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ABSTRACT 
In cities with top ridership, bike-sharing systems (BSSs) have 
expanded to over 500 stations, necessitating dynamic rebalancing 
of bikes among stations to accommodate timely imbalanced 
customer demands. BSS operators redistribute bikes among 
stations by employing a fleet of rebalancing vehicles. Traditional 
mixed-integer programming and heuristic approaches often 
generate offline or shortsighted solutions. Moreover, current 
approaches based on reinforcement learning and deep learning, 
while beneficial for urban mobility operations, are designed 
primarily for small-scale BSSs or partitioned sub-BSSs, deploying 
only small rebalancing fleets. How to produce online rebalancing 
solutions for large-scale BSS with multiple rebalancing vehicles is 
significant for current BSS operations yet remains still unclear. To 
fill the gap, we proposed a deep reinforcement learning based 
model to learn the optimal policy for dynamic bike share 
rebalancing. We designed a deep Q-network (DQN) with inputs 
reflecting real-time spatial-temporal system observations and 
outputs corresponding to intertwined rebalancing actions 
(repositioning and routing) for individual vehicles. Each 
rebalancing vehicle operates asynchronously, independently 
solving the DQN. Using Divvy Bike's historical data from 
Chicago — a system including over 500 stations and 16 
rebalancing vehicles in the fleet— the experiments demonstrate 
that our model generates effective rebalancing solutions on a 
large-scale BSS against baselines, facilitating the operation of 
shared mobility systems in large cities. 

CCS CONCEPTS 
• Applied computing → Transportation. 
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1 INTRODUCTION 

Bike-sharing systems (BSSs) offer users accessibility, 
convenience, and low-cost mobility, promoting multimodal trips 
and short-distance travel as alternatives to private cars, thus aiding 
in congestion mitigation and greenhouse gas reduction [9,26]. In 
response to growing demand, BSS companies are extending 

existing networks and launching new systems in global cities 
[9,21,26]. The distribution of bike share trips across the service 
region is often imbalanced due to spatial-temporal demand 
differences, which could precipitate customer dissatisfaction and 
potential revenue losses. These imbalances may also lead to 
increased greenhouse gas emissions if customers turn to more 
energy-intensive modes of transportation [11]. Therefore, 
regularly rebalancing bikes among stations is imperative to 
maintain a reasonable distribution across the service region [8]. 
With increasing BSS scale, dynamic rebalancing becomes a key 
operational solution [29,31]. Such a strategy is typically modeled 
as a Dynamic Bike Share Rebalancing Problem (DBSRP). DBSRP 
aims to dispatch rebalancing vehicles to certain bike stations and 
then pick-up or drop-off a certain number of bikes in those target 
stations to resolve the real-time varying demands [28]. 
Specifically, the process includes routing decisions, which 
determine the sequence of station visits, and repositioning 
decisions, indicating the number of bikes to be moved at each 
station. The rebalancing is usually conducted by a fleet of 
automobiles (referred to as rebalancing vehicles hereafter). 
Rebalancing vehicles carry a particular quantity of bikes and 
travel among bike stations sequentially. It should be noted that 
routing and repositioning decisions are entangled, given that 
rebalancing vehicles can only move bikes at stations they 
physically visit. 

Existing works primarily addressed DBSRP through mixed-
integer programming (MIP) or heuristic approaches. Given 
DBSRP's complexity as an NP-hard problem, traditional MIP-
based methods utilized decomposition or heuristic techniques for 
feasible solutions [5,10,12,33,36]. Yet, these solutions primarily 
cater to offline scenarios, given their need for full data for the 
entire planning horizon. Several studies also proposed heuristic or 
rolling horizon-based algorithms to support rebalancing decisions, 
offering online solutions for BSSs [4,28]. But these methods are 
typically shortsighted, only approximating the selection of 
rebalancing actions by foreseeing a few steps within the whole 
planning horizon [37]. Meanwhile, these algorithms are often 
developed and tested for small-scale BSSs, or they segment the 
research area into clusters, each serviced by a single rebalancing 
vehicle [5,14,25,27,33]. For instance, [15] only focused on the 
principal region of the entire BSS in the New York City and 
assigned a single rebalancing vehicle for each clustered sub-



