
A Deep Reinforcement Learning Model for Large-Scale Dynamic Bike Share
Rebalancing with Spatial-Temporal Context

Zhuoli Yin
 School of Industrial Engineering

 Purdue University
 West Lafayette, IN, USA
 zhuoliyin@purdue.edu

Zhaoyu Kou
 School of Industrial Engineering

 Purdue University
 West Lafayette, IN, USA

 kouz@purdue.edu

Hua Cai†
 School of Industrial Engineering,

Environmental and Ecological
Engineering

 Purdue University
 West Lafayette, IN, USA

 huacai@purdue.edu

ABSTRACT
In cities with top ridership, bike-sharing systems (BSSs) have
expanded to over 500 stations, necessitating dynamic rebalancing
of bikes among stations to accommodate timely imbalanced
customer demands. BSS operators redistribute bikes among
stations by employing a fleet of rebalancing vehicles. Traditional
mixed-integer programming and heuristic approaches often
generate offline or shortsighted solutions. Moreover, current
approaches based on reinforcement learning and deep learning,
while beneficial for urban mobility operations, are designed
primarily for small-scale BSSs or partitioned sub-BSSs, deploying
only small rebalancing fleets. How to produce online rebalancing
solutions for large-scale BSS with multiple rebalancing vehicles is
significant for current BSS operations yet remains still unclear. To
fill the gap, we proposed a deep reinforcement learning based
model to learn the optimal policy for dynamic bike share
rebalancing. We designed a deep Q-network (DQN) with inputs
reflecting real-time spatial-temporal system observations and
outputs corresponding to intertwined rebalancing actions
(repositioning and routing) for individual vehicles. Each
rebalancing vehicle operates asynchronously, independently
solving the DQN. Using Divvy Bike's historical data from
Chicago — a system including over 500 stations and 16
rebalancing vehicles in the fleet— the experiments demonstrate
that our model generates effective rebalancing solutions on a
large-scale BSS against baselines, facilitating the operation of
shared mobility systems in large cities.

CCS CONCEPTS
• Applied computing → Transportation.

KEYWORDS
bike share, dynamic rebalancing, spatial-temporal, deep
reinforcement learning

1 INTRODUCTION

Bike-sharing systems (BSSs) offer users accessibility,
convenience, and low-cost mobility, promoting multimodal trips
and short-distance travel as alternatives to private cars, thus aiding
in congestion mitigation and greenhouse gas reduction [9,26]. In
response to growing demand, BSS companies are extending

existing networks and launching new systems in global cities
[9,21,26]. The distribution of bike share trips across the service
region is often imbalanced due to spatial-temporal demand
differences, which could precipitate customer dissatisfaction and
potential revenue losses. These imbalances may also lead to
increased greenhouse gas emissions if customers turn to more
energy-intensive modes of transportation [11]. Therefore,
regularly rebalancing bikes among stations is imperative to
maintain a reasonable distribution across the service region [8].
With increasing BSS scale, dynamic rebalancing becomes a key
operational solution [29,31]. Such a strategy is typically modeled
as a Dynamic Bike Share Rebalancing Problem (DBSRP). DBSRP
aims to dispatch rebalancing vehicles to certain bike stations and
then pick-up or drop-off a certain number of bikes in those target
stations to resolve the real-time varying demands [28].
Specifically, the process includes routing decisions, which
determine the sequence of station visits, and repositioning
decisions, indicating the number of bikes to be moved at each
station. The rebalancing is usually conducted by a fleet of
automobiles (referred to as rebalancing vehicles hereafter).
Rebalancing vehicles carry a particular quantity of bikes and
travel among bike stations sequentially. It should be noted that
routing and repositioning decisions are entangled, given that
rebalancing vehicles can only move bikes at stations they
physically visit.

Existing works primarily addressed DBSRP through mixed-
integer programming (MIP) or heuristic approaches. Given
DBSRP's complexity as an NP-hard problem, traditional MIP-
based methods utilized decomposition or heuristic techniques for
feasible solutions [5,10,12,33,36]. Yet, these solutions primarily
cater to offline scenarios, given their need for full data for the
entire planning horizon. Several studies also proposed heuristic or
rolling horizon-based algorithms to support rebalancing decisions,
offering online solutions for BSSs [4,28]. But these methods are
typically shortsighted, only approximating the selection of
rebalancing actions by foreseeing a few steps within the whole
planning horizon [37]. Meanwhile, these algorithms are often
developed and tested for small-scale BSSs, or they segment the
research area into clusters, each serviced by a single rebalancing
vehicle [5,14,25,27,33]. For instance, [15] only focused on the
principal region of the entire BSS in the New York City and
assigned a single rebalancing vehicle for each clustered sub-

region. However, as BSSs continue growing in scale, the
computational complexity of DBSRP models increases
correspondingly, and these algorithms fail to capture the
unbalanced rebalancing needs globally and are not equipped to
handle large-scale operations. Consequently, they are now
insufficient for generating online rebalancing solutions with high-
quality and far-sight.

