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ABSTRACT

This paper investigates training neural networks for transportation
applications by Neuroevolution (NE), which is a competitive alter-
native to Gradient Descent (GD). We conduct experiments for two
typical transportation tasks: traffic prediction (supervised learn-
ing) and traffic signal control (reinforcement learning). For traffic
prediction, our proposed NE framework outperforms GD in most
cases. To investigate the reason NE performs better than GD, we
apply a visualization technique to the loss function. The visualiza-
tion shows non-convex surfaces with many local minimums that
cause challenges to GD. Finally, we show that NE can also train
reinforcement learning agents for traffic signal control.
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1 INTRODUCTION

Many transportation applications have benefited from the success
of neural networks and deep learning. In general, there are three
approaches: supervised learning, unsupervised learning, and re-
inforcement learning [15]: supervised learning solves prediction
tasks, unsupervised learning detects anomaly and represent fea-
tures, and reinforcement learning is the state-of-the-art method
used in control tasks such as traffic signal control and automated
driving. Due to the high demand of deep learning in transportation,
any small improvement in neural-network fundamentals, such as
the training process and network architecture, can bring a huge
impact to this field.
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Despite its importance, not many studies investigate the funda-
mental research for transportation related problems. For example,
neural networks in transportation problems are typically trained by
Gradient Descent (GD) and Back-propagation algorithms. However,
GD has challenges such as gradient vanishing and exploding [17].
Another problem of GD is related to local minimums, which fre-
quently appear in the loss surfaces of neural networks [19]. There
are several ways to handle these issues, such as changing activation
functions to ReLU, adjusting network architectures with skipping
connections to avoid vanishing, and momentum for optimizers
to escape local minimums. However, these solutions cannot fully
address the issues since the root cause of the problems, i.e., the
gradient descent strategy, remains unchanged.

This paper investigates an alternative to GD — Neuroevolution
(NE), also known as Deep Neuroevolution, to train neural networks
for transportation applications. Note that NE is sometimes known
as a Neural Architecture Search (NAS) [30] that automatically gen-
erates network architectures. The scope of this paper is to perform
NE/evolutionary algorithms for the training process. The main
contributions of our work are as follows:

o To the best of our knowledge, this is the first paper that in-
vestigates Neuroevolution for transportation problems. We
also conduct experiments for two common tasks: Supervised
learning (traffic prediction) and reinforcement learning (traf-
fic signal control).

e For traffic prediction, our proposed NE framework outper-
forms the traditional approach using GD. Moreover, we also
demonstrate that NE is able to train neural networks for the
traffic signal control task.

e We conduct extensive experiments to compare different NE
algorithms and figure out the effects of hyperparameters.
Further, we apply the state-of-the-art visualization technique
to understand more about why NE outperforms GD and vice
versa.

The rest of this paper is organized as follows: Section 2 and 3
present related works and the background of training neural net-
works, respectively. Section 4 describes the details of the Neuroevo-
lution framework and algorithms proposed in this paper. Experi-
ments and results are summarized in 5. Finally, Section 6 concludes
the paper and gives an outlook on future work.

2 RELATED WORKS

2.1 Neural networks in transportation

As mentioned above, there are three main categories in machine
learning: supervised learning, unsupervised learning, and reinforce-
ment learning. Supervised learning is widely applied to three com-
mon tasks: traffic flow, demand prediction, and accident prediction
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[15]. To exploit the temporal dependency in these tasks, [6] utilized
LSTM and GRU, while [16] proposed a method with Meta-RNN.
Another approach takes advantage of the spatial dependency by
using CNN [11, 28]. The state-of-the-art prediction method exploits
both temporal and spatial features with RNN-based Graph Con-
volutional Networks (GCN) [5]. Unsupervised learning is mainly
applied for feature extraction using AutoEncoder networks [13].
Finally, Reinforcement Learning (RL) is the state-of-the-art method
for transportation control tasks such as traffic signal control [24]
and automated driving in the scenario of connected vehicles [26].
Furthermore, all neural networks applied in this field are trained
by gradient descent.

2.2 Neuroevolution

Neuroevolution (NE) is related to two problems: designing neural
network architectures and training the networks. Designing the
network architectures through NE, known as NAS, has achieved
many breakthroughs (e.g., reinforcement-learning-enabled NAS
[30] defeated humans in designing a computer-vision neural net-
work architecture on CIFAR-10). Moreover, NAS has helped to
create a compact but powerful architecture for edge devices [8].
In the context of transportation, [11] and [1] performed NAS to
automatically search the suitable neural architectures for traffic
flow and ridership prediction, respectively.