 
 

region. However, as BSSs continue growing in scale, the 
computational complexity of DBSRP models increases 
correspondingly, and these algorithms fail to capture the 
unbalanced rebalancing needs globally and are not equipped to 
handle large-scale operations. Consequently, they are now 
insufficient for generating online rebalancing solutions with high-
quality and far-sight. 

Recent advancements in Deep Reinforcement Learning (DRL) 
methods have demonstrated the potential to solve sequential 
decision-making problems. However, existing DRL algorithms, as 
applied in urban mobility operations, exhibit limitations that 
hinder their direct application in large-scale DBSRP. DRL-based 
frameworks from [1,22], which were designed for ride-sharing 
systems, only allow isolated decisions and overlook the 
interdependencies between multiple concurrent decisions. Such 
interdependencies are necessary for DBSRP which has both 
repositioning and routing. [15] utilized a spatial-temporal 
reinforcement learning approach to DBSRP, but their model only 
focused on the principal system of Citi Bike in NYC and split it 
into subclusters. They only assigned a single vehicle to each 
cluster, failing to account for heterogeneous customer demands in 
a large-scale city. Meanwhile, [3] proposed a hybrid approach 
integrating DRL with MIP optimizer for freight delivery problem, 
but it is confined to static decision-making and unsuitable for 
online problems. 

In this work, we proposed a DRL-based model to generate the 
optimal strategy for dynamic rebalancing of large-scale BSS in 
real-time. Our agent interacts iteratively with a BSS simulator, 
utilizing a Deep Q-Network (DQN) to estimate the long-term Q-
values of rebalancing actions, whose objective is to maximize the 
system’s overall profits. The agent selects the rebalancing action 
with the highest Q-value for each rebalancing vehicle. Different 
from the existing work, our model incorporated large-scale, real-
time, and farsighted rebalancing decision-making. The main 
contributions of this study can be summarized as follows: 
(1) We developed a DRL-based framework for DBSRP, capable 
of real-time optimization for large-scale DBSRP to enhance 
overall profits without necessitating service region partitioning.  
(2) Contrasting with existing RL applications in urban mobility 
system operations, we constructed a convolutional neural network 
for DQN whose outputs are tailored to interdependent rebalancing 
actions. 
(3) We evaluated the model using real-world data from Chicago's 
Divvy, featuring over 500 stations and 16 rebalancing vehicles. 
The experiments demonstrated its effectiveness in improving 
overall system profits. 

2 PROBLEM STATEMENT 

In this work, we aim to find the optimal solution for DBSRP. The 
notations used throughout this work are defined in A.1. DBSRP is 
a variant of the dynamic vehicle routing problem with split 
deliveries [2,24]. This involves multiple rebalancing vehicles that 
are routed to serve real-time customer demands originating from 
bike stations. These bike stations are not restricted to be visited 

only once during the operation and they can be re-visited by 
rebalancing vehicles as needed. Adopting from [12,17], this 
problem can be formulated as follows: 
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+%,*,+,& ∈ {0,1} (14) 
The objective function (1) minimizes the total costs of losing 
customers and fuel costs incurred by rebalancing vehicles that 
route to targe stations, in which ! represents the average cost paid 
by customers for a single bike share trip and "  represents the 
average fuel cost per mile of vehicles. For constraint (2) and (3), 
the in- and out-flows of bikes in the station are conserved. Also, 
the bike quantity in the station either after rebalancing or after the 
rent/return of customers is within station capacity. Constraint (4) 
records the customer loss in each station, which is the difference 
between the expected inventory level of the station and the actual 
inventory level. Constraint (5) ensures that the number of bikes in 
and out of the vehicles is conserved. Additionally, the number of 
bikes in the rebalancing vehicle after visiting the station is within 
the vehicle capacity. For constraint (6), it enforces that 
rebalancing vehicles arriving at and departing from the target 
stations are preserved. The rebalancing vehicles that depart from a 
station ∑ +%,*,+&

*∈(  could only be the ones that arrive at this station in 
the last timeslot ∑ +*,%,+&:.

