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ABSTRACT

In this paper, we introduce the novel task of Open-domain Urban
Itinerary Planning (OUIP), a paradigm designed to generate person-
alized urban itineraries from user requests articulated in natural lan-
guage. This approach is different from traditional itinerary planning,
which often restricts the granularity of user inputs, thus hindering
genuine personalization. To this end, we present ItiNera, an OUIP
system that synergizes spatial optimization with large language
models (LLMs) to provide services that customize urban itineraries
based on users’ needs. Upon receiving the user’s itinerary request,
the LLM first decomposes it into detailed components, identifying
key requirements, including preferences and dislikes. Then, we use
these specifics to select candidate POIs from a large-scale collection
using embedding-based Preference-aware POI Retrieval. Finally, a
preference score-based Cluster-aware Spatial Optimization mod-
ule clusters, filters, and orders these POIs, followed by the LLM
for detailed POI selection and organization to craft a personalized,
spatially coherent itinerary. Moreover, we created an LLM-based
pipeline to update and personalize a user-owned POI database. This
ensures up-to-date POI information, supports itinerary planning,
pre-trip research, POI collection, recommendations, and more. To
the best of our knowledge, this study marks the first integration of
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LLMs to innovate itinerary planning, with potential extensions for
various urban travel and exploration activities. Offline and online
evaluations demonstrate the capacity of our system to deliver more
responsive, personalized, and spatially coherent itineraries than
current solutions. Our system, deployed on an online platform, has
attracted thousands of users for their urban travel planning.
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1 INTRODUCTION

As a novel form of urban travel and exploration, city tours invite
travelers to wander through city streets, delve into historical sites,
and immerse themselves in local culture. Hence it offers a more
efficient, dynamic, and cost-effective travel experience compared
to traditional tourism. However, planning a city tour is essentially
an urban itinerary planning problem [8], a complex procedure
that involves gathering travel-related information, selecting POIs,
mapping out routes, and customization for diverse user needs.
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Figure 1: The OUIP problem and the deployed OUIP service.

Existing itinerary planning studies focus on traditional tourism.
They typically consider coarse-grained user requirements, such
as must-see POIs [26], categories[2], geographical considerations
[19, 20], and time budget [10, 39] as constraints to improve the
logical arrangement of sites and optimize the quality of an itinerary
[3, 24]. While these spatial optimization approaches manage to
maintain the quality of POIs and spatial coherency of the planned
itinerary, they fail to ensure personalization and overall quality,
thereby failing to satisfy the diverse demands of users. A high-
quality itinerary for a city tour should transcend a mere list of POIs,
and align with users’ specific requirements and lifestyles.

To elaborate on this, we summarize the highlighting features of
city tours that differentiate itself from traditional tourism:
• Dynamic Information: City tours involve rapidly changing POIs
and requiring up-to-date information and exploration of tempo-
rary events, as contrary to traditional itineraries.
• Personalization: City tours prioritize individual preferences over
universally recognized POIs in traditional tourism.
• Diverse Constraints: City tours planning take into account more
complex constraints e.g. personal interest or accessibility require-
ments, necessitating more intricate planning.
Conventional itinerary planning approaches are challenging for

city tours due to the above-discussed features. Therefore, we pro-
pose open-domain urban itinerary planning (OUIP), which involves
generating personalized urban travel itineraries based on user prefer-
ences in natural language, as depicted in Fig. 1.

Recently, LLMs [16] demonstrate impressive applications in un-
derstand user needs and handle simple planning tasks [33]. How-
ever, the limitations of LLMs become apparent in itinerary plan-
ning [33] due to reliance on non-real-time information, incom-
plete knowledge, and a lack of spatial awareness. LLM-generated
itineraries could be circuitous, lack of detail, and include halluci-
nated POIs, making them less practical for actual use in itinerary
planning. Beyond the methodological gaps, evaluation of OUIP also
presents difficulties due to lack of datasets and open-domain nature
of the OUIP task, rendering rule-based metrics insufficient.

Given above challenges, this paper proposes ItiNera, a holis-
tic OUIP system that synergizes spatial optimization with LLMs.
Specifically, ItiNera features a User-owned POI Collection module
to automatically scrape and extract POI features from web content,
dynamically updating a user-owned, personalized POI database to

ensure the customization and timeliness of POI information. ItiN-
era consists of five modules: User-owned POI Collection, Request
Decomposition, Preference-aware POI Retrieval, Cluster-aware Spa-
tial Optimization, and Itinerary Generation. All five modules are
LLM-assisted, and details will be presented later. Importantly, as the
OUIP is a novel task, we collect a validation dataset and develop a
series of metrics for a comprehensive evaluation framework. Lastly,
ItiNera has been deployed as a real-world service that attracts
thousands of users within months.

Overall, the main contributions of our work are as follows:
• We introduce the Open-domain Urban Itinerary Planning (OUIP)
problem, designed to provide personalized urban travel itineraries
based on users’ natural language inputs.
• We develop an LLM-based OUIP system, ItiNera. To the best
of our knowledge, this is the first study that combines spatial
optimization with LLMs to create spatially coherent, fine-grained
urban itineraries tailored to users’ requests. The system can be
extended to various local travel and entertainment activities, such
as urban explorations, multi-day travel, and more.
• We designed several rule-based and GPT-based metrics to mea-
sure the quality and personalization of generated itineraries and
provide a benchmark for future research.
• Extensive experiments on real-world dataset demonstrate that
ItiNera manages to create personalized, spatially coherent and
high-quality urban itineraries that meet user requirements; ItiN-
era is also deployed in TuTu online OUIP service. User feedback
validates the effectiveness of our system in real-world scenarios.

