series are not similar. Furthermore, most
surfaces are non-convex, where NE outperforms GD.

5.2 Reinforcement learning – Signal Control
Jax-based Simulation: Because of the current limitation of the

library, i.e., EvoJax, all environments have to be written on Jax
and executed on GPUs/TPUs instead of CPUs. Therefore, existing
transportation simulators have not been able to play with EvoJax
yet. To deal with this problem, we implement a new Jax-based
simulation.

Initially, any traffic simulation requires a key component – a car-
following model. This model determines the speed of vehicles based
on their leaders. In our simulation, we implement the collision-
avoiding car-following model [27]. The speed of a vehicle can be
calculated as Eq. (3).

UrbComp ’22, August 15th, 2022, Washington, DC, USA Toan V. Tran and Mina Sartipi

Figure 7: The loss surface of Sensor 04 Figure 8: The loss surface of Sensor 39

Figure 9: The contour-line visualization for the loss sur-
face of Sensor 04, in which NE outperforms GD

Figure 10: The contour-line visualization for the loss
surface of Sensor 39, in which GD is better than NE

𝑐 =
𝑣 · Δ𝑡
2

𝑣2
𝐿

2 · 𝑑𝐿
− 𝑔𝑎𝑝

𝑎 =
1

2 · 𝑑
𝑏 =

Δ𝑡

2

𝑠 =
−𝑏 +

√
𝑏2 − 4 · 𝑎 · 𝑐
2 · 𝑎 ,

(3)

where 𝑣 and 𝑣𝐿 are speeds of the vehicle and its leader, respectively;
Δ𝑡 is the interval duration; 𝑔𝑎𝑝 is the distance between these two
vehicles; and 𝑑 and 𝑑𝐿 is the maximum deceleration of the vehicle
and its leader. In addition to the car following model, vehicles have
to follow speed constraints including vehicle-type maximum speed
and road speed limit. Moreover, vehicles are affected by traffic lights
and intersections. To simplify these effects, we assume:
• Vehicles accelerate and decelerate at their maximum capacity
• When traffic lights switch to yellow and red signals, vehicles
will stop if it is possible depending on their current speed,
distance, and maximum deceleration. Otherwise, they will
pass with normal behaviors.

To validate the functionality of our simulation, we conduct the
same experiment of an isolated intersection in both SUMO (which
is a well-known microscopic traffic simulation) and our simulation.
We set up identical scenarios, including traffic demand and light

setting. Generally, the difference between the two simulations is
slight. Table 3 presents the average travel time of vehicles in SUMO
and our simulation.

Vehicles/Hour 100 200 300 400
SUMO 38.94 35.40 35.67 35.85

Jax-based SIM 40.34 35.26 35.45 35.98
Difference 3.60% 0.40% 0.62% 0.36%

Table 3: Average travel time in SUMO and our simulation in
different scenarios

Simulation setting: We implement an isolated intersection with
a synthetic traffic demand of 400 vehicles per hour. The simulation
executes a 15-minute scenario. The traffic light has the standard
4-phase setting.

Reinforcement learning design: We implement the RL agent
that is proposed in [29]. There are three main components of the
RL agent: State, Action, and Reward. More specifically, State is a
vector of numbers of vehicles on approaching lanes. Meanwhile,
Action is the phase index that will be executed in the next interval.
The last component, i.e., Reward, is the negative of the total queue
length of approaching lanes. For the neural network architecture,
we implement a fully-connected one with two hidden layers, 32
units each. In total, we have 1408 trainable parameters.

Neuroevolution for Transportation Applications UrbComp ’22, August 15th, 2022, Washington, DC, USA

Result: Figure 11 illustrates the result of training the RL agent by
PGPE. In general, the agent is better over time and the cumulative
reward is converged. That means NE is able to train RL agents for
traffic signal control. Moreover, the curve presents a local minimum
that PGPE successfully escapes at around Iteration 150. Surpris-
ingly, this RL task converges much faster than the traffic prediction
task. The reason could be the number of parameters. Although the
number of trainable parameters of the traffic prediction model is
only 4.25 times the traffic signal control’s, the search spaces are
exponentially different (i.e., R6081 vs. R1408). Due to the exponential
growth of search spaces when the number of trainable parameters
increases, NE may require the huge number of iterations.