*∈( . Note that staying in a station could be 
viewed as moving out of the station and moving into it again in 
the same time slot. ∑+(!,%,+; 	and ∑ +%,(!,+)  are set to be 1 since every 
rebalancing vehicle must initially depart from the depot and 
finally return to it. Constraints (7) and (8) guarantee the 
requirement that, in any timeslot, at most one vehicle is visiting 
the same station and one vehicle can be present at most one 
station. These constraints avoid the risk of multiple vehicles 
rebalancing the same station, thereby preventing offsetting effects. 
Constraint (9) couples the repositioning decision and routing 
decision, enforcing that rebalancing vehicles can only pick-up or 



  
 

  

drop-off bikes in the visited stations. Constraint (10) sets the 
initial capacity of bike stations and rebalancing vehicles to be half 
full. Constraints (11)-(13) enforce that the number of repositioned 
bikes does not violate the physical capacities. Additionally, the 
number of bikes parked in stations and carried by rebalancing 
vehicles should not violate their maximum capacities. Constraint 
(14) defines the routing decision +2,2",6&  as binary variables. 

3 DATA AND METHODS 

This section details our methods designed for the DBSRP. Section 
3.1 introduces the Divvy BSS data from Chicago, employed for 
training and testing DBSRP algorithms. In Section 3.2, we outline 
the framework developed based on the RL paradigm, involving 
the environment, agent (RL algorithm and DQN), state, action, 
and reward. Section 3.3 introduces baseline models for 
comparative analysis, while Section 3.4 defines evaluation metrics 
for measuring DBSRP algorithm performance. 

3.1 Case Study Data and Preprocessing 
This study utilized the publicly accessible Divvy dataset, which 
encompasses the station-based BSS data in Chicago. Each trip 
record incorporates the origin and destination station ID along 
with the start and end time of each trip. The station information of 
Divvy was collected through GBFS (General Bikeshare Feed 
Specification) API. The station information includes the station id, 
station name, location (latitude & longitude), and capacity. The 
service region containing 578 active stations in Chicago was 
divided into 51×51 grids. Each grid in this study has a size of 
400m×700m [22]. 578 active Divvy stations were thereby 
assembled into 451 abstract stations.  According to Divvy’s 
system operator, the rebalancing vehicle fleet of Divvy has 16 
automobiles in service and the bike depot of Divvy was built in 
(41.890082, -87.658458), which corresponds to the grid (27, 26) 
in this study.  

3.2 Deep Reinforcement Learning Framework 

Here, we present the formulation of the model-free deep 
reinforcement learning framework which aims to learn the optimal 
dynamic rebalancing policy. 

3.2.1 Simulator. A simulator serves as the environment, with 
which the agent interacts. The dynamics of a simulator include 
initialization, bike rent/return process, and rebalancing activities. 
The simulation process is detailed in Figure 1. Initially, stations 
and rebalancing vehicles are assumed to be half full and 
rebalancing vehicles depart from the depot at the beginning of the 
episode. Then, in each timeslot, the simulator executes the 
rebalancing actions generated by the agent to modify the bike 
inventory of visited stations. Following that, customers are 
emulated to rent or return bikes according to historical demands. 

3.2.2 State space. In this study, the state variable #! reflects the 
real-time BSS environment observation at the beginning of 
timeslot $ . We formulated the state variables Q& =
R/%,&/%01, /%,&<480, G+,&/%01, G+,&=94&, G+,&>48S, " ∈ {1,2, … , >},! ∈ {1,2, … ,H}, which  

 

Figure 1: BSS simulator. It executes bike rent/return and 
rebalancing sequentially. 

corresponds to the spatial-temporal information of bike stations, 
rebalancing vehicles, respectively.  