2 RELATEDWORKS

2.1 LLMs in Urban Application

Since ChatGPT [16], Large Language Models (LLMs) have received
widespread attention and demonstrated strong capabilities in tasks
such as language processing, instruction-following, planning, and
learning. Existing applications of LLMs are concentrated in agent
[28, 32] and prompt [31, 37] design. However, the urban applications
using LLMs remain in the early stages. Recent studies highlight
the potential of LLMs in urban data processing [36] and urban
planning [43]. These works reveal LLMs’ capabilities in predicting
human mobility patterns [15, 35], including during public events
[13], and emphasize their predictive strength [30, 34]. In trans-
portation, LLMs contribute to traffic safety analysis [40], enhance
traffic forecasting [4], and automate accident report generation [42],
demonstrating their wide applicability in urban transportation [41].

Leveraging LLMs for automated travel planning has recently
gained public interest. Concurrently, TravelPlanner [33] proposes
a sandbox environment with various tools for benchmarking LLMs
on long-term (minimum 3 days) travel planning, revealing LLMs’
current limitations in handling complex planning tasks. Given this,
we present ItiNera, a holistic system designed for OUIP. Unlike
TravelPlanner, our system focuses on fine-grained OUIP, addressing
urban itinerary planning within a single day, but can be seamlessly
extended to multi-day travel planning.

2.2 Itinerary Planning

Current research on IP focuses on creating itineraries based on a set
of POIs. Some methods directly optimize the spatial utilities of the
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Figure 2: An overview of the ItiNera system.

itinerary to obtain spatially coherent itineraries, while others define
IP as an Orienteering Problem (OP) and consider constraints that
include time [10, 39], space [19, 20], must-see POIs [26], categories
[2], and their combinations [6, 38], optimizing POI utilities such as
location popularity [7, 27] to indirectly ensure the spatial coherence
and quality of the itinerary. Although these methods can ensure
the quality of POIs in the itinerary, their ability to personalize is
limited. Some recommendation-based methods [9, 25] could be
applied to the IP task. However, these methods often depend on
historical user behavior data. Overall, existing IP methods struggle
with open-domain, user natural-language inputs, failing to generate
personalized itineraries, making them unsuitable for OUIP.

3 PRELIMINARIES

Definition 1 (User Request). A user request 𝑟 is a text string
containing the user’s itinerary needs in natural language, including
hard requirements (constraints) and general preferences.

Definition 2 (Point of Interest). A Point of Interest (POI) 𝑝
represents a specific location, like landmarks, restaurants, or cul-
tural sites, characterized by its geographical location, category,
descriptions, and other relevant context features.

Definition 3 (OUIP). Given a user request 𝑟 and the user-owned
POI set P = {𝑝 𝑗 }𝑁𝑗=1, the OUIP problem aims to find an itinerary
generator GΘ to select and order a subset of POIs from P to create
a coherent travel itinerary that optimally aligns with the user’s
requests 𝑟 while adhering to spatio-temporal considerations:

𝐼 ∼ GΘ (P |𝑟 ) , (1)

where Θ is the parameters of the itinerary generator G, and the
generated itinerary 𝐼 is an ordered list of POIs.

4 METHODOLOGIES

4.1 Overview

In this section, we provide details of ItiNera, which consists of five
modules as depicted in Fig. 2. We first incorporate a User-owned POI
Collection (UPC) module to facilitate travel information gathering
and user-owned POI database construction. To plan an itinerary that
meets a user’s request, we design a Request Decomposition (RD) mod-
ule to accurately interpret and extract independent user preferences.
Subsequently, we develop a embedding-based Preference-aware POI
Retrieval (PPR) Module that fetches the top-K most relevant POIs
to form the retrieved POI set for the itinerary. To ensure a spatially
coherent itinerary, we employ a Cluster-aware Spatial Optimization
(CSO) module to spatially filter and rank retrieved POIs by solving
the hierarchical traveling salesman problem, thereby obtaining the
candidate POIs. Lastly, the Itinerary Generation (IG) module inte-
grated the ordered candidate POI set with multiple constraints to
construct the prompt for LLM’s completion. This approach enables
LLM to generate travel routes that are spatial-temporally rational
and align with user requests. We provide details for each module
in the following subsections.

4.2 User-owned POI Collection

In OUIP, the way of travel information acquisition has undergone
a transformation from conventional tourism due to technological
advancements. Base on our user and market research, travelers
increasingly rely on social media for pre-trip information gathering.
Notably, user-generated content is more authentic and current in
terms of customer experience than official sources of information.