0 200 400 600 800 1000
Iteration

20

40

60

Cu
m

ul
at

iv
e

re
wa

rd PGPE

Figure 11: The performance of Neuroevolution for training
a RL agent for traffic signal control

6 CONCLUSION
We have presented the proposed method for training neural net-
works by Neuroevolution. The proposed framework outperforms
the gradient-descent-based learning method by up to 50% for the
traffic prediction task. We also provided the visualizations of the
loss surfaces so that we could understand why NE is better than
GD in some cases and vice versa. Finally, we also showed that NE
is possible for training reinforcement learning agents for traffic
signal control. Although the NE framework is highly scalable, our
settings of the population size are still relatively small for the vast
search spaces of training neural networks. Therefore, in the future,
when we have enough computing resources, we will investigate
more about the functionality of larger populations. Furthermore,
recent advances of graph neural networks are also an exciting topic.
Training graph neural networks by NE is still a gap in research that
we want to investigate.

7 ACKNOWLEDGMENTS
This material is based upon work partially supported by the U.S.
Department of Energy’s Office of Energy Efficiency and Renewable
Energy (EERE) under the Award Number DE-EE0009208. This re-
port was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, makes

any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not nec-
essarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not neces-
sarily state or reflect those of the United States Government or any
agency thereof.

REFERENCES
[1] Ayman Afiya, Martinez Juan, Pugliese Philip, Dubey Abhishek, and Laszka Aron.

2022. Neural Architecture and Feature Search for Predicting the Ridership of Pub-
lic Transportation Routes. In Proceedings of the 8th IEEE International Conference
on Smart Computing (SMARTCOMP’ 22).

[2] Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando de Freitas. 2016. Learning
to learn by gradient descent by gradient descent. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS’ 16).

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[4] Tom Choe, Alexander Skabardonis, and Pravin Varaiya. 2002. Freeway Perfor-
mance Measurement System: Operational Analysis Tool. Transportation Research
Record 1811, 1 (2002), 67–75.

[5] Xiaomin Fang, Jizhou Huang, Fan Wang, Lingke Zeng, Haijin Liang, and Haifeng
Wang. 2020. ConSTGAT: Contextual Spatial-Temporal Graph Attention Network
for Travel Time Estimation at BaiduMaps. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD’ 20).

[6] Rui Fu, Zuo Zhang, and Li Li. 2016. Using LSTM and GRU neural network
methods for traffic flow prediction. In Proceedings of 31st Youth Academic Annual
Conference of Chinese Association of Automation (YAC). https://doi.org/10.1109/
YAC.2016.7804912

[7] Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing Review. In
Towards a New Evolutionary Computation.

[8] Andrew G. Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan,
Quoc V. Le, and Hartwig Adam. 2019. Searching for MobileNetV3. Proceedings of
IEEE/CVF International Conference on Computer Vision (ICCV’ 19).

[9] Dariusz Jagodziński, Łukasz Neumann, and Paweł Zawistowski. 2021. Deep Neu-
roevolution: Training Neural Networks Using a Matrix-Free Evolution Strategy.
In Neural Information Processing, Teddy Mantoro, Minho Lee, Media Anugerah
Ayu, Kok Wai Wong, and Achmad Nizar Hidayanto (Eds.). Springer International
Publishing, Cham, 524–536.

[10] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018. Vi-
sualizing the Loss Landscape of Neural Nets. In Proceedings of Neural Information
Processing Systems (NeurIPS’ 18).

[11] Ting Li, Junbo Zhang, Kainan Bao, Yuxuan Liang, Yexin Li, and Yu Zheng. 2020.
AutoST: Efficient Neural Architecture Search for Spatio-Temporal Prediction.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’20). https://doi.org/10.1145/3394486.3403122

[12] Horia Mania, Aurelia Guy, and Benjamin Recht. 2018. Simple random search of
static linear policies is competitive for reinforcement learning. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS’ 18).

[13] Christos Markos and James J.Q. Yu. 2020. Unsupervised Deep Learning for
GPS-Based Transportation Mode Identification. In 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC’ 20). 1–6. https://doi.org/
10.1109/ITSC45102.2020.9294673

[14] Tom V. Mathew. [n.d.]. Genetic Algorithm.
[15] Hoang Nguyen, Minh Kieu, TaoWen, and Chen Cai. 2018. Deep learning methods

in transportation domain: A review. IET Intelligent Transport Systems 12 (07 2018).
https://doi.org/10.1049/iet-its.2018.0064

[16] Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang.
2019. Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta
Learning. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD ’19).