3.2.3 Action space. Corresponding to the action variables defined 
in Section 2, the rebalancing action 2+,& 	= (+%,*,+,&, 6*,+,&)  is two-
dimensional for rebalancing vehicle % in the timeslot $. To reduce 
the computation time, the action space for routing action +%,*,+,& 
consists of grids reachable via a maximum of 10 horizontal or 
vertical moves from the current grid (each move is a grid). 
Meanwhile, the action space for repositioning action 6*,+,&  is 
comprised of seven discrete actions: do not move any bike in the 
target bike station, moving five or ten bikes into/out of the target 
station, moving maximum feasible bikes out of the station 
(“greedy all out”), and moving maximum feasible bikes from the 
rebalancing vehicle into the station (“greedy all in”). Such an 
action space is tailored for large-scale BSS, because rebalancing a 
large number of bikes in bike stations that have high customer 
demands is always a necessity during the day; also, customer 
demands are at a low level in late night or early morning so that 
few bike station needs rebalancing. 

3.2.4 Reward function. The agent aims to take rebalancing actions 
that maximize the expected total future rewards until the episode 
terminates. We designed the reward function for each rebalancing 
vehicle	% that executes rebalancing action 2+,& in the state Q&, by 
modifying the objective function (1) described in Section 2: 

UR2+,&, Q&S = % ∙ ∆'*,& − ) ∙ *%,* (15) 
where ∆'*,& is consequential customer loss reduction in the visited 
station ' in timeslot $. The customer loss reduction is the customer 
loss generated in the stations without any rebalancing during the 
simulation minus the customer loss generated in the station with 
the executed rebalancing under a given policy.  

3.2.5 Double Deep Q-Network (DDQN) algorithm. To train the 
DQN network that learns the policy, we used the DDQN 
algorithm with experience replay as proposed in [32]. DDQN 
algorithm was applied in this work because it has been proven to 
achieve much better performance in large-scale sequential 
decision-making problems and can help reduce the overestimation 
of DQN.  

To select a rebalancing action to be executed, the agent estimates 
the Q-value of each rebalancing action W?(Q&, 2&)  for individual 
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rebalancing vehicles given the environment state Q& in timeslot $. 
Under the policy	", the Q-value of the action 2& is the cumulative 
future rewards when choosing that action in a certain state and 
following the optimal policy thereafter: 

W?(Q&, 2&) ≡ Y Z$[&":&U0	|	/
∞

&"@&
= Q&, ] = 2&, ^_ (16)	

where ( ∈ [0,1]  is a discount factor that compensates the 
importance of immediate and future rewards. The optimal Q-value 
of an action 2& in a state Q& is therefore W∗(Q&, 2&) ≡ max

?
W?(Q&, 2&). On 

top of that, an optimal rebalancing policy can be derived from the 
optimal Q-values by choosing the highest-valued action 2&∗ =
argmax

3#
W∗(Q&, 2&) in each state #!  [32]. Such long-term optimal Q-

value function is iteratively updated by using the Bellman 
equation [18]: 

W∗(Q&, 2&) = Y2#$% eU& + [!233#$%
W∗(Q&-., 2&-.)|Q&, 2&f 	 (17)	

In practice, a neural network with weights	/, which is a non-linear 
function approximator, is usually utilized to estimate the Q-value	
W(Q, 2; h) ≈ W∗(Q, 2) [19,30]. We refer to such a neural network as a 
Deep Q-Network (DQN), whose architecture will be introduced in 
Section 3.2.6. In this paper, the inputs of the DQN are the 
instantaneous states of the BSS environment at the beginning of 
timeslot $ , while the outputs are Q-values of all rebalancing 
actions in the defined action space for an individual rebalancing 
vehicle.  