To this end, we’ve developed an automated pipeline that extracts
POI information from social media platforms. Our pipeline enables
users to input links of travel posts. With each new post, it lever-
ages LLMs to extract POIs and their descriptions, calls Map APIs
and embedding models to obtain the locations and embeddings of
these POIs, and integrates the information into the user-owned
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POI P and embedding database E. This feature enables users to
create their personalized POI database, maintain the POI informa-
tion’s timeliness, and customize their travel itineraries based on
it, thereby elevating the overall quality of TuTu’s online services.
We also execute a daily automated routine to aggregate POIs by
extracting data from the most recent trending posts across multiple
cities. This approach maintains and updates a comprehensive POI
database, serving as a complement to the user-owned POI database
when needed. Additionally, this strategy can alleviate the cold start
problem for both POI acquisition and the OUIP service.

4.3 Request Decomposition

Upon receiving user requests, we leverage the natural language
processing capabilities of LLMs to extract structured user requests
in this module. A single user request 𝑟 can be decomposed into mul-
tiple independent subrequests, each could be generally classified
according to their granularity, specificity, and attitude. For gran-
ularity, we have (1) POI-level subrequests and (2) itinerary-level
subrequests. In terms of specificity, there are (1) specific subre-
quests and (2) vague subrequests. Regarding attitude, we identify
(1) positive subrequests and (2) negative subrequests. Thus, we
prompt LLM to decompose the user request 𝑟 base on the identified
categories. Let LLM𝜃 denote a pre-trained LLM with parameters 𝜃 :

R ∼ LLM𝜃 ( P𝑅𝐷 (𝑟 ) ) , (2)

where P𝑅𝐷 wraps the request 𝑟 with instructions and few-shot
input-output examples. A simplified version of P𝑅𝐷 is shown above.
The result is a set of decomposed independent structured subre-
quests R = {r𝑖 } | R |𝑖=1 . Each subrequest r𝑖 comprises four keys: ‘pos’,
‘neg’, ‘mustsee’, ‘type’, with their corresponding values rpos

𝑖
, rneg

𝑖
,

rmust
𝑖

, rtype
𝑖

. Here, ‘pos’ and ‘neg’ are strings indicating the user’s
likes and dislikes contained in the subrequest, ‘mustsee’ is a boolean
value, and ‘type’ indicates whether the subrequest targets the start-
ing POI, ending POI, a specific POI, or the entire itinerary, respec-
tively. An example of subrequests is in the upper left of Fig. 2.

Simplified prompt P𝑅𝐷 for Request Decomposition.

Please help me break down a user's requirement description into multiple independent

requirements, each including both positive and negative requirements.

### Output Format:
Return a list:
- **pos**: The positive requirement, representing what the user wants.
- **neg**: The negative requirement, generally what the user does not want, dislikes, or

refuses.
- **mustsee**: Indicates whether this is a must-visit POI, this field is `true` or `false`.
- **type**: Indicates whether the requirement is for a "place" or an "itinerary".
- Your return should be a list in the following format:
[

{{
"pos": "positive requirement", (excluding negative requirements)
"neg": "negative requirement" (what's not wanted, disliked, refused),
"mustsee": true (whether it's a must-see POI),
"type": "place"

}}, ...
]

### Output Guidelines
- Return a JSON list, each item in the list is a dictionary containing "pos", "neg",

"mustsee", and "type" key-value pairs.
- The list can be empty; if empty, just return a JSON list.

### User Input
{user_input}

For those subrequests identified with the identified ‘type’ as
"POI" and the value of the key ‘mustsee’ is true, we leverage their
‘pos’ strings to conduct fuzzy string match over the POI names

stored in the user-owned POI database to retrieve the must-see
POIs Pmust = {𝑝must

𝑗
} | P

must |
𝑗=1 .

4.4 Preference-aware POI Retrieval

To generate itineraries that meet user requests, the initial step
involves selecting POIs that match users’ preferences. Although
LLMs are advanced in language comprehension, their capabilities
are limited by their context window size [14, 18]. Additionally, the
cost of using LLMs is proportional to the number of input tokens,
and their inference speed could hinder our system’s response time.
Considering these limitations and the large scale of POIs in the
real world, we design an embedding-based preference-aware POI
retrieval approach to select candidate POIs.

Specifically, consider a single subrequest r𝑖 , we first employ an
embedding model E𝜃 ′ to encode both the ‘pos’ and ‘neg’ fields:

epos
𝑖

= E𝜃 ′
(
rpos
𝑖

)
; eneg

𝑖
= E𝜃 ′

(
rneg
𝑖

)
, (3)

where 𝜃 ′ denotes the parameters of the embedding model E, and
eneg
𝑖

, epos
𝑖
∈ R𝑑 are two resulted 𝑑-dimensional embeddings.