Recent advancements in Deep Reinforcement Learning (DRL)
methods have demonstrated the potential to solve sequential
decision-making problems. However, existing DRL algorithms, as
applied in urban mobility operations, exhibit limitations that
hinder their direct application in large-scale DBSRP. DRL-based
frameworks from [1,22], which were designed for ride-sharing
systems, only allow isolated decisions and overlook the
interdependencies between multiple concurrent decisions. Such
interdependencies are necessary for DBSRP which has both
repositioning and routing. [15] utilized a spatial-temporal
reinforcement learning approach to DBSRP, but their model only
focused on the principal system of Citi Bike in NYC and split it
into subclusters. They only assigned a single vehicle to each
cluster, failing to account for heterogeneous customer demands in
a large-scale city. Meanwhile, [3] proposed a hybrid approach
integrating DRL with MIP optimizer for freight delivery problem,
but it is confined to static decision-making and unsuitable for
online problems.

In this work, we proposed a DRL-based model to generate the
optimal strategy for dynamic rebalancing of large-scale BSS in
real-time. Our agent interacts iteratively with a BSS simulator,
utilizing a Deep Q-Network (DQN) to estimate the long-term Q-
values of rebalancing actions, whose objective is to maximize the
system’s overall profits. The agent selects the rebalancing action
with the highest Q-value for each rebalancing vehicle. Different
from the existing work, our model incorporated large-scale, real-
time, and farsighted rebalancing decision-making. The main
contributions of this study can be summarized as follows:
(1) We developed a DRL-based framework for DBSRP, capable
of real-time optimization for large-scale DBSRP to enhance
overall profits without necessitating service region partitioning.
(2) Contrasting with existing RL applications in urban mobility
system operations, we constructed a convolutional neural network
for DQN whose outputs are tailored to interdependent rebalancing
actions.
(3) We evaluated the model using real-world data from Chicago's
Divvy, featuring over 500 stations and 16 rebalancing vehicles.
The experiments demonstrated its effectiveness in improving
overall system profits.

2 PROBLEM STATEMENT

In this work, we aim to find the optimal solution for DBSRP. The
notations used throughout this work are defined in A.1. DBSRP is
a variant of the dynamic vehicle routing problem with split
deliveries [2,24]. This involves multiple rebalancing vehicles that
are routed to serve real-time customer demands originating from
bike stations. These bike stations are not restricted to be visited

only once during the operation and they can be re-visited by
rebalancing vehicles as needed. Adopting from [12,17], this
problem can be formulated as follows:

!"#
!,	$

$ % ∙ '%,&
%∈(,&∈)

+ $) ∙ *%,* ∙ +%,*,+,&
%,*∈(,+∈,,&∈)

(1)

s.t.

/*,&-./%01 = !"# 1!23 10, /*,&/%01 + $ 6*,+,&
+∈,

+ 7*,&8 , 9*2&3&%458					∀< ∈ >, ? ∈ @		(2)

0 ≤ /*,&/%01 + $ 6*,+,&
+∈,

≤ 9%2&3&%45				∀< ∈ >, ? ∈ @	 (3)	

'*,& = D/*,&-./%01 − (/*,&/%01 + $ 6*,+,&
+∈,

+ 7*,&)D 						∀< ∈ >, ? ∈ @		 (4)

G+,&-./%01 = !"# 1!23 10, G+,&/%01 + $ −6*,+,&
+∈,

8 , 9+617%8918 					∀! ∈ H, ? ∈ @	 (5)

$+%,*,+,&
*∈(

−$+*,%,+,&:.
*∈(

= 0							∀" ∈ >,! ∈ H, ? ∈ @	 (6)

$ +%,*,+,&
*∈(,+∈,

≤ 1							∀" ∈ >, ? ∈ @		 (7)

$ +%,*,+,&
%,*∈(

≤ 1							∀! ∈ H, ? ∈ @		 (8)

−9+617%891 ∙$+%,*,+,&
%∈(

≤ 6*,+,& ≤ 	9+617%891 ∙ $+%,*,+,&
%∈(

			∀< ∈ >,! ∈ H, ? ∈ @(9)

/%,;2&3&%45 =
1
29%

2&3&%45		∀" ∈ >	, G+,;617%891 =
1
2 	9+

617%891	∀! ∈ H (10)

	−9+617%891 ≤ 	6%,+,& ≤ 9+617%891		∀" ∈ >,! ∈ H, ? ∈ @	 (11)
	0 ≤ /%,&/%01 ≤ 9%2&3&%45		∀" ∈ >,! ∈ H, ? ∈ @ (12)
0 ≤ 	G+,&/%01 ≤ 	9+617%891				∀" ∈ >,! ∈ H, ? ∈ @ (13)

+%,*,+,& ∈ {0,1} (14)
The objective function (1) minimizes the total costs of losing
customers and fuel costs incurred by rebalancing vehicles that
route to targe stations, in which ! represents the average cost paid
by customers for a single bike share trip and " represents the
average fuel cost per mile of vehicles. For constraint (2) and (3),
the in- and out-flows of bikes in the station are conserved. Also,
the bike quantity in the station either after rebalancing or after the
rent/return of customers is within station capacity. Constraint (4)
records the customer loss in each station, which is the difference
between the expected inventory level of the station and the actual
inventory level. Constraint (5) ensures that the number of bikes in
and out of the vehicles is conserved. Additionally, the number of
bikes in the rebalancing vehicle after visiting the station is within
the vehicle capacity. For constraint (6), it enforces that
rebalancing vehicles arriving at and departing from the target
stations are preserved. The rebalancing vehicles that depart from a
station ∑ +%,*,+&

*∈(could only be the ones that arrive at this station in
the last timeslot ∑ +*,%,+&:.