Neuroevolution has also demonstrated its effectiveness for the
training task. In [22], the authors have shown that Genetic Al-
gorithm is a competitive alternative for training reinforcement-
learning agents. Moreover, [20] proposed a highly-scalable evolu-
tionary strategy that rivaled the performance of standard RL (i.e.,
GD-based RL). The matrix-free evolution strategy proposed in [9]
outperforms GD on the FashionMNIST dataset — a classification
task. This is especially true with a library named EvoJax, which
provides parallel running across GPUs/TPUs to significantly reduce
the training time of NE approaches [23].

3 BACKGROUND
3.1 Modelling the training task

Training process, represented in Eq. (1), finds the values of trainable
parameters W that minimize the loss function on the whole training
data:

W= argwmin (L(net(W,X),y)), (1)

where L is the loss function, net is the forward of the neural net-
work, X is the training data, y is the training label.

3.2 Training by Gradient Descent (GD)

Gradient Descent is an optimization algorithm used to find mini-
mums of a given function. When training by GD, at every iteration,
each trainable parameter takes a step in the opposite direction of
its gradient. Eq. (2) illustrates an iteration of this training process.

oL (net(W, Xparch), Ybarch)
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9.
where a—L is gradient and calculated by backpropagation; w denotes
w

trainable parameters; 7 is the learning rate; and g is the optimizer’s
policy. For example, Stochastic Gradient Descent (SGD) uses policy
g that is exactly equal to the value of the gradient. There are also
some improvement methods using momentum, such as Adam and
RMSprop [19]. In addition, some studies apply recurrent neural
networks to play a role as policy g [2, 25].

3.3 Training by Neuroevolution (NE)

Instead of iterating an update strategy for a unique model like GD,
Neuroevolution conducts an evolutionary process for a population
of models. The following section describes this training in detail.

4 METHODS
4.1 Neuroevolution Framework

Figure 1 presents the flow chart of the training process using neu-
roevolution. The first step is Initialization which initializes a popu-
lation of models. After that, the evolutionary process is conducted
for the whole population. More specifically, this process iterates a
loop of 4 steps: Evaluation, Selection, Recombination, and Mutation.
Evaluation is to calculate value of the objective function obtained
by the current weights. For supervised-learning tasks, the objective
function is common loss functions such as maximum likelihood or
mean square error. Meanwhile, reinforcement-learning tasks evalu-
ate the current weights/biases by the cumulative reward obtained
after running an episode in the environment. The next step is Se-
lection, which selects the best models (i.e., models that achieve the
highest values of the objective function). These models are recom-
bined to form the next generation of the population. Sequentially,
the new generation is randomly mutated. This looping procedure
is iterated until the objective is fully optimized. Moreover, various
evolutionary algorithms have different ways to conduct these steps,
which are explained in the next section.

4.2 Neuroevolution Algorithms

® GA - Genetic Algorithm [14]

GA is inspired by the natural evolution and mimics biological
operators such as selection, mutation, and crossover.
e OpenES — OpenAl Evolution Strategies [20]

OpenES is presented in Algorithm 1. For each iteration, the
population is mutated by adding a random noise into the current
weight values and then updated based on the average fitness value.

Algorithm 1 OpenES algorithm

Input: learning rate 7, noise standard deviation o, initial weight
Wo, population size P
for t in 1 to #iters do

Sample €1, ...,ep ~ N(0,1),

fi « Evaluate(W; + o¢;) fori=1,..,P

1
West < Wet—— i e

> Evaluation

> Update

end for

e ARS - Augmented Random Search
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Figure 1: Flow chart of training neural network by NE

ARS is presented in Algorithm 2 and is considered as an im-
provement of OpenES. First, it considers both directions of samples
instead of only one like OpenES. Second, ARS conducts Selection,
while OpenES only calculates the average of all solutions. Because
the goal is to maximize the collected fitness values, removing some
bad solutions can be a judicious strategy. [12]

Algorithm 2 ARS algorithm

Input: learning rate 7, noise standard deviation o, initial weight
Wo, population size P, number of top-performing solutions to
use b
for ¢t in 1 to #iters do