Ideally, we want the queried POIs best fit the positive subre-
quest while avoiding the negative subrequest. To achieve this, we
first use the calculated positive embedding epos

𝑖
to retrieve 𝑘 POIs

Ppos
𝑖

= {𝑝pos
𝑖, 𝑗
}𝑘
𝑗=1 with top similarity scores Spos

𝑖
= {𝑠pos

𝑖, 𝑗
}𝑘
𝑗=1 and

embedding Epos
𝑖
∈ R𝑘×𝑑 , where 𝑝pos

𝑖, 𝑗
and 𝑠

pos
𝑖, 𝑗

represent the 𝑗th
POI and score for 𝑖th positive sub-request, respectively. Then, to
ensure avoiding negative POIs, we compute the similarity scores
of Epos

𝑖
and eneg

𝑖
and rerank the retrieved POIs base on the gap

between POI-wise positive and negative similarity scores.
Suppose we use E ∈ R𝑁×𝑑 to denote the POI embeddings pre-

computed over POI attributes that stored in the user-owned em-
bedding database, the above process could be formulate as:

Ppos
𝑖

, Spos
𝑖

, Epos
𝑖

= score𝑘
(
epos
𝑖

, E
)

(4)

Pneg
𝑖

, Sneg
𝑖

, Eneg
𝑖

= score
(
eneg
𝑖

, Epos
𝑖

)
(5)

P𝑖 , S𝑖 = rank
(
Ppos
𝑖

, Spos
𝑖
− Sneg

𝑖

)
, (6)

where the score(·) function measures embedding similarities, and
the superscript 𝑘 indicates that the function only returns the top-𝑘
results based on the similarity scores. The rank(·) reorders POIs
based on their similarity scores from highest to lowest.

Lastly, we select the POIs with the highest top-𝑘 summed-scores
(as preference scores) from the unioned set of all retrieved POIs.
This forms the final retrieved POI set P𝑟𝑡 for the user request 𝑟 :

P𝑟𝑡 , S𝑟𝑡 = rank𝑘
(
∪|R |
𝑖=1 (P𝑖 , S𝑖 )

)
∪
(
Pmust, Smust) , (7)

where the set Smust is assigned large values to ensure must-see
POIs are included in the final itinerary by subsequent modules.
During the union process, the scores of the same POI under different
subrequests are summed to form the final preference scores.

4.5 Cluster-aware Spatial Optimization

Travelers tend to move from one cluster of POIs to another [2]. This
can be attributed to the efficiency and convenience of exploring
POIs within a proximal area, reducing the time and effort involved
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in transit. Therefore, spatially filtering all retrieved POIs and se-
quencing their visitation order is essential in order to inform large
language model, which has exhibited limited capabilities for under-
standing layout and optimizing routes in 2D space. To achieve this,
we compute spatial clusters of the retrieved POIs and then select
candidate POIs based on geographical proximity and preference
scores. We address cluster-aware spatial optimization by solving a
hierarchical traveling salesman problem [11].

4.5.1 Obtain Candidate POI via Spatial Clustering and Filtering.
Given the set of retrieved POIs, P𝑟𝑡 , we create a spatial proximity
graph 𝐺 using a distance matrix 𝐷 . In this graph, each node de-
notes a POI, and edges connect nodes (POIs) that are closer than a
specific distance threshold 𝜏 . A community detection algorithm is
applied to𝐺 so that all the nodes are divided into multiple mutually
exclusiveclusters. Next, we iteratively select the clusters with the
largest summed preference scores derived from the PPR module
until the total number of selected POIs reach a predefined threshold
𝑁𝑐 , and the POIs in these clusters form the candidate POIs P𝑐 for
the user request 𝑟 . The above process is detailed in Algo. 1.

Algorithm 1 Spatial Clustering and Selection of Candidate POIs

Input: Retrieved POI set P𝑟𝑡 with scores S𝑟𝑡 , Distance thresh-
old 𝜏 , Candidate POIs num threshold 𝑁𝑐

Output: Spatial Clusters C, Candidate POIs P𝑐
1: // Spatial Clustering
2: 𝐺 ← (𝑉 , 𝐸) with 𝑉 ← P𝑟𝑡 , 𝐸 ← ∅; C ← ∅; P𝑐 ← ∅
3: for 𝑝𝑟𝑡𝑎 , 𝑝𝑟𝑡

𝑏
∈ 𝑉 with 𝑎 ≠ 𝑏 do

4: if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑟𝑡𝑎 , 𝑝𝑟𝑡
𝑏
) < 𝜏 then

5: 𝐸 ← 𝐸 ∪ {(𝑝𝑟𝑡𝑎 , 𝑝𝑟𝑡
𝑏
)}

6: end if

7: end for

8: while 𝑉 ≠ ∅ do
9: 𝑐 ← largest clique in𝐺
10: C ← C ∪ {𝑐}; 𝑉 ← 𝑉 \ 𝑐
11: end while

12: // Selection of Candidate POIs
13: for each cluster 𝑐 ∈ C do

14: 𝑠𝑟𝑡𝑐 ←
∑
𝑝 𝑗 ∈𝑐 𝑠

𝑟𝑡
𝑗

15: end for

16: Sort C in descending order of S𝑐 = {𝑠𝑟𝑡𝑐 }C𝑐=1
17: while |P𝑐 | < 𝑁𝑐

do

18: 𝑐max ← argmax𝑐∈C 𝑠𝑟𝑡𝑐
19: P𝑐 ← P𝑐 ∪ 𝑐max; C ← C \ {𝑐max}
20: end while

21: return C,P𝑐

4.5.2 POI Ordering via Solving a Hierarchical TSP. After obtaining
the spatial clusters C, we further optimize the visitation order of the
candidate POIs to ensure a spatially coherent itinerary. This process
first involves determining the access order of each cluster. Then
within each cluster, we determine the visitation order of POIs by
solving TSPs with starting and ending POI constraints. Specifically,
the start and end points for each cluster are selected based on the
proximity of POIs in adjacent clusters as described in Fig. 2. We
provide an Algo. 2 below that illustrates the procedure.