*∈(. Note that staying in a station could be
viewed as moving out of the station and moving into it again in
the same time slot. ∑+(!,%,+; 	and ∑ +%,(!,+) are set to be 1 since every
rebalancing vehicle must initially depart from the depot and
finally return to it. Constraints (7) and (8) guarantee the
requirement that, in any timeslot, at most one vehicle is visiting
the same station and one vehicle can be present at most one
station. These constraints avoid the risk of multiple vehicles
rebalancing the same station, thereby preventing offsetting effects.
Constraint (9) couples the repositioning decision and routing
decision, enforcing that rebalancing vehicles can only pick-up or

drop-off bikes in the visited stations. Constraint (10) sets the
initial capacity of bike stations and rebalancing vehicles to be half
full. Constraints (11)-(13) enforce that the number of repositioned
bikes does not violate the physical capacities. Additionally, the
number of bikes parked in stations and carried by rebalancing
vehicles should not violate their maximum capacities. Constraint
(14) defines the routing decision +2,2",6& as binary variables.

3 DATA AND METHODS

This section details our methods designed for the DBSRP. Section
3.1 introduces the Divvy BSS data from Chicago, employed for
training and testing DBSRP algorithms. In Section 3.2, we outline
the framework developed based on the RL paradigm, involving
the environment, agent (RL algorithm and DQN), state, action,
and reward. Section 3.3 introduces baseline models for
comparative analysis, while Section 3.4 defines evaluation metrics
for measuring DBSRP algorithm performance.

3.1 Case Study Data and Preprocessing
This study utilized the publicly accessible Divvy dataset, which
encompasses the station-based BSS data in Chicago. Each trip
record incorporates the origin and destination station ID along
with the start and end time of each trip. The station information of
Divvy was collected through GBFS (General Bikeshare Feed
Specification) API. The station information includes the station id,
station name, location (latitude & longitude), and capacity. The
service region containing 578 active stations in Chicago was
divided into 51×51 grids. Each grid in this study has a size of
400m×700m [22]. 578 active Divvy stations were thereby
assembled into 451 abstract stations. According to Divvy’s
system operator, the rebalancing vehicle fleet of Divvy has 16
automobiles in service and the bike depot of Divvy was built in
(41.890082, -87.658458), which corresponds to the grid (27, 26)
in this study.

3.2 Deep Reinforcement Learning Framework

Here, we present the formulation of the model-free deep
reinforcement learning framework which aims to learn the optimal
dynamic rebalancing policy.

3.2.1 Simulator. A simulator serves as the environment, with
which the agent interacts. The dynamics of a simulator include
initialization, bike rent/return process, and rebalancing activities.
The simulation process is detailed in Figure 1. Initially, stations
and rebalancing vehicles are assumed to be half full and
rebalancing vehicles depart from the depot at the beginning of the
episode. Then, in each timeslot, the simulator executes the
rebalancing actions generated by the agent to modify the bike
inventory of visited stations. Following that, customers are
emulated to rent or return bikes according to historical demands.

3.2.2 State space. In this study, the state variable #! reflects the
real-time BSS environment observation at the beginning of
timeslot $. We formulated the state variables Q& =
R/%,&/%01, /%,&<480, G+,&/%01, G+,&=94&, G+,&>48S, " ∈ {1,2, … , >},! ∈ {1,2, … ,H}, which

Figure 1: BSS simulator. It executes bike rent/return and
rebalancing sequentially.

corresponds to the spatial-temporal information of bike stations,
rebalancing vehicles, respectively.

3.2.3 Action space. Corresponding to the action variables defined
in Section 2, the rebalancing action 2+,& 	= (+%,*,+,&, 6*,+,&) is two-
dimensional for rebalancing vehicle % in the timeslot $. To reduce
the computation time, the action space for routing action +%,*,+,&
consists of grids reachable via a maximum of 10 horizontal or
vertical moves from the current grid (each move is a grid).
Meanwhile, the action space for repositioning action 6*,+,& is
comprised of seven discrete actions: do not move any bike in the
target bike station, moving five or ten bikes into/out of the target
station, moving maximum feasible bikes out of the station
(“greedy all out”), and moving maximum feasible bikes from the
rebalancing vehicle into the station (“greedy all in”). Such an
action space is tailored for large-scale BSS, because rebalancing a
large number of bikes in bike stations that have high customer
demands is always a necessity during the day; also, customer
demands are at a low level in late night or early morning so that
few bike station needs rebalancing.

3.2.4 Reward function. The agent aims to take rebalancing actions
that maximize the expected total future rewards until the episode
terminates. We designed the reward function for each rebalancing
vehicle	% that executes rebalancing action 2+,& in the state Q&, by
modifying the objective function (1) described in Section 2:

UR2+,&, Q&S = % ∙ ∆'*,& −) ∙ *%,* (15)
where ∆'*,& is consequential customer loss reduction in the visited
station ' in timeslot $. The customer loss reduction is the customer
loss generated in the stations without any rebalancing during the
simulation minus the customer loss generated in the station with
the executed rebalancing under a given policy.

3.2.5 Double Deep Q-Network (DDQN) algorithm. To train the
DQN network that learns the policy, we used the DDQN
algorithm with experience replay as proposed in [32]. DDQN
algorithm was applied in this work because it has been proven to
achieve much better performance in large-scale sequential
decision-making problems and can help reduce the overestimation
of DQN.