Sample €, ..., epwith i.i.d. standard normal entries

fii «— Evaluate(W; + o¢;) fori=1,..,P > Evaluation

Sort solutions by max(f;*, f;”)

Select b top solutions €;_j

1
b —
Wip1 «— We +T]—b Zj=l €j |:f]+ —]3. ]

o -

> Selection

> Update

end for

o CMA-ES- Covariance Matrix Adaptation Evolution Strategy [7]

While OpenES and ARS sample from a static distribution, CMA-
ES changes the distribution parameters during searching. Moreover,
CMA-ES is introduced as a stochastic method for non-linear, non-
convex, black-box optimization problems in continuous domains.
Algorithm 3 simplifies the operation of CMA-ES. The key idea of
CMA-ES is the maximum-likelihood principle. At every generation,
the distribution is updated to maximize the likelihood of previously
successful candidates.
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Algorithm 3 CMA-ES algorithm

Input: population size P
Initialize: distribution parameters: C =1, y, o
for t in 1 to #iters do
foriin1to P do
Wi~ N(p,6%C),
fi « Evaluate(W))
end for
wil.P}  ys()..s(P)

> Multivariate normal distribution

> Sort solutions based on f;
1« Update_mean (W, ...Wp)
C « Update covariance matrix
o « Update standard deviation

end for

e PGPE - Policy Gradients with Parameter-based Exploration [21]

Algorithm 4 illustrates PGPE. More specifically, PGPE estimates
a likelihood gradient by sampling directly in the parameter space.
The parameters of the distribution are updated during searching,
which is similar to CMA-ES.

Algorithm 4 PGPE algorithm

Input: population size P
Initialize: distribution parameters: y, o
for ¢ in 1 to #iters do
foriin1to P do
Sample W! ~ N (y, 6°T)
fi « Evaluate(W?)

end for )

T= [tij]ij with tij = (VVIJ - /,li)
2 2
ij ~ 9

S= [sij]ij with Sij =

O
r=[(fi=b)...(fp = b)I"
Update y=p+nTr
Update o0 = o + 1Sr
Update baseline b accordingly
end for

5 EXPERIMENTS AND RESULTS

General setting

Computing and Software: Our experiments are conducted by a
machine with the Intel Xeon Gold 6140 CPU and four Nvidia Tesla
32GB V100s. The gradient-descent approach is developed by Keras
and the neuroevolution is implemented by EvoJax [23], which is
a Jax-based [3] hardware-accelerated toolkit for parallel running
across multiple TPU/GPUs. Our source code is publicly accessible
at https:// github.com/toan-tv/ NE-for- Transportation.

5.1 Supervised learning — Traffic Prediction

Dataset: In our experiments, we use the PeMS dataset which has
been collected from 11,160 detectors in major metropolitan areas of
California [4]. Due to the heavy computing demand, we randomly
chose 50 sensors and picked data over the course of four weeks
for our traffic prediction experiments. We use data from the first
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three weeks for training and data from the last week for testing. In
addition, we aggregate the original 30-second data into 5-minute
flows by calculating average values.

Baseline: For a fair comparison, we implement the same neural
network architecture proposed in [6], for both the neuroevolution
and gradient-based approaches. The network consists of a LSTM

layer with 32 hidden units and a fully connected layer with 32 units.

In total, the model has 6,081 trainable parameters. The activation
function is ReLU and the optimizer is RMSprop with the default
learning rate of 0.001. The training and testing data are the same,
the only difference being the training process, i.e., gradient descent
and neuroevolution. Since patterns in time-series data of various

sensors are different, we train a separate model for each sensor.

Each model is trained with 500 epochs and the best model is saved
during training.

e Algorithm effects. In this experiment, we implement various
evolutionary algorithms for training LSTM networks to measure
the influence of algorithms. To fairly compare, we use identical
hyperparameters.

Figure 2 presents the average MSE over iterations. The baseline
is the best model found by GD. In general, all NE methods except
GA outperform GD on the training loss. Among NE algorithms,
ARS and PGPE converge fastest after 40K iterations and also reach
the lowest training loss. Table 1 enumerates the number of time
series where the methods achieve the best performance. PGPE is

the best method, with 18 time series getting the lowest testing MSE.

