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ABSTRACT 
Natural gas is widely used for domestic and industrial purposes, 
and we cannot actually directly know that it is being leaked into the 
air. The current problem is that gas leakage is not only 
economically harmful but also detrimental to health. Therefore, a 
lot of research has been done on the risk of gas damage and 
leakages, but research on predicting gas leakage is just being done. 
In this study, we propose a method based on deep learning to 
predict gas leakage from environmental data. Our proposed method 
has successfully improved the performance of machine learning 
classification algorithms by efficiently preparing training data 
using a deep autoencoder model. The proposed method was 
evaluated on an open dataset containing natural gas and 
environmental information and compared with extreme gradient 
boost (XGBoost), K-nearest neighbors (KNN), decision tree (DT), 
random forest (RF), and Naive Bayes (NB) algorithms. The 
proposed method is evaluated by the accuracy, F1-score, mean 
standard error (MSE), and area under the ROC curve (AUC). As a 
result, the presented method in this study outperformed all 
compared methods. Moreover, Deep Autoencoder and 
OrdinalEncoder-based XGBoost (DAE-OE-XGBoost) showed the 
best performance by giving 99.193% accuracy, an F1-score of 
99.38%, an MSE of 0.004, and an AUC of 99.53%. 
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1 Introduction  
Predicting gas leakage early makes it possible to prevent future 
economic losses. In addition, the natural gas leakage can exacerbate 
adverse health effects, such as hypertension, pulmonary, 
exacerbates pneumonia, asthma, and other respiratory diseases. 

Therefore, gas leak detection is essential for gas-intensive countries. 
So far, we have found that very little research has been done to 
predict gas leakage. Although there are studies on the harmful 
effects of gas leaks [1-3], not enough research has been done to 
predict gas leaks. 
This study proposes a novel method based on the deep learning 
method that predicts gas loss by combining gas data with 
environmental data. The proposed method consists of three main 
modules: data pre-processing, data labeling, and predictive analysis. 
The data pre-processing module removes outlier using deep 
autoencoder reconstruction error and normalizes the data using OE 
and LN transformation techniques. The data labeling module 
selects only natural gas (NG) CH4 data from the data pre-processed 
data, divides it into groups using the K-means clustering algorithm, 
and classifies the data according to that group. Afterward, the 
predictive analysis module then builds a model that predicts gas 
loss using machine learning algorithms on the available data. 
In other words, models created according to the proposed method 
improve the prediction results better than constructing a predictive 
model using machine learning algorithms on the data without pre-
processing the data. 
The main contribution of this paper is the following novelty: 

- We have proposed a novel method based on deep 
learning to predict gas leakages by removing outliers with 
deep autoencoder model. 

- We evaluated the proposed method on real data open 
dataset and can be used to compare the results in other 
research works. In addition, the study was implemented 
using actual open data that had not previously been used 
with the ML algorithm, which future researchers will 
widely use for comparative research. 

- We compared the proposed method with baseline models 
based on extreme gradient boost (XGBoost), K-nearest 
neighbors (KNN), decision tree (DT), random forest (RF), 
and Naive Bayes (NB) algorithms showed improved 
performance.  

An outline of the article is as follows. Section 2 provides a detailed 
survey of related work. The proposed method is explained in 
Section 3. Section 4 presents the experimental dataset, the methods 
used for comparison, the evaluation metrics, and the results of 
comparative experiments. Finally, conclusions are generated in 
Section 5. 
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2 Related works   
Researchers have studied a pilot project of this mapping approach 
to explore the first step in understanding the effects of NG leaks [3]. 
Zhu et al. [4] proposed a regression-based deep belief network 
(DBN) model to predict the amount and rate of valve gas leakage 
in a natural gas pipeline system. Several studies used statistical and 
machine learning-based methods to detect gas leakage in residential 
and construction environments in water and natural gas networks 
[5-6]. In [7], advantages of the statistical shape analysis (SSA) 
method have been presented in comparison to principal component 
analysis (PCA), discrete wavelet transforms (DWT), and 
polynomial curve fitting (PCF) algorithm for improvement of 
detection selectivity. Also, Song et al. [8] present a gas leak 
detection method for galvanized steel pipes based on acoustic 
emission. A machine-based approach to environmental engineering 
has been widely used to predict natural gas leaks. Our previous 
research [9] used an ordinal-encoder (OE) normalization and k-
means clustering for the data preprocessing section. However, we 
improved the performance of our previous study by using a deep 
autoencoder-based outlier removal process. Classification methods 
are trained on data being normally distributed. In very rare cases, 
learning from data with outlier errors reduces the ability to predict 
other standard distributed data. Therefore, in this study, we aimed 
to show that we can improve the power of the model by first 
removing the outlier values during training and then training the 
model on the most normally distributed data. 
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Figure 1. General architecture of the proposed method. 
 