To select a rebalancing action to be executed, the agent estimates
the Q-value of each rebalancing action W?(Q&, 2&) for individual

Rent or Return

Rebalance

1st Timeslot 2nd Timeslot

… …

mthTimeslot

… … … …

nth Episode

Planning horizon

Rent

Return
Rebalance

Dynamics in a timeslot

rebalancing vehicles given the environment state Q& in timeslot $.
Under the policy	", the Q-value of the action 2& is the cumulative
future rewards when choosing that action in a certain state and
following the optimal policy thereafter:

W?(Q&, 2&) ≡ Y Z$[&":&U0	|	/
∞

&"@&
= Q&,] = 2&, ^_ (16)	

where (∈ [0,1] is a discount factor that compensates the
importance of immediate and future rewards. The optimal Q-value
of an action 2& in a state Q& is therefore W∗(Q&, 2&) ≡ max

?
W?(Q&, 2&). On

top of that, an optimal rebalancing policy can be derived from the
optimal Q-values by choosing the highest-valued action 2&∗ =
argmax

3#
W∗(Q&, 2&) in each state #! [32]. Such long-term optimal Q-

value function is iteratively updated by using the Bellman
equation [18]:

W∗(Q&, 2&) = Y2#$% eU& + [!233#$%
W∗(Q&-., 2&-.)|Q&, 2&f 	 (17)	

In practice, a neural network with weights	/, which is a non-linear
function approximator, is usually utilized to estimate the Q-value	
W(Q, 2; h) ≈ W∗(Q, 2) [19,30]. We refer to such a neural network as a
Deep Q-Network (DQN), whose architecture will be introduced in
Section 3.2.6. In this paper, the inputs of the DQN are the
instantaneous states of the BSS environment at the beginning of
timeslot $, while the outputs are Q-values of all rebalancing
actions in the defined action space for an individual rebalancing
vehicle.

To improve the policy	", the weights /" of a DQN is updated by
minimizing the mean-squared error (MSE) loss functions '%(h%)
occurred at each iteration 0:

'%(h%) = 	Y2#,3# jR6% − 	W(Q&, 2&; h%)S
Bk	 (18)

where 6% = Y2#$% eU& + [!233#$%
W(Q&-., 2&-.; h%:.)|Q&, 2&f is the target value

for the DQN in iteration 0 [20]. The DQN with parameters h%:.
used to estimate the Q-values are from the previous iteration	" − 1.
In this work, based on the DDQN algorithm, we employed two
homogenous DQNs to approximate the Q-values and denoted
their weights as / and /#, respectively. The target 2" is therefore
modified as

6%
<<C(= Y2#$% eU& + [W(Q&-., !233#$%

W(Q&-., 2&-.; h%:.); h%:.:)|Q&, 2&f (18)

which reduces the overestimations by decomposing the max
operator in the target 2" into action selection

2&-.∗ = !23
3#$%

W(Q&-., 2&-.; h%:.)	 (20)
and action evaluation W(Q&-., 2&-.∗ ; h%:.:)	[32]. The parameters /# are
periodically copied from parameters /. The agent always chooses
the action that maximizes the Q-value based on the outputs of the
DQN with parameters /.

3.2.5 DQN architecture. We designed an architecture for the
DQN, shown in Figure 2, to estimate the Q-values of actions
while capable of capturing spatial-temporal information of the
large-scale BSS states. Adopted from [23,30,35], we designed two
input channels for the DQN, representing two categories of
observations. These channels gather both global and local
observations from BSS states, taking into account their spatial-
temporal characteristics. Specifically, the global observation is

viewed from the entire BSS system’s aspect, while the local
observation is viewed from each rebalancing vehicle’s aspect
centering the rebalancing vehicle in the plane. Meanwhile, the
output was structured as a table in order to approximate the Q-
values of two entangled rebalancing actions.

The description of feature planes is summarized in Table 1.
Global observations (Table 1(A)) have 5 stacked feature planes
with size 51 × 51 and each cell in the plane corresponds to a
feature of a grid in the entire service region; local observations
(Table 1(B)) have 13 stacked feature planes with size 21 × 21 and
each cell corresponds to a feature of a grid within action space.
Two threads of inputs were passed through the convolutional
layers and fully connected layers to nonlinearly estimate the Q-
values. Specifically, first, the global observation inputs were
applied average pooling with the pool size of 2, to down-sampling
feature planes, which reduces the complexity of the neural
networks [13]. Then the first and second hidden layers convolved
the filters of size 3 × 3 with the dimensionality of 64 and 128,
respectively. Both layers were applied exponential linear unit
(ELU) activation. Likewise, the local observation inputs entered
the convolutional layers, which have 64 filters of size 1 × 1 and
ELU activation. Convolved global and local observation inputs
were stacked and then entered two convolutional layers with 64
and 1 filters of size 1 × 1. The final output layer is composed of
3087 units, configured into a two-dimensional Q-value table of
size 441 × 7, where each dimension corresponds to the action
space size. In this way, in the output table, choosing one Q-value
indicates the repositioning and routing correspondingly.

Figure 2: DQN architecture. The red dot represents a
rebalancing vehicle.