Meanwhile, GD outperforms NE methods on only 1 time series
(i.e., 2% of the total dataset). Although the average training loss
of ARS is better than CMA-ES, CMA-ES obtains the best testing
MSE for 16 time series, compared to 8 time series by ARS. That
means ARS is not good at generalization and gets overfitted results.
Figure 3 shows detailed MSEs on the testing dataset of the selected
time series. Moreover, Figures 4 illustrates the testing loss curves of
Sensors 2 and 11. While CMA-ES achives the best result for Sensor
2, PGPE and ARS outperform other methods in case of Sensor 11.
Furthermore, Table 2 presents the average training time for each
timeseries of all methods. Generally, GD’s training time is shorter
than all NE’s.

15.0
12.5-
10.0+
7.51
5.01

Training loss (MSE)

0 20000 40000 60000 80000 100000
Iteration

Figure 2: Average MSE of 50 time series during training

Toan V. Tran and Mina Sartipi

Method ‘ GD GA PGPE OpenES ARS CMA-ES
#TimeSeries | 1 5 18 2 8 16
Table 1: Number of time series that methods achieve the best
performance on the testing data
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Figure 3: MSE on the testing data of 50 selected time series

Method | Total training One-iteration
time (s) training time (ms)

GD 89.24 1.89
GA 332.08 3.32
PGPE 228.47 2.28
OpenES 272.75 2.73
ARS 265.16 2.65
CMA-ES 244.76 2.45

Table 2: Average training time for each time series

e Population size effects. In this experiment, we train models
with different settings for the population size. All other hyperpa-
rameters are identical. We only investigate PGPE, which obtains
the best results among those NE algorithms.

Figure 5 presents the performance of PGPE while varying the
population size from 64 to 2048. All settings with different popula-
tion sizes outperform GD. Surprisingly, the population setting of
512 is better than the bigger populations of 1024 and 2048. The best
setting, i.e., 512, reduces the training by around 50%. Moreover, our
population sizes are considered quite small for this search space of
R931 For example, a population size of 200 is used for the search
space of R? in [18]. Normally, a larger population provides a better
global ability to avoid local minimums. However, a huge population
is challenging to the current computing capacity.

¢ Learning rate effects. In this experiment, we vary the learning
rate while keeping other hyperparameters identical.

Figure 6 illustrates the PGPE’s performance in different settings
of the learning rate. Generally, a lower learning rate provides better
results for both the loss value and convergence time. Furthermore,
the learning rate of 0.1 obtains an unstable result and can not
outperform GD. Meanwhile, the learning rates of 0.01 and 0.001
have better performance than the baseline. Notably, the setting
with the learning rate of 0.001 outperforms the baseline by around
35% on the training loss.
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Figure 4: Testing loss curves of Sensor 2 and 11 over iterations
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Figure 5: PGPE’s performance with various population sizes
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Figure 6: PGPE’s performance with various learning rates

e An interesting visualization. We use filter-wise normal-
ization, proposed in [10], to visualize loss surfaces of the LSTM
networks for traffic prediction. Note that existing state-of-the-art
neural-network-surface visualizations can only express a part of the
characteristics of the comprehensive surface because the loss func-
tion is extremely complicated with thousand variables/trainable

parameters. Although a comprehensive visualization for all pa-
rameters is still a gap in research, existing visualizations can help
us make comparisons across disparate network architectures and
training data. In the context of this paper, we focus on comparing
loss surfaces of the same network architecture but for different
time series. Figures 7 and 8 present the loss surfaces of the time
series of Sensors 04 and 39, respectively. As shown in Figure 3, NE
outperforms GD on Sensor 04. On the other hand, GD is better than
NE for Sensor 39. Moreover, Figures 9 and 10 present the contour
lines when the loss value is less than 50. Generally, the loss function
of Sensor 04 is non-convex with many local minimums, while the
one of Sensor 39 is quite convex. Because GD can not guarantee a
global-optimal convergence [19], such a loss function with multiple
local minimums is challenging for GD. In contrast, NE is flexible to
escape local minimums. Moreover, in the convex case, i.e., Sensor
39, GD is better than NE because GD can easily reach the global
minimum.

Our visualization shows that despite the same problem, i.e., traffic
prediction, various time series have different patterns. Therefore,
loss surfaces for these time series are not similar. Furthermore, most
surfaces are non-convex, where NE outperforms GD.