Autoencoder is widely used for reducing data dimensions by 
learning data representation [10-12]. The authors of [13] used a 
clustering algorithm and reconstruction error from the deep 

autoencoder model to detect outliers in unsupervised mode. 
Another usage of the autoencoder is that remove image denoising 
[14-18] and time-series data. 

3  Methodology   
The proposed approach has three modules: data preprocessing, data 
labeling, and predictive analysis. The general architecture of the 
proposed method is presented in Figure 1. The first module uses 
deep autoencoder, OrdinalEncoder, and Ln transformation 
techniques. As a result of this module, normalized clean data is 
passed to the k-means algorithm in the next module for data 
labeling. After that, several machine learning algorithms are trained 
using the prepared experimental data. 
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Figure 2: Structure of the proposed Deep AutoEncoder method. 

3.1  Data pre-processing  
We use Deep Autoencoder to clean our data. The autoencoder is an 
unsupervised artificial neural network that learns how to efficiently 
compress and encode data and then reconstruct the data from the 
reduced encoded representation to a representation close to the 
original input as possible [15]. The structure of AE consists of 
encoder and decoder parts. The encoder part compresses input data 
by reducing data dimension, while the decoder part reconstructs the 
compressed data into output. Thus, the number of input neurons 
equals the number of output neurons in AE. Reconstruction error 
of autoencoder is a difference between input and its reconstructed 
output. Figure 2 shows the structure of the proposed autoencoder 
model in this study. Firstly, it projects input X to a lower dimension 
that works in the encoder part; then, it reconstructs output X’ from 
the low dimensional projection in the decoder part. Sequentially, 
the proposed autoencoder has five hidden layers with 17, 14, 5, 1, 
5, 14, and 17 nodes. Moreover, hidden layers in the encoder part 
use the “ReLU” activation function, and hidden layers in the 
decoder part use the “tanh” activation function. In summary, 17 
features after the min-max normalization are used to train the 
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autoencoder where the activation functions for encoder and decoder 
are rectified linear unit (ReLU) and hyperbolic tangent (tanh), 
respectively. In other words, the learning process of AE is that it 
compresses the input into a lower-dimensional space called latent 
space and uncompressed back the compressed data into the output 
that closely matches the original data. Then, it calculates a 
difference between the input and reconstructed output and changes 
the network weights to reduce this difference. 
First, we trained the deep autoencoder model on the whole dataset. 
Then we calculated reconstruction errors of them by the mean of 
the squared difference between input and output described in 
expression (1): 

  

2'

2
1

1 m

i i
i

RE x x
m =

= −∑
  (1) 

where m is the number of records, x is the original input, and x’ is 
the reconstructed input. 

a 

 

b 

 
Figure 3: Plots of CH4 data with and without outliers. 
 
Fig. 4 shows data with and without outliers from the dataset by a 
number of values. Fig. 4a shows the original dataset with outliers. 
Fig 4b shows based on the DAE method of the dataset without 
outliers. After that, the outlier threshold value is estimated by 
summing up the average reconstruction error and standard 
deviation. Then, if the reconstruction error of data exceeds the 

threshold value, this data will be removed from the dataset. This 
module's last step is to normalize outlier removed data using OE 
and Ln transformation technique. The advantage of normalization 
in machine learning is that their normalization technique organizes 
a database to minimize duplicate and redundancy data. We encode 
categorical variables as an integer array. The input of this 
transformer is identical to the integer or a string array and 
represents a value obtained according to the category (discrete) 
characteristics. This section converts features into ordinal integers. 
As a result, one integer column (0 to n-1) appears in one element, 
and n is the number of categories [9]. Figure 4 shows plots of CH4 
with and without OE. 

a 

 

b 

 
Figure 4:   Plots of CH4 data with OE normalization data for 
NG: (a) CH4 and (b) normalization OE of CH4. 
 