In our study, we utilized an action mask on the output Q-value
table to eliminate infeasible actions. This a priori constraint
excludes specific Q-values from selection, preventing infeasible
actions from entering the experience pool. Specifically, if either
the available bikes or rebalancing vehicle slots are insufficient for
all repositioning actions, the corresponding Q-value table pixel is
masked as 0. Similarly, if a grid lacks an installed station or if a
station is already assigned to another rebalancing vehicle in the
current timeslot, its corresponding pixel is also masked as 0.

Global

!"#$%&
3×3×64

!"#$%&
1×1×64Local

!"#$%&
1×1×64

51×51×6
23×23×64 21×21×128

21×21×13

21×21×64

!"#$%&
1×1×1

21×21×64 21×21×1
4096

1%23%
1%23%

441×7
(Reshaped as
21×21×7)

Routing
actions

Repositioning
actions

!"#$%&
3×3×128

...

...

...

Table 1: Representations of the system in the input layer of the neural network.

(A) The global observation inputs with plane size 51 × 51 depict the spatial observation from global system perspective.
Input Feature Number of planes Description

Global

Bikes in rebalancing
vehicles 1 Number of bikes carried by a rebalancing vehicle in this grid;

otherwise filled with 0
Slot in rebalancing

vehicles 1 Number of slots in a rebalancing vehicle in this grid; otherwise
filled with 0

Future rebalancing
vehicles 1 Number of available rebalancing vehicles assigned to visit in this

grid in the next time slot

Bikes in stations 1 Number of bikes parked in the station in this grid; otherwise filled
with 0

Docks in stations 1 Number of docks in the station in this grid; otherwise filled with 0

(B) The local observation inputs with plane size 21 × 21	depict the spatial and temporal observation from rebalancing vehicle perspective.
Input Feature Number of planes Description

Local

Day of month 2 Constant planes filled with sine/cosine of day of the month
Day of week 2 Constant planes filled with sine/cosine of day of the week

Minute of day 2 Constant planes filled with sine/cosine of minute of the day

Position 1 The center is filled with 1 to indicate the position of this
rebalancing vehicle, otherwise filled with 0

Global coordinates 2 Constant planes filled with normalized horizontal/vertical
coordinates of this rebalancing vehicle from the global aspect

Local coordinates 2 Constant planes filled with normalized horizontal/vertical
coordinates of this rebalancing vehicle from the local aspect

Distance 1 Distance from other grids to the center

Legal map 1
Filled with 1 if this grid has installed bike station and has not been

assigned to visit by other rebalancing vehicles, otherwise filled
with 0

3.3 Baselines

To evaluate the performance of the proposed model, we compared
it against four DBSRP baseline algorithms.
(1) No Rebalancing. The operator does not execute any
rebalancing in BSS.
(2) Greedy Rebalancing. As outlined in [7,15,34], in this
algorithm, for a near-full rebalancing vehicle, it always travels to
the nearest near-empty stations and offloads the most possible
bikes there. For a near-empty rebalancing vehicle, it always
travels to the nearest near-full stations and collects as many bikes
as possible.
(3) Lagrangian Dual Decomposition-based MIP (LDD-MIP).
As proposed by [12], they exploited LDD and abstraction
mechanisms to solve the MIP formulated in Section 2.
(4) Greedy Online Anticipatory Heuristic (GOAH). Developed
by [16], they provided a heuristic approach to produce online
solutions for DBSRP by looking ahead three timeslots and
computing policy for each individual rebalancing vehicle.

3.4 Evaluation Metrics

We used the following three metrics to measure the performance
of different rebalancing methods:
(1) Customer loss. It is the number of customers who failed to rent
bikes at their initial departure stations or return bikes at the
original arrival stations. In addition to that, we also defined

customer loss reduction, which is the difference between customer
loss with No Rebalancing and customer loss with running
another rebalancing strategy.
(2) Vehicle routing distance (VRD). It is the sum of the distance
that a rebalancing vehicle travels among the visited stations in an
episode. Vehicle routing distance is also known as vehicle-miles-
traveled (VMT).
(3) Improved profit. It is the additional ride profit earned from
customer loss reduction subtracts the routing cost of the
rebalancing vehicles. In this work, the profit of each ride is
assumed to be the cost of each single trip ($3.3 [6]). Additionally,
given that the internal combustion engine rebalancing vehicle
consumes fuel when routing to target stations, the routing cost of
the rebalancing vehicles in this work is estimated as the mileage
rate (58cents/mile in 2019 [38]) multiplies the routing distance of
rebalancing vehicles.

4 EXPERIMENTS AND RESULTS

4.1 Experiment setup

The DRL model was trained on the Gilbreth community cluster
with 256 GB of RAM and two P100 Nvidia Tesla GPUs at Purdue
University. Our experiment used historical data of a four-week
period from September 2, 2019 (Monday) to September 29, 2019
(Sunday). The first three weeks' data serve as the basis for model

Figure 3: Comparison of different rebalancing strategies in terms of different metrics. (A) Comparison of average weekly customer
loss; (B) Comparison of average daily customer loss; (C) Comparison of average weekly vehicle routing distance; (D) Comparison
of average profits improvement.

training, while the final week's data is allocated for testing. The
selected dataset incorporates over 449,000 trip records within
Chicago. We trained the model for 6,500 episodes (156,000
training steps in total) with a physical training time of 168 hours
until the model converged. For the DDQN algorithm, the learning
rate was set as 0.0001. The initial 40,000 steps were set for
exploration, over which the exploration rate decreases from 1 to
0.05. The replay buffer keeps the most recent 40,000 steps as
experiences and we set the time discount rate (to be 0.9. To
alleviate the uncertainty of rebalancing models, we ran the
experiments ten times and evaluated their average performance.