5.2 Reinforcement learning — Signal Control

Jax-based Simulation: Because of the current limitation of the
library, i.e., EvoJax, all environments have to be written on Jax
and executed on GPUs/TPUs instead of CPUs. Therefore, existing
transportation simulators have not been able to play with EvoJax
yet. To deal with this problem, we implement a new Jax-based
simulation.

Initially, any traffic simulation requires a key component - a car-
following model. This model determines the speed of vehicles based
on their leaders. In our simulation, we implement the collision-
avoiding car-following model [27]. The speed of a vehicle can be
calculated as Eq. (3).
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Figure 9: The contour-line visualization for the loss sur-

face of Sensor 04, in which NE outperforms GD
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where v and vy, are speeds of the vehicle and its leader, respectively;
At is the interval duration; gap is the distance between these two
vehicles; and d and dj, is the maximum deceleration of the vehicle
and its leader. In addition to the car following model, vehicles have
to follow speed constraints including vehicle-type maximum speed
and road speed limit. Moreover, vehicles are affected by traffic lights
and intersections. To simplify these effects, we assume:

e Vehicles accelerate and decelerate at their maximum capacity

e When traffic lights switch to yellow and red signals, vehicles
will stop if it is possible depending on their current speed,
distance, and maximum deceleration. Otherwise, they will
pass with normal behaviors.

To validate the functionality of our simulation, we conduct the
same experiment of an isolated intersection in both SUMO (which
is a well-known microscopic traffic simulation) and our simulation.
We set up identical scenarios, including traffic demand and light
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Figure 10: The contour-line visualization for the loss
surface of Sensor 39, in which GD is better than NE

setting. Generally, the difference between the two simulations is
slight. Table 3 presents the average travel time of vehicles in SUMO
and our simulation.

Vehicles/Hour | 100 200 300 400
SUMO 38.94 | 3540 | 35.67 | 35.85
Jax-based SIM | 40.34 | 35.26 | 35.45 | 35.98
Difference 3.60% | 0.40% | 0.62% | 0.36%
Table 3: Average travel time in SUMO and our simulation in
different scenarios

Simulation setting: We implement an isolated intersection with
a synthetic traffic demand of 400 vehicles per hour. The simulation
executes a 15-minute scenario. The traffic light has the standard
4-phase setting.

Reinforcement learning design: We implement the RL agent
that is proposed in [29]. There are three main components of the
RL agent: State, Action, and Reward. More specifically, State is a
vector of numbers of vehicles on approaching lanes. Meanwhile,
Action is the phase index that will be executed in the next interval.
The last component, i.e., Reward, is the negative of the total queue
length of approaching lanes. For the neural network architecture,
we implement a fully-connected one with two hidden layers, 32
units each. In total, we have 1408 trainable parameters.
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Result: Figure 11 illustrates the result of training the RL agent by
PGPE. In general, the agent is better over time and the cumulative
reward is converged. That means NE is able to train RL agents for
traffic signal control. Moreover, the curve presents a local minimum
that PGPE successfully escapes at around Iteration 150. Surpris-
ingly, this RL task converges much faster than the traffic prediction
task. The reason could be the number of parameters. Although the
number of trainable parameters of the traffic prediction model is
only 4.25 times the traffic signal control’s, the search spaces are
exponentially different (i.e., R®%! vs. R1498). Dye to the exponential
growth of search spaces when the number of trainable parameters
increases, NE may require the huge number of iterations.

—— PGPE
60+

40-

20

Cumulative reward

0 200 400 600 800 1000

lteration

Figure 11: The performance of Neuroevolution for training
a RL agent for traffic signal control

6 CONCLUSION

We have presented the proposed method for training neural net-
works by Neuroevolution. The proposed framework outperforms
the gradient-descent-based learning method by up to 50% for the
traffic prediction task. We also provided the visualizations of the
loss surfaces so that we could understand why NE is better than
GD in some cases and vice versa. Finally, we also showed that NE
is possible for training reinforcement learning agents for traffic
signal control. Although the NE framework is highly scalable, our
settings of the population size are still relatively small for the vast
search spaces of training neural networks. Therefore, in the future,
when we have enough computing resources, we will investigate
more about the functionality of larger populations. Furthermore,
recent advances of graph neural networks are also an exciting topic.
Training graph neural networks by NE is still a gap in research that
we want to investigate.
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