3.2  Data labeling 
This module selects the CH4 feature, which is the value of methane 
from the preprocessed dataset for data labeling. The first open 
dataset has no label. Therefore, we used the simple and commonly 
used k-means algorithm to make the label for our outlier removed 
dataset. K-means is a multi-variable clustering method developed 
by MacQueen in 1967 [19]. The basic idea is to divide the samples 
into k subgroups of n samples in the most comparable class. First, 
all samples belong to group k. The method then calculates the 
Euclidean norm between the samples and the core point of each 
cluster. It computes the Euclidean norm until the allocation of all 
samples is no longer changed. We assign the class label as low, 
medium, or high based on the result of the k-means algorithm. 
Finally, we combined the class labels with the outlier removed 
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dataset except for the CH4 feature because the CH4 feature is used 
to determine class labels.  

3.3  Predictive analysis  
We trained machine learning-based RF, KNN, XGBoost, DT, and 
NB algorithms on our experimental dataset. We split the training 
dataset base 70% for training, and 30% for the testing.   
NB: The Naïve Bayes is a probability-based classification 
algorithm [20]. It computes the probability for each class label and 
selects the class label with has the highest probability. It calculates 
the probability by considering all features separately; it is called 
conditional independence. 
KNN: The k-nearest neighbor algorithm is used for classification 
purposes [20]. First, a user defines the value of the k parameter 
which is the number of nearest samples used to predict. Then all 
distances between test data and the training dataset are calculated 
and sorted by descending order. Finally, the top k number of 
instances from the ordered dataset is used to predict the class label. 
The majority voted class label will be assigned to the output label. 
DT: The decision tree classifier is an interpretable label and a 
commonly used algorithm [21]. It builds a model to predict the 
target variable via decision rules trained from the data.  
RF: The random forest is a type of ensemble algorithm [23]. It 
consists of several decision tree classifiers trained in different sub-
samples of the whole dataset. For the prediction, the majority voted 
class label of these decision trees will be chosen as output. 
XGBoost: XGBoost uses a method called CART (Classification 
and Regression) in which all leaves are related to the final score of 
a model, unlike the decision-making tree that only considers the 
result values of leaf nodes [22]. While a common decision-making 
tree is interested in how well the classification has been done, 
CART enables to even compare superiority among models that 
retain identical classification results. 

4  Experimental Study   

4.1  Dataset 
We used the open gas leak dataset from [23]. Natural gas (NG) 
masses were measured using a Picarro CH4 sensor and a Google 
Street view machine [1]. This refers to gas sensors that are resistant 
to fire and wired and wireless transmitters that can be used in high-
sensitivity facilities. In addition, the vehicle used is an IoT-based 
remote monitoring system, with a dual-antenna diagnostic solution 
used for real-time data aggregation analysis. Further, we present a 
list of environmental and gas features in raw data properties of NG 
found in mobile-device-based methane gas research [1, 2]. The 
environmental features are DasTemp, OutletValve, 
GPS_ABS_LAT, GPS_ABS_LONG, WS_WIND_LAT, 
EtalonTemp, WarmBoxTemp, WIND_N, WS_WIND_LON, 
WS_SIN_HEADING, WIND_E, WIND_DIR_SDEV, 
WS_COS_HEADING, CavityTemp, CAR_SPEED, 
CavityPressure, and gas feature is CH4. Initially, we removed a row 
of missing values and features unrelated to gas leaks, after which 
there were a total of 69,824   records from 78,771 records originally 

and 17 features from 33. After removing outliers from 69828 
records, the 61148 records remained. Table 1 shows the number of 
records in each class for the testing and training process. 

 
Table 1. The number of records in each class 

Class Total Train 70% Test 30% 
Low 20381 14255 6126 

Medium 20508 14379 6129 
High 20259 14169 6090 
Total 61148 42803 18345 

 

4.2  Evaluation Metrics 
The performance evaluation of this paper was completed using 
accuracy, AUC, F1-score, and MSE. We can find precisions and 
recall as follows [4]: 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)
  and   𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)       (2) 

The F1 score is the harmonic mean of precision and recall as 
follows: 
     𝐹𝐹1 = 2∙𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
                               (3) 

We have studied the multi-class case, and there the average of the 
F1-score of each class label with weighting depending on the 
average parameter as Eq. (3). 
The accuracy is a measure of the degree of the nearness of the 
calculated value to its actual value. Accuracy is the sum of true 
positive fraction and true negative fraction among all the test data 
as Eq. (4). 
   Accuracy =  𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹
                          (4) 

In addition, one of our evaluated metrics is the mean squared error 
(MSE) for the predicted leaks relative to actual values was used: 
  MSE = 1

𝑚𝑚𝑃𝑃
∑ ∑ [𝑋𝑋(𝑃𝑃, 𝑗𝑗) − 𝑌𝑌(𝑃𝑃, 𝑗𝑗)]2𝑃𝑃−1

𝑃𝑃=0
𝑚𝑚−1
𝑃𝑃=0    (5) 

with m and n being the number of observations, which m is the 
number of data and n is predicting NG. The X and Y are the actual 
and predicted values for the i, j - th data point, respectively. 