4.2 Empirical results

Figure 3(A) demonstrates that our model minimizes total
customer loss over a one-week test horizon, outperforming all
other strategies. Compared to No Rebalance, our model leads to
an average reduction of 1,942 customers loss in a week. In
contrast, GOAH, LDD-MIP and Greedy Rebalance result in
average reductions of 1,232, 920, and 707 customer loss,
respectively. Consequently, the model in this work surpasses
GOAH, LDD-MIP, and Greedy Rebalance by lowering
additional customer loss by 57.6%, 111.09%, and 174.68%
respectively. The daily customer loss reduction, as shown in
Figure 3(B), is most significantly reduced by our model during
weekdays among all evaluated strategies. Both our model and
GOAH outperformed LDD-MIP in reducing customer loss due to
their adaptability to BSS's real-time customer demands, whereas
LDD-MIP produces only offline rebalancing solutions. Greedy
Rebalance underperforms as it neglects upcoming demands and
lacks coordination between rebalancing vehicles. Notably, there is
no significant difference in customer loss reduction among
rebalancing strategies on weekends. This is because the absolute

customer demands on weekends are much smaller than those on
weekdays. Most of bike stations can be thereby self-rebalanced
without the need of rebalancing.

The VRDs in Figure 3(C) indicate that our model is more active in
traveling to bike stations to rebalance bikes, in comparison to
other baselines. It can be seen that the rebalancing under LDD-
MIP has the shortest routing distances over other strategies. In
contrast, our model aggressively dispatches the rebalancing
vehicles, whose VRD is 137.57% and 25.45% higher than that of
LDD-MIP and Greedy Rebalancing, respectively.

In Figure 3(D), the proposed DRL model improves the highest
overall profits among rebalancing strategies, which is 101.26%
more than LDD-MIP model, 220.01% more than GOAH model
and 476.13% more than Greedy Rebalancing.

The overall profit improvement is the tradeoff between the gain
from reducing customer loss and the cost incurred from
rebalancing vehicle routing. Even though executing an aggressive
rebalancing strategy will lead to a higher routing distance, the
rebalancing solutions generated by DeepBike in this work can
significantly contribute to reducing potential customer loss and in
turn reaching the highest profits.

5 CONCLUSION

In this study, we proposed a DRL-based rebalancing model for
large-scale BSSs, capable of producing timely rebalancing
solutions. We designed a DQN to capture the real-time large-scale
spatial-temporal system states without partitioning the service
region and to estimate the Q-values of the rebalancing actions of
each single rebalancing vehicle. Our proposed model learns to

A B

C D

update its DQN by interacting with the BSS environment
iteratively through trial and error. The numerical results presented
above demonstrate that, in a large-scale BSS which has more than
500 bike stations and 16 rebalancing vehicles, our model was able
to reduce the most customer loss and achieve the highest overall
profit improvement in a one-week testing horizon. The customer
loss reduction and overall profit improvement are beneficiaries for
the customer and operator. The model in this work learns to trade
off the routing fuel cost to increase the overall profits and
customer loss reduction.

The scheme of DRL facilitates large-scale and online solutions,
distinct from existing algorithms. The designed CNN-based neural
network captures the real-time large-scale dynamics of the entire
BSS as input and estimates the long-term benefits of rebalancing
decisions. Additionally, in contrast to MIP models, converged
neural network is able to generate online rebalancing decisions
without the need of solving the model from scratch. It is also
notable that, even though our model was experimented on a
station-based BSS because of the data availability, our model is
transferable to free-floating BSS because zoning the service
region into : × : grids and aggregating free-floating bikes parked
within neighbor grids as abstract stations are still applicable to
align with the inputs of DQN.

We suggest several opportunities for future research. The publicly
available trip records published by BSS operators are only
observed demands, which underestimates the bike check-in rate in
stations. A true demand estimation model would benefit the
demand simulation which will in turn improve the decision-
making policy. Additionally, developing a multi-agent
reinforcement learning algorithm that takes the collaboration of
rebalancing vehicles into account for DBSRP could better learn
the optimal rebalancing policy.

APPENDIX

A.1 List of notations
! The rebalancing policy

" The total number of time slots in one episode

∆$ The length of each time slot

$ Current time index

% The number of rebalancing vehicles in the fleet,	, ∈
{1,2, … ,%}

3 The number of aggregated bike stations in	BSS,	8, 9 ∈
{1,2, … , 3}

: BSS environment state

;!,#
$!%& The number of bikes in the station 8 at the beginning of time

slot $

;!,#
'()% The number of docks in the station 8 at the beginning of

time slot $

<*,#
$!%& The number of bikes in the rebalancing vehicle , at the

beginning of time slot $

<*,#
+,(# The number of slots in the rebalancing vehicle , at the

beginning of time slot $

<*,#
-() The location of vehicle , at the beginning of time slot $

=!,#
The net demands of the station 8 in the time slot	$. The net

demand equals to the return demand minus the rent
demand.