To improve the policy	", the weights /" of a DQN is updated by 
minimizing the mean-squared error (MSE) loss functions '%(h%) 
occurred at each iteration 0: 

'%(h%) = 	Y2#,3# jR6% − 	W(Q&, 2&; h%)S
Bk	 (18) 

where  6% = Y2#$% eU& + [!233#$%
W(Q&-., 2&-.; h%:.)|Q&, 2&f is the target value 

for the DQN in iteration 0 [20]. The DQN with parameters h%:. 
used to estimate the Q-values are from the previous iteration	" − 1. 
In this work, based on the DDQN algorithm, we employed two 
homogenous DQNs to approximate the Q-values and denoted 
their weights as / and /#, respectively. The target 2" is therefore 
modified as  

6%
<<C( = Y2#$% eU& + [W(Q&-., !233#$%

W(Q&-., 2&-.; h%:.); h%:.: )|Q&, 2&f (18) 

which reduces the overestimations by decomposing the max 
operator in the target 2"  into action selection 

2&-.∗ = !23
3#$%

W(Q&-., 2&-.; h%:.)	 (20) 
and action evaluation W(Q&-., 2&-.∗ ; h%:.: )	[32]. The parameters /# are 
periodically copied from parameters /. The agent always chooses 
the action that maximizes the Q-value based on the outputs of the 
DQN with parameters /. 

3.2.5 DQN architecture. We designed an architecture for the 
DQN, shown in Figure 2, to estimate the Q-values of actions 
while capable of capturing spatial-temporal information of the 
large-scale BSS states. Adopted from [23,30,35], we designed two 
input channels for the DQN, representing two categories of 
observations. These channels gather both global and local 
observations from BSS states, taking into account their spatial-
temporal characteristics. Specifically, the global observation is 

viewed from the entire BSS system’s aspect, while the local 
observation is viewed from each rebalancing vehicle’s aspect 
centering the rebalancing vehicle in the plane. Meanwhile, the 
output was structured as a table in order to approximate the Q-
values of two entangled rebalancing actions. 

The description of feature planes is summarized in Table 1. 
Global observations (Table 1(A)) have 5 stacked feature planes 
with size 51 × 51  and each cell in the plane corresponds to a 
feature of a grid in the entire service region; local observations 
(Table 1(B)) have 13 stacked feature planes with size 21 × 21 and 
each cell corresponds to a feature of a grid within action space. 
Two threads of inputs were passed through the convolutional 
layers and fully connected layers to nonlinearly estimate the Q-
values. Specifically, first, the global observation inputs were 
applied average pooling with the pool size of 2, to down-sampling 
feature planes, which reduces the complexity of the neural 
networks [13]. Then the first and second hidden layers convolved 
the filters of size 3 × 3 with the dimensionality of 64 and 128, 
respectively. Both layers were applied exponential linear unit 
(ELU) activation. Likewise, the local observation inputs entered 
the convolutional layers, which have 64 filters of size 1 × 1 and 
ELU activation. Convolved global and local observation inputs 
were stacked and then entered two convolutional layers with 64 
and 1 filters of size 1 × 1. The final output layer is composed of 
3087 units, configured into a two-dimensional Q-value table of 
size 441 × 7, where each dimension corresponds to the action 
space size. In this way, in the output table, choosing one Q-value 
indicates the repositioning and routing correspondingly. 

 

Figure 2: DQN architecture. The red dot represents a 
rebalancing vehicle. 

In our study, we utilized an action mask on the output Q-value 
table to eliminate infeasible actions. This a priori constraint 
excludes specific Q-values from selection, preventing infeasible 
actions from entering the experience pool. Specifically, if either 
the available bikes or rebalancing vehicle slots are insufficient for 
all repositioning actions, the corresponding Q-value table pixel is 
masked as 0. Similarly, if a grid lacks an installed station or if a 
station is already assigned to another rebalancing vehicle in the 
current timeslot, its corresponding pixel is also masked as 0. 
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Table 1: Representations of the system in the input layer of the neural network. 