Algorithm 2 Hierarchical TSP for POI Ordering

Input: Spatial clusters C, candidate POIs P𝑐 , distance matrix
𝐷

Output: Ordered list of candidate POIs Porder

1: // POI Ordering
2: Corder ← SolveTSP(C, 𝐷); Porder ← ∅
3: for each cluster 𝑐 in Corder do
4: 𝑝𝑐start, 𝑝

𝑐
end ← GetClusterEndpoints(𝑐, Corder, 𝐷)

5: 𝑐path ← SolveConstraintTSP(𝑐, 𝑝𝑐start, 𝑝𝑐end, 𝐷)
6: Porder ← Porder ∪ 𝑐path
7: end for

8: // Start POI Selection and POI Reordering
9: 𝑝start ← Select(Porder)
10: Porder ← Reorder(Porder, 𝑝orderstart )
11: return Porder

The described process facilitates an optimized and coherent tra-
versal among the selected POIs. Moreover, employing a hierarchical
approach to solve the TSP with a large number of POIs. ‘SolveTSP’
and ‘SolveTSPWithEndpoints’ represent procedures to solve the
standard and constrained TSP, respectively. The function ‘GetClus-
terEndpoints’ determines the start and end points for each cluster.
Additionally, the ordering of POIs is influenced by the choice of
starting point. Hence, ‘Select’ identifies the itinerary’s starting point
𝑝start from decomposed subrequests R or, if unavailable, by prompt-
ing an LLM with P𝑐 and 𝑟 to select 𝑝start. Then, ‘Reorder‘ function
ensures that the POIs follow the original order of precedence in
Porder to form the final Porder starts from 𝑝start.

4.6 Itinerary Generation

Simplified prompt P𝐼𝐺 for final itinerary generation.

Please consider carefully and use the provided "Candidate POIs" list to craft a one-day

itinerary in the form of an engaging and realistic travel story.

## Itinerary Information:
- **Candidate POIs**: {p_order}
1: "Time Cafe, Dongcheng District. Located in the bustling Nanluoguxiang, this cafe is a
popular spot for photo enthusiasts and also a cat cafe. Surrounded by beautiful roses, it's
perfect for capturing memories.“
2: . . .
- **Must-see POIs**: {r_must}
- **Keyword Requirements**: {r_pos}
- **User's Original Request**: {r}
- **Start POI**: {p_start}
- **End POI**: {p_end}

## Constraints:
- Only choose POI from the **Candidate POI** list and in ascending order.
- Bars should be at the end of the itinerary, while coffee shops should not be the last POI.

## Task Description:
1. You have approximately {hours} hours. Select suitable POIs from the **Candidate POIs**
list in ascending order, ensuring your itinerary is selectively filtered and does not include
all POIs from the list.
2. All POIs added to the itinerary must follow the ascending order of **Candidate POIs**.
3. Generate a JSON file containing all selected POIs.

## Output Format:
{{

"itinerary": "List of POIs, separated by '->'"
"Overall reason": "Overall recommendation reason for the designed day trip itinerary",
"pois": {{

"n": "Description and recommendation reason for each POI", ...
}}

}}

Selecting any subset from Porder guarantees a spatially coher-
ent itinerary, but a high-quality itinerary should also comply with
additional constraints, such as matching the user’s time availability
and ensuring practicality. For example, it should avoid consecutive
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Shanghai Qingdao

Method Rule-based Metrics GPT-based Metrics ↑ (%) Rule-based Metrics GPT-based Metrics ↑ (%)
RR ↑
(%)

AM ↓
(meters) OL ↓ FR ↓

(%) PQ IQ Match RR ↑
(%)

AM ↓
(meters) OL ↓ FR ↓

(%) PQ IQ Match

IP [7] 6.4 1573.3 2.96 / 30.3 26.2 17.8 7.6 4134.3 2.86 / 23.6 16.8 20.2
Ernie-Bot 4.0 [23] 15.7 513.5 0.91 15.2 42.1 46.5 42.5 27.2 776.2 0.78 21.4 43.4 38.2 33.3
GPT-3.5 [16] 16.6 422.4 0.83 13.5 40.4 43.1 45.4 25.5 691.5 0.55 22.0 33.4 39.0 46.6
GPT-4 [17] 18.0 267.2 0.56 8.2 45.0 48.2 46.9 27.3 569.4 0.49 19.6 46.6 48.7 48.4
GPT-4 CoT [31] 18.4 258.3 0.49 7.5 / / / 30.2 542.6 0.43 17.8 / / /
Ours 31.4 86.0 0.42 / 69.8 64.6 72.0 35.4 225.8 0.26 / 71.2 68.2 67.8

Beijing Hangzhou

Method Rule-based Metrics GPT-based Metrics ↑ (%) Rule-based Metrics GPT-based Metrics ↑ (%)
RR ↑
(%)

AM ↓
(meters) OL ↓ FR ↓

(%) PQ IQ Match RR ↑
(%)