=!,#:#/0
12&3 The predicted future net demands of the station 8 in the next

?	time slots from the beginning of the time slot	$

@!
4#5#!(0

The capacity of maximum parking bikes of the station 8, 	
@!
4#5#!(0= :!,#$!%& + :!,#'()%

@*6&7!),&
The capacity of maximum carrying bikes of the vehicle ,, 	

@*6&7!),&= B*,#$!%& + B*,#
+,(#

C!,# The customer loss occurred in the station	8 in time slot $

D!,8	 The routing distance between station 8 and station j

E The price of a single trip riding the shared bike (dollar)

F The mileage rate (dollar per mile)

G!,8,*,#
Binary, the routing decision variable that sets to 1 for

vehicle , in the time slot $ if traveling from station 8 to
station 9

H8,*,#
Integer, the repositioning decision variable for vehicle ,,
denoting the number of bikes to pick-up/drop-off when

visiting target station 9 in time slot $
I# The reward earned in time slot $

J#
A sample consists of ;#, K#, I#	and	;#/:, which records the

transition from the time slot $ to the time slot $ + 1

K
Rebalancing action, a tuple consists of the routing decision

and repositioning decision K = (G!,8,*,#, H8,*,#)

Q The probability of selecting a random action during the
training process of DRL

R Time discount factor

S The probability of doing no rebalancing action during the
initial training process

REFERENCES
[1] Abubakr O. Al-Abbasi, Arnob Ghosh, and Vaneet Aggarwal. 2019.

DeepPool: Distributed Model-Free Algorithm for Ride-Sharing
Using Deep Reinforcement Learning. IEEE Transactions on
Intelligent Transportation Systems 20, 12 (2019), 4714–4727.
DOI:https://doi.org/10.1109/TITS.2019.2931830

[2] C. Archetti and M. G. Speranza. 2012. Vehicle routing problems
with split deliveries. International Transactions in Operational
Research 19, 1–2 (2012), 3–22. DOI:https://doi.org/10.1111/j.1475-
3995.2011.00811.x

[3] Jiayu Chen, Abhishek K Umrawal, Tian Lan, and Vaneet Aggarwal.
2021. DeepFreight: A Model-free Deep-reinforcement-learning-
based Algorithm for Multi-transfer Freight Delivery. arXiv preprint
arXiv:2103.03450 (2021).

[4] Federico Chiariotti, Chiara Pielli, Andrea Zanella, and Michele
Zorzi. 2018. A dynamic approach to rebalancing bike-sharing
systems. Sensors (Switzerland) 18, 2 (2018), 1–22.
DOI:https://doi.org/10.3390/s18020512

[5] Claudio Contardo, Catherine Morency, and Louis-Martin Rousseau.
2012. Balancing a dynamic public bike-sharing system. Cirrelt
(2012).

[6] Divvy. 2021. Single Ride. Retrieved from
https://www.divvybikes.com/pricing/single-ride

[7] Yubin Duan, Jie Wu, and Huanyang Zheng. 2018. A Greedy
Approach for Vehicle Routing When Rebalancing Bike Sharing
Systems. In 2018 IEEE Global Communications Conference
(GLOBECOM), IEEE, Abu Dhabi, United Arab Emirates, 1–7.
DOI:https://doi.org/10.1109/GLOCOM.2018.8647755

[8] Elliot Fishman. 2014. Bikeshare: Barriers, facilitators and impacts
on car use.

[9] Elliot Fishman. 2016. Bikeshare: A review of recent literature.
Transport Reviews 36, 1 (2016), 92–113.

[10] Supriyo Ghosh, Pradeep Varakantham, Yossiri Adulyasak, and
Patrick Jaillet. 2015. Dynamic redeployment to counter congestion
or starvation in vehicle sharing systems. Proceedings of the 8th
Annual Symposium on Combinatorial Search, SoCS 2015 2015-
Janua, (2015), 230–231.

[11] Supriyo Ghosh, Pradeep Varakantham, Yossiri Adulyasak, and
Patrick Jaillet. 2017. Dynamic repositioning to reduce lost demand
in bike sharing systems. Journal of Artificial Intelligence Research
58, (2017), 387–430. DOI:https://doi.org/10.1613/jair.5308

[12] Supriyo Ghosh, Pradeep Varakantham, Yossiri Adulyasak, and
Patrick Jaillet. 2017. Dynamic repositioning to reduce lost demand
in bike sharing systems. Journal of Artificial Intelligence Research
58, (2017), 387–430. DOI:https://doi.org/10.1613/jair.5308

[13] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua
Bengio. 2016. Deep learning. MIT press Cambridge.

[14] Christian Kloimüllner, Petrina Papazek, Bin Hu, and Günther R.
Raidl. 2014. Balancing bicycle sharing systems: An approach for the
dynamic case. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 8600, June (2014), 73–84.
DOI:https://doi.org/10.1007/978-3-662-44320-0_7

[15] Yexin Li, Yu Zheng, and Qiang Yang. 2018. Dynamic bike
reposition: A spatio-temporal reinforcement learning approach.
Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2018), 1724–1733.
DOI:https://doi.org/10.1145/3219819.3220110

[16] Meghna Lowalekar, Pradeep Varakantham, Supriyo Ghosh, Sanjay
Dominik Jena, and Patrick Jaillet. 2017. Online repositioning in bike
sharing systems. Proceedings International Conference on
Automated Planning and Scheduling, ICAPS (2017), 200–208.