(A) The global observation inputs with plane size 51 × 51 depict the spatial observation from global system perspective. 
Input Feature Number of planes Description 

Global 

Bikes in rebalancing 
vehicles 1 Number of bikes carried by a rebalancing vehicle in this grid; 

otherwise filled with 0 
Slot in rebalancing 

vehicles 1 Number of slots in a rebalancing vehicle in this grid; otherwise 
filled with 0 

Future rebalancing 
vehicles 1 Number of available rebalancing vehicles assigned to visit in this 

grid in the next time slot 

Bikes in stations 1 Number of bikes parked in the station in this grid; otherwise filled 
with 0 

Docks in stations 1 Number of docks in the station in this grid; otherwise filled with 0 
 

(B) The local observation inputs with plane size 21 × 21	depict the spatial and temporal observation from rebalancing vehicle perspective. 
Input Feature Number of planes Description 

Local 

Day of month 2 Constant planes filled with sine/cosine of day of the month 
Day of week 2 Constant planes filled with sine/cosine of day of the week 

Minute of day 2 Constant planes filled with sine/cosine of minute of the day 

Position 1 The center is filled with 1 to indicate the position of this 
rebalancing vehicle, otherwise filled with 0 

Global coordinates 2 Constant planes filled with normalized horizontal/vertical 
coordinates of this rebalancing vehicle from the global aspect 

Local coordinates 2 Constant planes filled with normalized horizontal/vertical 
coordinates of this rebalancing vehicle from the local aspect 

Distance 1 Distance from other grids to the center 

Legal map 1 
Filled with 1 if this grid has installed bike station and has not been 

assigned to visit by other rebalancing vehicles, otherwise filled 
with 0 

3.3 Baselines 

To evaluate the performance of the proposed model, we compared 
it against four DBSRP baseline algorithms.  
(1) No Rebalancing. The operator does not execute any 
rebalancing in BSS.  
(2) Greedy Rebalancing. As outlined in [7,15,34],  in this 
algorithm, for a near-full rebalancing vehicle, it always travels to 
the nearest near-empty stations and offloads the most possible 
bikes there. For a near-empty rebalancing vehicle, it always 
travels to the nearest near-full stations and collects as many bikes 
as possible. 
(3) Lagrangian Dual Decomposition-based MIP (LDD-MIP). 
As proposed by [12], they exploited LDD and abstraction 
mechanisms to solve the MIP formulated in Section 2. 
(4) Greedy Online Anticipatory Heuristic (GOAH). Developed 
by [16], they provided a heuristic approach to produce online 
solutions for DBSRP by looking ahead three timeslots and 
computing policy for each individual rebalancing vehicle.  

3.4 Evaluation Metrics  

We used the following three metrics to measure the performance 
of different rebalancing methods: 
(1) Customer loss. It is the number of customers who failed to rent 
bikes at their initial departure stations or return bikes at the 
original arrival stations. In addition to that, we also defined 

customer loss reduction, which is the difference between customer 
loss with No Rebalancing and customer loss with running 
another rebalancing strategy. 
(2) Vehicle routing distance (VRD). It is the sum of the distance 
that a rebalancing vehicle travels among the visited stations in an  
episode. Vehicle routing distance is also known as vehicle-miles-
traveled (VMT). 
(3) Improved profit. It is the additional ride profit earned from 
customer loss reduction subtracts the routing cost of the 
rebalancing vehicles. In this work, the profit of each ride is 
assumed to be the cost of each single trip ($3.3 [6]). Additionally, 
given that the internal combustion engine rebalancing vehicle 
consumes fuel when routing to target stations, the routing cost of 
the rebalancing vehicles in this work is estimated as the mileage 
rate (58cents/mile in 2019 [38]) multiplies the routing distance of 
rebalancing vehicles. 