AM ↓
(meters) OL ↓ FR ↓

(%) PQ IQ Match

IP [7] 3.3 3034.2 2.26 / 27.8 18.2 20.4 1.8 1744.4 1.52 / 34.8 31.4 22.5
Ernie-Bot 4.0 [23] 18.8 379.4 0.74 12.8 31.2 34.8 32.1 12.9 605.2 1.17 24.4 43.6 34.3 38.2
GPT-3.5 [16] 19.7 347.8 0.58 14.3 29.2 40.5 43.8 14.4 665.4 1.16 19.8 41.2 40.8 32.8
GPT-4 [17] 20.6 342.6 0.52 11.1 45.4 43.6 45.2 14.8 746.1 1.09 23.2 46.2 39.6 39.4
GPT-4 CoT [31] 21.0 327.7 0.54 10.2 / / / 15.5 455.0 1.09 18.6 / / /
Ours 28.4 79.2 0.46 / 59.2 67.6 75.2 21.4 30.5 0.12 / 61.6 65.4 68.3

Table 1: Overall results. GPT-based metrics represent the win rate against GPT-4 CoT.

restaurant visits and ensure venues are visited at appropriate times,
such as not planning bars in the morning or coffee shops late at
night. Given the complex nature of these constraints, traditional
optimization-based algorithms can become excessively complicated
and lack variability [26, 38], hindering system deployment and
itinerary diversity. To address this, considering the advanced rea-
soning and planning capabilities of LLMs, we leverage LLMs to
generate final itineraries that satisfy these diverse constraints.

Specifically, the primary objective of this module is to effectively
utilize LLM to select an optimal subset from Porder, which closely
aligns with user requests while adhering to various constraints.
This process can be formally defined as follows:

I ∼ LLM𝜃

(
P𝐼𝐺

(
r, Porder , L

))
, (8)

where L indicates extra natural language input that improves the
language quality of the generated itinerary.

The prompt P𝐼𝐺 for generating the final itinerary consists of the
following parts: (1) User request information; (2) Candidate POIs
and their context; (3) Task description; (4) Specific constraints; (5)
Language style guide; (5) Output format description.

Utilizing LLMs to generate the final travel itinerary allows for
a balance among various considerations. Additionally, leveraging
the reasoning capabilities of LLM, we can create a time-appropriate
travel itinerary tailored to the user requests. Specifically, we lever-
age a simple time indication prompt P𝑇 𝐼 to indicate the travel time
(in hours) of the itinerary, and the results can be integrated into
the “Task Description” part of the prompt P𝐼𝐺 .

5 EXPERIMENTS

We conduct extensive experiments to answer the following re-
search questions: RQ1, why does directly using LLM to generate
travel itineraries not guarantee a good user experience, and what
advantages can ItiNera offer in comparison? RQ2, how do the var-
ious components of ItiNera enhance the quality of the generated
itineraries? RQ3, how well does ItiNera serve the OUIP service

at TuTu in an online production environment? Sec. 5.3 provides
results to answer RQ1. Sec. 5.4 provides an ablation study to answer
RQ2. Sec. 5.6 provides online performance results to answer RQ3.

5.1 Experimental Setup

5.1.1 Data Description. We conduct experiments on an urban
travel itinerary dataset from four Chinese cities, collected in col-
laboration with a leading travel agency specializing in single-day
city tours. The dataset comprises top-rated 1233 urban itineraries
and 7578 POIs. Each data sample contains a user request, the corre-
sponding urban itinerary plan, and detailed POI data.

5.1.2 Implementation Details. We utilize two LLMs through their
APIs: GPT-3.5 (gpt-3.5-turbo version) and GPT-4 (gpt-4-turbo ver-
sion). GPT-4 is used for the final itinerary generation (P𝐼𝐺 ) to guar-
antee the overall quality of the itinerary, and GPT-3.5 is employed
for other LLM interactions to ensure the response speed of our
OUIP service. We also incorporate the text-embedding-ada-002
model for embedding purposes. The spatial coherence of itineraries
is optimized through an open-source TSP solver1. The integration
of POI data encompasses various attributes, including geographical
coordinates, user ratings, categorizations, and physical addresses,
facilitated through the Amap API2. Notably, the original languages
of our service and data are simplified Chinese, and the translated
version is used for demonstration purposes in this paper.

5.2 Evaluation Metrics

According to the concept of the OUIP task, a satisfactory itinerary
must possess the following characteristics: spatial coherence and
alignment with the user’s needs. To this end, we have designed
several objective metrics to evaluate the generated itineraries.