[17] Hao Luo, Fu Zhao, Wei Qiang Chen, and Hua Cai. 2020.
Optimizing bike sharing systems from the life cycle greenhouse gas
emissions perspective. Transportation Research Part C: Emerging
Technologies 117, September 2019 (2020), 102705.
DOI:https://doi.org/10.1016/j.trc.2020.102705

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.
Playing Atari with Deep Reinforcement Learning. (2013), 1–9.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.
Playing Atari with Deep Reinforcement Learning. (2013), 1–9.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin
Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. 2015. Human-level control through deep reinforcement
learning. Nature 518, 7540 (2015), 529–533.
DOI:https://doi.org/10.1038/nature14236

[21] National Association of City Transportation Officials. 2021. Shared
Micromobility in the U.S.: 2019.

[22] Takuma Oda and Carlee Joe-Wong. 2018. MOVI: A Model-Free
Approach to Dynamic Fleet Management. Proceedings - IEEE
INFOCOM 2018-April, (2018), 2708–2716.
DOI:https://doi.org/10.1109/INFOCOM.2018.8485988

[23] Takuma Oda and Carlee Joe-wong. 2018. MOVI : A Model-Free
Approach to Dynamic Fleet Management. IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications (2018), 2708–
2716.

[24] Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L.
Medaglia. 2013. A review of dynamic vehicle routing problems.
European Journal of Operational Research 225, 1 (February 2013),
1–11. DOI:https://doi.org/10.1016/j.ejor.2012.08.015

[25] Robert Regue and Will Recker. 2014. Proactive vehicle routing with
inferred demand to solve the bikesharing rebalancing problem.

Transportation Research Part E: Logistics and Transportation
Review 72, (2014), 192–209.
DOI:https://doi.org/10.1016/j.tre.2014.10.005

[26] Susan Shaheen, Stacey Guzman, and Hua Zhang. 2010. Bikesharing
in Europe, the Americas, and Asia. Transportation Research Record
2143 (2010), 159–167. DOI:https://doi.org/10.3141/2143-20

[27] Jia Shu, Mabel C. Chou, Qizhang Liu, Chung Piaw Teo, and I. Lin
Wang. 2013. Models for effective deployment and redistribution of
bicycles within public bicycle-sharing systems. Operations
Research 61, 6 (2013), 1346–1359.
DOI:https://doi.org/10.1287/opre.2013.1215

[28] C. S. Shui and W. Y. Szeto. 2018. Dynamic green bike repositioning
problem – A hybrid rolling horizon artificial bee colony algorithm
approach. Transportation Research Part D: Transport and
Environment 60, (2018), 119–136.
DOI:https://doi.org/10.1016/j.trd.2017.06.023

[29] C. S. Shui and W. Y. Szeto. 2020. A review of bicycle-sharing
service planning problems. Transportation Research Part C:
Emerging Technologies 117, April 2019 (2020), 102648.
DOI:https://doi.org/10.1016/j.trc.2020.102648

[30] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent
Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering
the game of Go with deep neural networks and tree search. Nature
529, 7587 (2016), 484–489.
DOI:https://doi.org/10.1038/nature16961

[31] Carlos M. Vallez, Mario Castro, and David Contreras. 2021.
Challenges and opportunities in dock-based bike-sharing
rebalancing: A systematic review. Sustainability (Switzerland) 13, 4
(2021), 1–26. DOI:https://doi.org/10.3390/su13041829

[32] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep
reinforcement learning with double Q-Learning. 30th AAAI
Conference on Artificial Intelligence, AAAI 2016 (2016), 2094–
2100. DOI:https://doi.org/10.1609/aaai.v30i1.10295

[33] Tan Wang. 2014. Solving Dynamic Repositioning Problem for
Bicycle Sharing Systems: Model, Heuristics, and Decomposition.
(2014).

[34] Cong Zhang, Fan Wu, He Wang, Bihua Tang, Wenhao Fan, and
Yuanan Liu. 2022. A Meta-Learning Algorithm for Rebalancing the
Bike-Sharing System in IoT Smart City. IEEE Internet of Things
Journal 9, 21 (November 2022), 21073–21085.
DOI:https://doi.org/10.1109/JIOT.2022.3176145

[35] J Zhao, M Mao, and X Zhao. 2021. A hybrid of deep reinforcement
learning and local search for the vehicle routing problems.
ieeexplore.ieee.org (2021). Retrieved March 16, 2023 from
https://ieeexplore.ieee.org/abstract/document/9141401/?casa_token=
joKmbnG-
H1kAAAAA:XSSUCwt_NeOCg0twxOJeS3yl3uwiz1o5te-
NkOxMisQunkE8_zq3ordTklZNona4NOzpCrE12kA

[36] Xinghua Zheng, Ming Tang, Yuechang Liu, Zhengzheng Xian, and
Hankz Hankui Zhuo. 2021. Repositioning bikes with carrier vehicles
and bike trailers in bike sharing systems. Applied Sciences
(Switzerland) 11, 16 (2021).
DOI:https://doi.org/10.3390/app11167227

[37] Xiaolu Zhou. 2015. Understanding spatiotemporal patterns of biking
behavior by analyzing massive bike sharing data in Chicago. PLoS
ONE 10, 10 (2015), 1–20.
DOI:https://doi.org/10.1371/journal.pone.0137922

[38] 2023. Home: Internal Revenue Service. Internal Revenue Service |
An official website of the United States government. Retrieved from
https://www.irs.gov/