4 EXPERIMENTS AND RESULTS 

4.1 Experiment setup 

The DRL model was trained on the Gilbreth community cluster 
with 256 GB of RAM and two P100 Nvidia Tesla GPUs at Purdue 
University. Our experiment used historical data of a four-week 
period from September 2, 2019 (Monday) to September 29, 2019 
(Sunday). The first three weeks' data serve as the basis for model  



 

Figure 3: Comparison of different rebalancing strategies in terms of different metrics. (A) Comparison of average weekly customer 
loss; (B) Comparison of average daily customer loss; (C) Comparison of average weekly vehicle routing distance; (D) Comparison 
of average profits improvement. 

training, while the final week's data is allocated for testing. The 
selected dataset incorporates over 449,000 trip records within 
Chicago. We trained the model for 6,500 episodes (156,000 
training steps in total) with a physical training time of 168 hours 
until the model converged. For the DDQN algorithm, the learning 
rate was set as 0.0001. The initial 40,000 steps were set for 
exploration, over which the exploration rate decreases from 1 to 
0.05. The replay buffer keeps the most recent 40,000 steps as 
experiences and we set the time discount rate (  to be 0.9. To 
alleviate the uncertainty of rebalancing models, we ran the 
experiments ten times and evaluated their average performance. 

4.2 Empirical results 

Figure 3(A) demonstrates that our model minimizes total 
customer loss over a one-week test horizon, outperforming all 
other strategies. Compared to No Rebalance, our model leads to 
an average reduction of 1,942 customers loss in a week. In 
contrast, GOAH, LDD-MIP and Greedy Rebalance result in 
average reductions of 1,232, 920, and 707 customer loss, 
respectively. Consequently, the model in this work surpasses 
GOAH, LDD-MIP, and Greedy Rebalance by lowering 
additional customer loss by 57.6%, 111.09%, and 174.68% 
respectively. The daily customer loss reduction, as shown in 
Figure 3(B), is most significantly reduced by our model during 
weekdays among all evaluated strategies. Both our model and 
GOAH outperformed LDD-MIP in reducing customer loss due to 
their adaptability to BSS's real-time customer demands, whereas 
LDD-MIP produces only offline rebalancing solutions. Greedy 
Rebalance underperforms as it neglects upcoming demands and 
lacks coordination between rebalancing vehicles. Notably, there is 
no significant difference in customer loss reduction among 
rebalancing strategies on weekends. This is because the absolute 

customer demands on weekends are much smaller than those on 
weekdays. Most of bike stations can be thereby self-rebalanced 
without the need of rebalancing. 

The VRDs in Figure 3(C) indicate that our model is more active in 
traveling to bike stations to rebalance bikes, in comparison to 
other baselines. It can be seen that the rebalancing under LDD-
MIP has the shortest routing distances over other strategies. In 
contrast, our model aggressively dispatches the rebalancing 
vehicles, whose VRD is 137.57% and 25.45% higher than that of 
LDD-MIP and Greedy Rebalancing, respectively. 

In Figure 3(D), the proposed DRL model improves the highest 
overall profits among rebalancing strategies, which is 101.26% 
more than LDD-MIP model, 220.01% more than GOAH model 
and 476.13% more than Greedy Rebalancing.  

The overall profit improvement is the tradeoff between the gain 
from reducing customer loss and the cost incurred from 
rebalancing vehicle routing. Even though executing an aggressive 
rebalancing strategy will lead to a higher routing distance, the 
rebalancing solutions generated by DeepBike in this work can 
significantly contribute to reducing potential customer loss and in 
turn reaching the highest profits. 