4.3  Performance evaluation 
Data preprocessing and predictive analysis modules were 
implemented in Python using the sklearn library [24]. The data 
labeling module was performed in SPSS 23.0. 
First, we measured the performance of baseline models to compare 
them with our proposed method. We trained baseline models on the 
raw dataset directly using machine learning algorithms shown in 
Figure 1. Also, OE-based baseline models are trained on the dataset 
without removing outliers. Table 2 shows the compared 
performances of the baseline model and the proposed method. As a 
result, we can see that OE-based data normalization can improve 
the performance of models that were trained on raw datasets. 
Moreover, the combination of deep autoencoder-based outlier 
removal and OE-based data normalization in the proposed methods 
outperformed all compared baselines. The accuracy, F1-score, 
MSE, and ROC curve measurements of the performance results are 
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shown in Table 2, where the highest values of evaluation scores are 
marked in bold. The KNN model showed the best accuracy of 
98.57%, and it improved to 98.62% when using OE-based 
normalization on the baseline model. The XGBoost algorithm gave 
the best result from all the compared models, with an accuracy rate 
of 99.193%, an F1-score of 99.38, an MSE of 0.004, and an ROC 
of 99.53%. The DAE-OE-RF model achieved the second-best 
accuracy rate of 99%.013, an F1-score of 99.23%, an MSE of 
0.005, and an AUC of 99.41%. The DAE-OE-NB model showed 
lower results compared to the other proposed predictive models of 
the evaluation metrics. 
 
Table 2. Evaluation results of the compared algorithms on the 

experimental dataset (%). 
 Classifier 

Algorithms Accuracy AUC MSE f1-
score Proposed 

m
ethod 

DAE-OE-RF 99.013 99.41 0.005 99.23 
DAE-OE-KNN 98.872 99.16 0.007 98.88 
DAE-OE-XGB 99.193 99.53 0.004 99.38 

DAE-OE-DT 98.158 9912 0.007 98.82 
DAE-OE-NB 85.849 94.18 0.05 92.44 

B
aseline m

odels 

OE-RF 98.506 99.11 0.007 98.64 
OE-KNN 98.621 98.97 0.009 98.64 
OE-XGB 98.735 99.28 0.006 98.9 

OE-DT 97.241 98.59 0.01 98.2 
OE-NB 78.74 89.79 0.08 86.19 

RF 92.25 91.34 0.05 91.71 
KNN 98.573 98.88 0.006 98.96 
XGB 92.258 91.34 0.005 91.71 

DT 92.258 91.34 0.005 91.71 
NB 48.671 85.42 0.18 78.78 

 
We provided multi-class ROC curves for each compared model in 
the experimental dataset in Figure 5. As noted above, we proposed 
to find better model performance to predict XGBoost and RF for 
this dataset. 

 
Figure 5: Receiver operating characteristic curves of the 
algorithms compared to the DAE-OE method. 
 

Finally, we compared our proposed methods to show the effects of 
different modules by XGB, RF, and NB algorithms, as shown in 
Figure 6. As mentioned in section 3, module 1 is data processing, 
module 2 is data labeling, and module 3 is predictive analysis. 
 

 
Figure 6: Comparison of the proposed modules and other 
guidelines. 

5  Conclusion   
This study proposed a method consisting of three modules to 
predict gas leakage. The preparation of efficient training data 
through data preprocessing and data labeling modules has 
dramatically improved the productive performance of machine 
learning algorithms. It is also possible to use this method to create 
gas leakage data levels for air assessments in Korea. In other words, 
we used a deep autoencoder model to distinguish highly distorted 
parts from the raw dataset, and the AE model fits the more 
commonly distributed majority dataset to reconstruct them with a 
minor error. Therefore, outliers can be distinguished by the AE 
model easily. The data were normalized using OE, and then Ln 
transformations, k-means clustering, and the experimental data 
were ready. The DAE-OE-XGB model had the best results from 
constructing a predictive model using RF, KNN, XGB, DT, and NB 
algorithms on the prepared experimental dataset. According to the 
test results, the proposed DAE-OE-XGBoost algorithm has 
accuracy, F1-score, MSE, and AUC outcomes of 99.193%, 99.38%, 
0.004, and 99.53%, respectively. 
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