[17] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the Difficulty
of Training Recurrent Neural Networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning (ICML’ 13).

http://github.com/google/jax
https://doi.org/10.1109/YAC.2016.7804912
https://doi.org/10.1109/YAC.2016.7804912
https://doi.org/10.1145/3394486.3403122
https://doi.org/10.1109/ITSC45102.2020.9294673
https://doi.org/10.1109/ITSC45102.2020.9294673
https://doi.org/10.1049/iet-its.2018.0064

UrbComp ’22, August 15th, 2022, Washington, DC, USA Toan V. Tran and Mina Sartipi

[18] Olympia Roeva, Stefka Fidanova, and Marcin Paprzycki. 2013. Influence of the
population size on the genetic algorithm performance in case of cultivation pro-
cess modelling. In 2013 Federated Conference on Computer Science and Information
Systems. 371–376.

[19] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
https://doi.org/10.48550/ARXIV.1609.04747

[20] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. 2017. Evolution Strate-
gies as a Scalable Alternative to Reinforcement Learning. ArXiv abs/1703.03864
(2017).

[21] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters,
and Jürgen Schmidhuber. 2008. Policy Gradients with Parameter-Based Explo-
ration for Control. In Proceedings of the 18th International Conference on Artificial
Neural Networks (ICANN). https://doi.org/10.1007/978-3-540-87536-9_40

[22] Felipe Petroski Such, VashishtMadhavan, Edoardo Conti, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. 2017. Deep Neuroevolution: Genetic Algorithms Are a
Competitive Alternative for Training Deep Neural Networks for Reinforcement
Learning. CoRR abs/1712.06567 (2017). arXiv:1712.06567 http://arxiv.org/abs/
1712.06567

[23] Yujin Tang, Yingtao Tian, and David Ha. 2022. EvoJAX: Hardware-Accelerated
Neuroevolution. In Proceedings of 2022 Genetic and Evolutionary Computation
Conference (GECCO’ 22).

[24] Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. 2021. Recent Advances
in Reinforcement Learning for Traffic Signal Control: A Survey of Models and
Evaluation. SIGKDD Explorer Newsletter 22, 2 (2021). https://doi.org/10.1145/

3447556.3447565
[25] Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gómez

Colmenarejo, Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. 2017.
Learned Optimizers That Scale and Generalize. In Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML’ 17).

[26] Zhongxia Yan, Abdul Rahman Kreidieh, Eugene Vinitsky, Alexandre M. Bayen,
and Cathy Wu. 2022. Unified Automatic Control of Vehicular Systems With Re-
inforcement Learning. IEEE Transactions on Automation Science and Engineering
(2022). https://doi.org/10.1109/TASE.2022.3168621

[27] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou,
Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Jessie Li. 2019. CityFlow: A
Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic
Scenario. In Proceedings of The World Wide Web Conference (WWW’ 19).

[28] Junbo Zhang, Yu Zheng, Junkai Sun, and Dekang Qi. 2020. Flow Prediction in
Spatio-Temporal Networks Based on Multitask Deep Learning. IEEE Transactions
on Knowledge and Data Engineering 32, 3 (2020), 468–478. https://doi.org/10.
1109/TKDE.2019.2891537

[29] Guanjie Zheng, Xinshi Zang, Nan Xu, Hua Wei, Zhengyao Yu, Vikash Gayah,
Kai Xu, and Zhenhui Li. 2019. Diagnosing Reinforcement Learning for Traffic
Signal Control. https://doi.org/10.48550/ARXIV.1905.04716

[30] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. In Proceedings of International Conference on Learning Representations
(ICLR’ 17).

https://doi.org/10.48550/ARXIV.1609.04747
https://doi.org/10.1007/978-3-540-87536-9_40
https://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
https://doi.org/10.1145/3447556.3447565
https://doi.org/10.1145/3447556.3447565
https://doi.org/10.1109/TASE.2022.3168621
https://doi.org/10.1109/TKDE.2019.2891537
https://doi.org/10.1109/TKDE.2019.2891537
https://doi.org/10.48550/ARXIV.1905.04716

	Abstract
	1 Introduction
	2 Related Works
	2.1 Neural networks in transportation
	2.2 Neuroevolution

	3 Background
	3.1 Modelling the training task
	3.2 Training by Gradient Descent (GD)
	3.3 Training by Neuroevolution (NE)

	4 Methods
	4.1 Neuroevolution Framework
	4.2 Neuroevolution Algorithms

	5 Experiments and Results
	5.1 Supervised learning – Traffic Prediction
	5.2 Reinforcement learning – Signal Control

	6 Conclusion
	7 ACKNOWLEDGMENTS
	References