5.2.1 Rule-based Metrics. We first design some rule-based metrics:
(1) Recall Rate (RR): the recall rate of POIs in the ground truth
1https://github.com/fillipe-gsm/python-tsp
2https://lbs.amap.com/
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Variants UPC RD PPR CSO IG Rule-based Metrics GPT-based Metrics ↑ (%)
RR ↑
(%)

AM ↓
(meters) OL ↓ PQ IQ Match

GPT-4 CoT [31] × × × × ✓ 18.4 258.3 0.49 / / /
GPT-4 CoT + UPC ✓ × ✓ × ✓ 34.2 240.2 0.52 65.5 61.8 70.6
Ours w/o RD ✓ × ✓ ✓ ✓ 22.6 35.4 0.18 68.2 61.5 60.5
Ours w/o PPR ✓ ✓ × ✓ ✓ 28.2 84.6 0.38 66.7 63.4 62.2
Ours w/o CSO ✓ ✓ ✓ × ✓ 32.8 242.8 1.04 72.1 60.2 74.2
Ours w/ GPT-3.5 ✓ ✓ ✓ ✓ ✓ 27.6 79.4 0.56 67.3 58.8 61.4
Ours (full) ✓ ✓ ✓ ✓ ✓ 31.4 86.0 0.42 69.8 64.6 72.0

Table 2: Ablation study on Shanghai dataset.

itinerary; (2) Average Margin (AM): The average difference per
POI between the total distance of the generated itinerary and the
shortest distance (calculated by TSP); (3) Overlaps (OL): the num-
ber of self-intersection points in the generated itinerary. (4) Fail
Rate (FR): The percentage of POIs generated by LLM that cannot
be matched with the queried POIs from the map service (serve as
the full POI set). RR evaluates the method’s accuracy in understand-
ing user requests and recommending correct POIs. AM and OL
measure spatial optimization for POI visit order, where lower is
better. FR evaluates LLM’s information accuracy and indicates the
method’s compatibility with the online service. Locations of failed
POIs are inaccessible and cannot be displayed on the map, which
lowers the user experience.

5.2.2 GPT-based Metrics. The above rule-based metrics are intu-
itive. Some other aspects are hard to quantify, e.g. the intrinsic
appeal of the POIs or the degree of alignment between user re-
quests and the generated itinerary. Therefore, following previous
benchmarks for automatic evaluation [1, 12, 29], we propose sev-
eral GPT-based metrics: (1) POI Quality (PQ): how interesting
and diverse the POIs are; (2) Itinerary Quality (IQ): the overall
quality and coherence of the itinerary; (3) Matchness (Match):
the matchness between the itinerary and the user request; We ask
GPT-4 to rank two candidate itineraries generated with different
methods and compute the win rate. We repeat the same query for
at least 10 times with different seeds to obtain a reliable result.

Automated evaluation through GPT offers a more efficient and
cost-effective alternative to human evaluation for large-scale exper-
iments. For example, the cost of GPT tokens for the entire ablation
study in Sec. 5.4 is less than $25. In addition, the results of the online
subjective evaluation in real-world scenarios in Sec. 5.6.2 demon-
strate consistent results between human and GPT assessments.

5.3 Overall Results

5.3.1 Baselines. We compare ItiNerawith the following baselines:
• IP [7]: A traditional IP method. We simplified it to use LLM for
time budgeting and to consider POI ratings as utilities.
• Ernie-Bot 4.0 [23]: The best-performing model on Chinese LLM
tasks, selected as our dataset and service are in Chinese.
• GPT-3.5 [16]: The standard ChatGPT model.
• GPT-4 [17]: The enhanced model offering superior performance
and broader knowledge coverage.
• GPT-4 CoT [31]: The model improves GPT-4 with the LLM-as-
agent method, Chain-of-Thought reasoning.

We employ the same itinearry generation prompt for all base-
lines, including basic task requirements and output format as in
P𝐼𝐺 . Notably, for GPT-4 CoT, we extend the prompt by integrating
the “thoughts”. Note that the baseline IP and our method does not
compute Fail Rate as the candidate POIs are from the dataset.

5.3.2 Results Analysis. We provide analysis for results. As illus-
trated in Tab. 1, our proposed ItiNera significantly outperforms all
baselines across all metrics. For rule-based metrics, ItiNera shows
~30% improvement over the best baseline, highlighting its supe-
rior capability in personalizing user experiences. Furthermore, it
maintains spatial coherence by generating itineraries that are only
marginally longer (~100 meters per planned POI) than the shortest
path solved by TSP, a remarkable achievement considering poten-
tial user requests that may deviate from spatially optimal routes.
Notably, ItiNera is the only method to surpass the performance
of GPT-4 CoT in GPT-based evaluations, particularly excelling in
matchness. These findings underscore ItiNera’s efficacy in enhanc-
ing spatial coherence and aligning with user requests in OUIP.

5.4 Ablation Study

To understand how the different components of ItiNera affect the
quality of the generated itineraries (RQ2), we compare with the
following variants of ItiNera:
• GPT-4 CoT + UPC: This variant integrates the UPC module to
LLMs to generate itineraries conditioned on user-owned POIs.
• Ours w/o RD: This variant leverages the entire user input string’s
embedding to retrieve the POIs.
• Ours w/o PPR: This variant quantifies the contribution of the
PPR module compared to our full system.
• Ours w/o CSO: This variant removes the CSO module and let the
LLM called in the IG module determines the order of candidate
POIs when generating the final itineraries.
• Ours w/ GPT-3.5: This variant replace the GPT-4 with GPT-3.5
for generating the final itinerary.

We remove Fail Rate in ablation study, since all variants equipped
with UPC never generate POIs not presented in the database.