5  CONCLUSION 

In this study, we proposed a DRL-based rebalancing model for 
large-scale BSSs, capable of producing timely rebalancing 
solutions. We designed a DQN to capture the real-time large-scale 
spatial-temporal system states without partitioning the service 
region and to estimate the Q-values of the rebalancing actions of 
each single rebalancing vehicle. Our proposed model learns to 
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update its DQN by interacting with the BSS environment 
iteratively through trial and error. The numerical results presented 
above demonstrate that, in a large-scale BSS which has more than 
500 bike stations and 16 rebalancing vehicles, our model was able 
to reduce the most customer loss and achieve the highest overall 
profit improvement in a one-week testing horizon. The customer 
loss reduction and overall profit improvement are beneficiaries for 
the customer and operator. The model in this work learns to trade 
off the routing fuel cost to increase the overall profits and 
customer loss reduction. 

The scheme of DRL facilitates large-scale and online solutions, 
distinct from existing algorithms. The designed CNN-based neural 
network captures the real-time large-scale dynamics of the entire 
BSS as input and estimates the long-term benefits of rebalancing 
decisions. Additionally, in contrast to MIP models, converged 
neural network is able to generate online rebalancing decisions 
without the need of solving the model from scratch. It is also 
notable that, even though our model was experimented on a 
station-based BSS because of the data availability, our model is 
transferable to free-floating BSS because zoning the service 
region into : × : grids and aggregating free-floating bikes parked 
within neighbor grids as abstract stations are still applicable to 
align with the inputs of DQN. 

We suggest several opportunities for future research. The publicly 
available trip records published by BSS operators are only 
observed demands, which underestimates the bike check-in rate in 
stations. A true demand estimation model would benefit the 
demand simulation which will in turn improve the decision-
making policy. Additionally, developing a multi-agent 
reinforcement learning algorithm that takes the collaboration of 
rebalancing vehicles into account for DBSRP could better learn 
the optimal rebalancing policy. 

APPENDIX 

A.1 List of notations 
! The rebalancing policy 

" The total number of time slots in one episode 

∆$ The length of each time slot 

$ Current time index 

% The number of rebalancing vehicles in the fleet,	, ∈
{1,2, … ,%} 

3 The number of aggregated bike stations in	BSS,	8, 9 ∈
{1,2, … , 3} 

: BSS environment state 

;!,#
$!%& The number of bikes in the station 8 at the beginning of time 

slot $ 

;!,#
'()% The number of docks in the station 8 at the beginning of 

time slot $ 

<*,#
$!%& The number of bikes in the rebalancing vehicle , at the 

beginning of time slot $ 

<*,#
+,(# The number of slots in the rebalancing vehicle , at the 

beginning of time slot $ 

<*,#
-() The location of vehicle , at the beginning of time slot $ 

=!,# 
The net demands of the station 8 in the time slot	$. The net 

demand equals to the return demand minus the rent 
demand. 

=!,#:#/0
12&3  The predicted future net demands of the station 8 in the next 

?	time slots from the beginning of the time slot	$  

@!
4#5#!(0 

The capacity of maximum parking bikes of the station 8, 	
@!
4#5#!(0= :!,#$!%& + :!,#'()% 

@*6&7!),& 
The capacity of maximum carrying bikes of the vehicle ,, 	

@*6&7!),&= B*,#$!%& + B*,#
+,(# 

C!,# The customer loss occurred in the station	8 in time slot $ 

D!,8	 The routing distance between station 8 and station j 

E The price of a single trip riding the shared bike (dollar) 

F The mileage rate (dollar per mile) 

G!,8,*,# 
Binary, the routing decision variable that sets to 1 for 

vehicle , in the time slot $ if traveling from station 8 to 
station 9 

H8,*,# 
Integer, the repositioning decision variable for vehicle ,, 
denoting the number of bikes to pick-up/drop-off when 

visiting target station 9 in time slot $  
I# The reward earned in time slot $ 

J# 
A sample consists of ;#, K#, I#	and	;#/:, which records the 

transition from the time slot $ to the time slot $ + 1 

K 
Rebalancing action, a tuple consists of the routing decision 

and repositioning decision K = (G!,8,*,#, H8,*,#) 

Q The probability of selecting a random action during the 
training process of DRL 

R Time discount factor 

S The probability of doing no rebalancing action during the 
initial training process 
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