The results are shown in Tab. 2. Comparing the first two rows,
we find UPC can improve Recall Rate and Matchness of the GPT-4
CoT baseline. The variants “w/o RD”, “w/o PPR”, and “w/ GPT-3.5”
exhibit lower Recall Rate, POI Quality and Matchness than our full
model. This is because they are relatively inept at understanding
user requests and selecting relevant POIs. However, they display
lower Average Margin and Overlaps. We attribute this to the idea
that there is a trade-off between spatial optimization and matchness.
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Method Rule-based POI Quality Itinerary Quality Matchness

AM OL Expert User GPT Expert User GPT Expert User GPT

GPT-4 CoT 511.4 0.79 3.2 3.6 30% 2.5 3.0 32% 2.9 2.6 28%
Ours 107.6 0.44 3.8 4.3 70% 3.2 3.8 68% 3.6 3.5 72%

Table 3: Online evaluation.

Imposing constraints to align a system with human preference will
sacrifice its inherent ability. This is similar to conditional generation
tasks in other domains [5, 22] , where aligning output with human
input hinders the generation quality and is worth than uncondi-
tional generation. This trade-off is also observed when removing
CSO module (“w/o CSO”) leads to worse Average Margin and Over-
laps but better Recall Rate, POI Quality and Matchness. Our full
model manages to balance matchness with spatial ability.

In addition to effectiveness of the PPR module as verified by the
results of “w/o PPR”, the integration of the PPR module could also
help us address the issue of the limited sizes of LLMs’ context win-
dows, saving costs on LLM for our system. Lastly, we find that the
results of the variant “w/ GPT3.5”, although compromised, still sig-
nificantly outperform the GPT-3.5 baseline in Tab. 1, demonstrating
our system’s adaptability to alternative LLMs for OUIP.

5.5 Qualitative Results

We conduct a qualitative study to demonstrate our system’s ef-
fectiveness and the importance of integrating LLM with an CSO
module. Consider a user request “I’m seeking an artsy itinerary
that includes exploring the river’s bridges and ferries.” We visualize
the results from ItiNera and GPT-4 CoT in Fig. 3.

Figure 3: Itineraries of ItiNera (left) and GPT-4 CoT (right).

We find that our itinerary better matches the user preferences.
The itinerary passes several bridges along the Huangpu River, in-
clude a ferry crossing, and conclude at the art-atmosphere-rich
Duoyun Bookstore, offering a restful endpoint for users. In con-
trast, the POIs selected by GPT are more mainstream. Moreover,
our spatial arrangement is more logical, avoiding detours and con-
centrating selected POIs within two spatial clusters. The itinerary
generated by GPT is spatially poor, with a disordered sequence of
visits and contains excessively distant POIs. Beyond this example,
GPT also risks hallucinating non-existent POIs, highlighting the
superiority of our system ItiNera in comparison.

5.6 Online Performances

5.6.1 Online Deployment. Our system has been deployed as the
core algorithm of the TuTu online OUIP service. Within a month of

operation, it has attracted over 1K registered users who have created
more than a thousand itineraries across 60 cities, incorporating
over 30K user-owned POIs. In our online production, the itinerary
generation utilizes the GPT-4 API with streaming. The average
latency for the initial response token is around 6 seconds, and the
complete response takes around 20 seconds. Our designed prompt
asks for a short output, thereby reducing the overall response time.

5.6.2 Online Evaluation. To verify the effectiveness of our system
in real-world scenarios, we conduct online evaluations (RQ3). Sub-
jective evaluation via user studies has been extensively employed
in prior research on generative tasks [21, 22, 44] where objective
metrics fail to adequately assess specific dimensions of the output
quality. The TuTu online OUIP service provides a natural way to
conduct subjective evaluation. For a small group of users (User),
we provide them with a feedback interface upon the completion of
each itinerary generation. For those users, we randomly replace the
algorithm in the service with the baseline GPT-4 CoT to generate
itineraries in the probability of 50%. In the same way as the GPT-
based metrics, users are required to rate the POI Quality, Itinerary
Quality and Matchness, following the Likert scale (1 for poor and
5 for excellent). We gathered 1443 results from 464 users. These
ratings are subsequently utilized to upgrade our system to enhance
user experience. We also invited 33 experienced travel assistants
(Expert) from our collaborative travel agency to provide evaluation
on the collected 1443 queries and itineraries from a professional
perspective. For GPT-based metrics, we first use the other algorithm
to generate an itinerary for the same query to compare with the
existing itinerary. Then, we ask GPT-4 to rank the two candidate
itineraries and compute the win rate over all queries.

The average evaluation results are reported in Tab. 3. One can
observe that our method is preferred by experts and online users
across all metrics, especially for Matchness, validating the effective-
ness of our system in real-world scenarios. Moreover, the online
evaluation results are consistent with the GPT evaluation win rate,
indicating that the proposed GPT-based metrics are appropriate and
adaptable where massive results need to be evaluated but rule-based
evaluation is not sufficient.

6 CONCLUSION

We introduce the problem of OUIP and a solution ItiNera that
integrates LLMs with spatial optimization, enabling the generation
of personalized and spatially coherent itineraries directly from
natural language requests. Our system is deployed in the TuTu
online service. The results from offline and online experiments
validate the effectiveness of our approach. This study not only
establishes a new benchmark for itinerary planning technologies
but also broadens venues for further innovations in leveraging
LLMs for complex problem-solving in urban contexts.
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